1
|
Stojanović NM, Randjelović PJ, Maslovarić A, Kostić M, Raičević V, Sakač M, Bjedov S. How do different bile acid derivatives affect rat macrophage function - Friends or foes? Chem Biol Interact 2023; 383:110688. [PMID: 37648052 DOI: 10.1016/j.cbi.2023.110688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/13/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
Due to an increased need for new immunomodulatory agents, many previously known molecules have been structurally modified in order to obtain new drugs, preserving at the same time some of the benevolent characteristics of the parent molecule. This study aimed to evaluate the immunomodulatory potential of a selected library of bile acid derivatives (BAD) using a broad spectrum of assays, evaluating rat peritoneal macrophages viability, cell membrane damage, lysosomal and adhesion function, and nitric oxide and cytokine production as a response to lipopolysaccharide stimulation. Also, in silico studies on two bile acid-activated receptors were conducted and the results were related to the observed in vitro effects. All tested BAD exerted significant toxicity in concentrations higher than 10 μM, which was determined based on mitochondria and cell membrane damage in a panel of assays. On the other hand, at lower concentrations, the tested BAD proved to be immunomodulatory since they affected lysosomal function, cell adhesion capacities and the ability to produce inflammatory cytokines in response to a stimulus. One of the compounds proved to exhibit significant toxicity toward macrophages, but also caused a concentration-dependent decrease in nitric oxide levels and was identified as a potential farnesoid X receptor agonist.
Collapse
Affiliation(s)
- Nikola M Stojanović
- Department of Physiology, Faculty of Medicine, University of Niš, 18000, Niš, Serbia.
| | - Pavle J Randjelović
- Department of Physiology, Faculty of Medicine, University of Niš, 18000, Niš, Serbia
| | | | - Miloš Kostić
- Department of Immunology, Faculty of Medicine, University of Niš, 18000, Niš, Serbia
| | - Vidak Raičević
- Department of Chemistry, Biochemistry, and Environmental Protection, Faculty of Sciences, University of Novi Sad, 21000, Novi Sad, Serbia
| | - Marija Sakač
- Department of Chemistry, Biochemistry, and Environmental Protection, Faculty of Sciences, University of Novi Sad, 21000, Novi Sad, Serbia
| | - Srđan Bjedov
- Department of Chemistry, Biochemistry, and Environmental Protection, Faculty of Sciences, University of Novi Sad, 21000, Novi Sad, Serbia
| |
Collapse
|
2
|
Wang X, Wu D, Zhong P. Serum bilirubin and ischaemic stroke: a review of literature. Stroke Vasc Neurol 2020; 5:198-204. [PMID: 32606087 PMCID: PMC7337366 DOI: 10.1136/svn-2019-000289] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/13/2019] [Accepted: 01/30/2020] [Indexed: 02/06/2023] Open
Abstract
Bilirubin, a product of heme metabolism, is the most potent endogenous antioxidant which increases in many oxidative stress conditions such as stroke. It has been widely known to exert neuroprotective effect on stroke through mechanisms involved in development, therefore, it can influence the occurrence and prognosis of ischaemic stroke (IS). In this review, studies were identified by a comprehensive search of Pubmed, Embase, the Cochrane Library (Cochrane Database of Systematic Reviews, Cochrane Central Register of Controlled Trials (CENTRAL), Cochrane Methodology Register) and Web of Science to examine the correlation between serum bilirubin levels and risks of developing IS as well as IS outcomes. Additional studies were identified by reviewing references and contacting authors.
Collapse
Affiliation(s)
- Xiao Wang
- Department of Neurology, Shanghai Traditional Chinese and Western Medicine Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Danhong Wu
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Ping Zhong
- Department of Neurology, Shanghai Traditional Chinese and Western Medicine Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
Vasavda C, Kothari R, Malla AP, Tokhunts R, Lin A, Ji M, Ricco C, Xu R, Saavedra HG, Sbodio JI, Snowman AM, Albacarys L, Hester L, Sedlak TW, Paul BD, Snyder SH. Bilirubin Links Heme Metabolism to Neuroprotection by Scavenging Superoxide. Cell Chem Biol 2019; 26:1450-1460.e7. [PMID: 31353321 DOI: 10.1016/j.chembiol.2019.07.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/04/2019] [Accepted: 07/07/2019] [Indexed: 12/26/2022]
Abstract
Bilirubin is one of the most frequently measured metabolites in medicine, yet its physiologic roles remain unclear. Bilirubin can act as an antioxidant in vitro, but whether its redox activity is physiologically relevant is unclear because many other antioxidants are far more abundant in vivo. Here, we report that depleting endogenous bilirubin renders mice hypersensitive to oxidative stress. We find that mice lacking bilirubin are particularly vulnerable to superoxide (O2⋅-) over other tested reactive oxidants and electrophiles. Whereas major antioxidants such as glutathione and cysteine exhibit little to no reactivity toward O2⋅-, bilirubin readily scavenges O2⋅-. We find that bilirubin's redox activity is particularly important in the brain, where it prevents excitotoxicity and neuronal death by scavenging O2⋅- during NMDA neurotransmission. Bilirubin's unique redox activity toward O2⋅- may underlie a prominent physiologic role despite being significantly less abundant than other endogenous and exogenous antioxidants.
Collapse
Affiliation(s)
- Chirag Vasavda
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ruchita Kothari
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Adarsha P Malla
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Robert Tokhunts
- Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Anthony Lin
- Duke University School of Medicine, Durham, NC 27701, USA
| | - Ming Ji
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Cristina Ricco
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Risheng Xu
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Harry G Saavedra
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Juan I Sbodio
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Adele M Snowman
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lauren Albacarys
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lynda Hester
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Thomas W Sedlak
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bindu D Paul
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Solomon H Snyder
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
4
|
Bulmer AC, Bakrania B, Du Toit EF, Boon AC, Clark PJ, Powell LW, Wagner KH, Headrick JP. Bilirubin acts as a multipotent guardian of cardiovascular integrity: more than just a radical idea. Am J Physiol Heart Circ Physiol 2018; 315:H429-H447. [PMID: 29600900 DOI: 10.1152/ajpheart.00417.2017] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bilirubin, a potentially toxic catabolite of heme and indicator of hepatobiliary insufficiency, exhibits potent cardiac and vascular protective properties. Individuals with Gilbert's syndrome (GS) may experience hyperbilirubinemia in response to stressors including reduced hepatic bilirubin excretion/increased red blood cell breakdown, with individuals usually informed by their clinician that their condition is of little consequence. However, GS appears to protect from all-cause mortality, with progressively elevated total bilirubin associated with protection from ischemic heart and chronic obstructive pulmonary diseases. Bilirubin may protect against these diseases and associated mortality by reducing circulating cholesterol, oxidative lipid/protein modifications, and blood pressure. In addition, bilirubin inhibits platelet activation and protects the heart from ischemia-reperfusion injury. These effects attenuate multiple stages of the atherosclerotic process in addition to protecting the heart during resultant ischemic stress, likely underpinning the profound reduction in cardiovascular mortality in hyperbilirubinemic GS. This review outlines our current knowledge of and uses for bilirubin in clinical medicine and summarizes recent progress in revealing the physiological importance of this poorly understood molecule. We believe that this review will be of significant interest to clinicians, medical researchers, and individuals who have GS.
Collapse
Affiliation(s)
- Andrew C Bulmer
- School of Medical Science and Menzies Health Institute Queensland, Griffith University , Gold Coast, Queensland , Australia
| | - Bhavisha Bakrania
- Department of Physiology and Biophysics, University of Mississippi Medical Centre , Jackson, Mississippi
| | - Eugene F Du Toit
- School of Medical Science and Menzies Health Institute Queensland, Griffith University , Gold Coast, Queensland , Australia
| | - Ai-Ching Boon
- School of Medical Science and Menzies Health Institute Queensland, Griffith University , Gold Coast, Queensland , Australia
| | - Paul J Clark
- QIMR-Berghofer Medical Research Institute, School of Medicine, University of Queensland and Princess Alexandra and Mater Hospitals , Brisbane, New South Wales , Australia
| | - Lawrie W Powell
- The Centre for the Advancement of Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland Centre for Clinical Research , Brisbane, Queensland , Australia
| | - Karl-Heinz Wagner
- Department of Nutritional Science, University of Vienna , Vienna , Austria
| | - John P Headrick
- School of Medical Science and Menzies Health Institute Queensland, Griffith University , Gold Coast, Queensland , Australia
| |
Collapse
|
5
|
Läer S, Apel M, Bernhardt J, Kapitulnik J, Kahl R. Interactions between bilirubin and reactive oxygen species in liver microsomes and in human neutrophil granulocytes. Redox Rep 2016; 3:119-24. [DOI: 10.1080/13510002.1997.11747098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
6
|
Brites D. The evolving landscape of neurotoxicity by unconjugated bilirubin: role of glial cells and inflammation. Front Pharmacol 2012; 3:88. [PMID: 22661946 PMCID: PMC3361682 DOI: 10.3389/fphar.2012.00088] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 04/23/2012] [Indexed: 12/13/2022] Open
Abstract
Unconjugated hyperbilirubinemia is a common condition in the first week of postnatal life. Although generally harmless, some neonates may develop very high levels of unconjugated bilirubin (UCB), which may surpass the protective mechanisms of the brain in preventing UCB accumulation. In this case, both short-term and long-term neurodevelopmental disabilities, such as acute and chronic UCB encephalopathy, known as kernicterus, or more subtle alterations defined as bilirubin-induced neurological dysfunction (BIND) may be produced. There is a tremendous variability in babies' vulnerability toward UCB for reasons not yet explained, but preterm birth, sepsis, hypoxia, and hemolytic disease are comprised as risk factors. Therefore, UCB levels and neurological abnormalities are not strictly correlated. Even nowadays, the mechanisms of UCB neurotoxicity are still unclear, as are specific biomarkers, and little is known about lasting sequelae attributable to hyperbilirubinemia. On autopsy, UCB was shown to be within neurons, neuronal processes, and microglia, and to produce loss of neurons, demyelination, and gliosis. In isolated cell cultures, UCB was shown to impair neuronal arborization and to induce the release of pro-inflammatory cytokines from microglia and astrocytes. However, cell dependent sensitivity to UCB toxicity and the role of each nerve cell type remains not fully understood. This review provides a comprehensive insight into cell susceptibilities and molecular targets of UCB in neurons, astrocytes, and oligodendrocytes, and on phenotypic and functional responses of microglia to UCB. Interplay among glia elements and cross-talk with neurons, with a special emphasis in the UCB-induced immunostimulation, and the role of sepsis in BIND pathogenesis are highlighted. New and interesting data on the anti-inflammatory and antioxidant activities of different pharmacological agents are also presented, as novel and promising additional therapeutic approaches to BIND.
Collapse
Affiliation(s)
- Dora Brites
- Neuron Glia Biology in Health and Disease Unit, Research Institute for Medicines and Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon Lisbon, Portugal
| |
Collapse
|
7
|
Changho S, Ahmed AA. Neutrophils in biliary atresia. A study on their morphologic distribution and expression of CAP37. Pathol Res Pract 2010; 206:314-7. [DOI: 10.1016/j.prp.2010.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 01/21/2010] [Accepted: 02/02/2010] [Indexed: 01/30/2023]
|
8
|
McCarty MF. ''Iatrogenic Gilbert syndrome''--a strategy for reducing vascular and cancer risk by increasing plasma unconjugated bilirubin. Med Hypotheses 2007; 69:974-94. [PMID: 17825497 DOI: 10.1016/j.mehy.2006.12.069] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Accepted: 12/18/2006] [Indexed: 01/11/2023]
Abstract
The catabolism of heme, generating biliverdin, carbon monoxide, and free iron, is mediated by heme oxygenase (HO). One form of this of this enzyme, heme oxygenase-1, is inducible by numerous agents which promote oxidative stress, and is now known to provide important antioxidant protection, as demonstrated in many rodent models of free radical-mediated pathogenesis, and suggested by epidemiology observing favorable health outcomes in individuals carrying high-expression alleles of the HO-1 gene. The antioxidant impact of HO-1 appears to be mediated by bilirubin, generated rapidly from biliverdin by ubiquitously expressed biliverdin reductase. Bilirubin efficiently scavenges a wide range of physiological oxidants by electron donation. In the process, it is often reconverted to biliverdin, but biliverdin reductase quickly regenerates bilirubin, thereby greatly boosting its antioxidant potential. There is also suggestive evidence that bilirubin inhibits the activity or activation of NADPH oxidase. Increased serum bilirubin is associated with reduced risk for atherogenic disease in epidemiological studies, and more limited data show an inverse correlation between serum bilirubin and cancer risk. Gilbert syndrome, a genetic variant characterized by moderate hyperbilirubinemia attributable to reduced hepatic expression of the UDP-glucuronosyltransferase which conjugates bilirubin, has been associated with a greatly reduced risk for ischemic heart disease and hypertension in a recent study. Feasible strategies for boosting serum bilirubin levels may include administration of HO-1 inducers, supplementation with bilirubin or biliverdin, and administration of drugs which decrease the efficiency of hepatic bilirubin conjugation. The well-tolerated uricosuric drug probenecid achieves non-competitive inhibition of hepatic glucuronidation reactions by inhibiting the transport of UDP-glucuronic acid into endoplasmic reticulum; probenecid therapy is included in the differential diagnosis of hyperbilirubinemia, and presumably could be used to induce an ''iatrogenic Gilbert syndrome''. Other drugs, such as rifampin, can raise serum bilirubin through competitive inhibition of hepatocyte bilirubin uptake--although unfortunately rifampin is not as safe as probenecid. Measures which can safely achieve moderate serum elevations of bilirubin may prove to have value in the prevention and/or treatment of a wide range of disorders in which oxidants play a prominent pathogenic role, including many vascular diseases, cancer, and inflammatory syndromes. Phycobilins, algal biliverdin metabolites that are good substrates for biliverdin reductase, may prove to have clinical antioxidant potential comparable to that of bilirubin.
Collapse
|
9
|
Wu JF, Chiang BL, Chen HL, Lai HS, Chang MH, Ni YH. Impaired T-lymphocyte proliferation function in biliary atresia patients with chronic cholestatic jaundice after a Kasai operation. Pediatr Res 2006; 60:602-6. [PMID: 16966356 DOI: 10.1203/01.pdr.0000242270.91973.ff] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
To investigate the association between chronic cholestatic jaundice, systemic immunity, and various infectious complications in patients with biliary atresia (BA), we performed a survey of the systemic immune function in 30 children with BA. Patients were divided into a jaundice group (total serum bilirubin > or = 2 mg/dL for >6 mo) and control group (total serum bilirubin <2 mg/dL for >6 mo) with comparable age. Patients were tested for serum immunoglobulin and complement levels, mitogen response, interleukin (IL)-4, IL-5, and interferon-gamma production after phytohemagglutinin (PHA) stimulation, blood cell and lymphocyte subpopulation counts, phagocytic function, and leukocyte adhesion complex. They were then followed prospectively for 6 mo, and severe infectious complications requiring hospitalization were recorded. Compared with jaundice-free patients, T-lymphocyte proliferation function, determined by PHA mitogen test was significantly lower (p = 0.02) in BA patients with chronic cholestatic jaundice after a Kasai operation. During the study period, patients with chronic cholestatic jaundice had a higher risk of severe infectious complications than their jaundice-free counterparts (risk ratio = 5.87; p = 0.001). In conclusion, BA patients with chronic cholestatic jaundice are associated with impairment of T-lymphocyte proliferation and increased incidence of severe infectious complications.
Collapse
Affiliation(s)
- Jia-Feng Wu
- Department of Pediatrics, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
10
|
Arai T, Yoshikai Y, Kamiya J, Nagino M, Uesaka K, Yuasa N, Oda K, Sano T, Nimura Y. Bilirubin impairs bactericidal activity of neutrophils through an antioxidant mechanism in vitro. J Surg Res 2001; 96:107-13. [PMID: 11181003 DOI: 10.1006/jsre.2000.6061] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Liver failure accompanied by hyperbilirubinemia after major hepatic resection is profoundly associated with septic complications. Although the immune dysfunction in cholestasis has been intensively investigated, the contribution of increased serum bilirubin to the impaired resistance to bacterial infection remains to be elucidated. Because bilirubin possesses an antioxidant activity, we hypothesized that bilirubin may scavenge reactive oxygen species (ROS) produced by neutrophils and consequently impair neutrophil bacterial killing. To address this, we evaluated the effects of bilirubin on the bactericidal activity of ROS or of neutrophils in vitro. MATERIALS AND METHODS The antioxidant activity of bilirubin was determined using an ROS-sensitive fluorophore, dichlorofluorescin diacetate (DCFH-DA). Bilirubin concentration in the buffer solution was monitored spectorophotometrically after incubation with ROS. The effect of bilirubin on killing of Escherichia coli by ROS or by isolated human neutrophils was determined by counting the viable E. coli after incubation on nutrient agar. RESULTS The bilirubin concentration in the buffer solution was decreased by the addition of hydrogen peroxide, especially in the presence of peroxidase or ferrous iron. DCFH-DA oxidation by ROS or activated neutrophils was inhibited by bilirubin in a dose-dependent manner. The bactericidal activity of ROS or of isolated neutrophils was significantly attenuated by bilirubin. CONCLUSIONS Bilirubin impairs bactericidal activity of neutrophils through scavenging ROS. Increased levels of serum bilirubin may well be responsible for the impaired bacterial clearance in patients with hyperbilirubinemia.
Collapse
Affiliation(s)
- T Arai
- First Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|