1
|
Trampuž D, Schielen PCJI, Zetterström RH, Scarpa M, Feillet F, Kožich V, Tangeraas T, Drole Torkar A, Mlinarič M, Perko D, Remec ŽI, Lampret BR, Battelino T, ISNS Study Group on PKU, van Spronsen FJ, Bonham JR, Grošelj U. International Survey on Phenylketonuria Newborn Screening. Int J Neonatal Screen 2025; 11:18. [PMID: 40136633 PMCID: PMC11943362 DOI: 10.3390/ijns11010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/27/2025] Open
Abstract
Newborn screening for Phenylketonuria enables early detection and timely treatment with a phenylalanine-restricted diet to prevent severe neurological impairment. Although effective and in use for 60 years, screening, diagnostic, and treatment practices still vary widely across countries and centers. To evaluate the Phenylketonuria newborn screening practices internationally, we designed a survey with questions focusing on the laboratory aspect of the screening system. We analyzed 24 completed surveys from 23 countries. Most participants used the same sampling age range of 48-72 h; they used tandem mass spectrometry and commercial non-derivatized kits to measure phenylalanine (Phe), and had non-negative cut-off values (COV) set mostly at 120 µmol/L of Phe. Participants mostly used genetic analysis of blood and detailed amino acid analysis from blood plasma as their confirmatory methods and set the COV for the initiation of dietary therapy at 360 µmol/L of Phe. There were striking differences in practice as well. While most participants reported a 48-72 h range for age at sampling, that range was overall quite diverse Screening COV varied as well. Additional screening parameters, e.g., the phenylalanine/tyrosine ratio were used by some participants to determine the screening result. Some participants included testing for tetrahydrobiopterin deficiency, or galactosemia in their diagnostic process. Results together showed that there is room to select a best practice from the many practices applied. Such a best practice of PKU-NBS parameters and post-screening parameters could then serve as a generally applicable guideline.
Collapse
Affiliation(s)
- Domen Trampuž
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, Ljubljana University Medical Center, Vrazov trg 1, 1000 Ljubljana, Slovenia
| | - Peter C. J. I. Schielen
- International Society for Neonatal Screening, Reigerskamp 273, 3607 HP Stichtse Vecht, The Netherlands
| | - Rolf H. Zetterström
- Center for Inherited Metabolic Diseases, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Maurizio Scarpa
- Regional Coordinator Centre for Rare Diseases, University Hospital of Udine, 33100 Udine, Italy
| | - François Feillet
- Pediatric Unit, Reference Center for Inborn Errors of Metabolism, University Hospital of Nancy, 54500 Nancy, France
- INSERM UMRS 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, University of Lorraine, 54505 Nancy, France
| | - Viktor Kožich
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine and General University Hospital in Prague, Ke Karlovu 2, 128 08 Praha 2, Czech Republic
| | - Trine Tangeraas
- Norwegian National Unit for Newborn Screening, Division of Pediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | - Ana Drole Torkar
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, Ljubljana University Medical Center, Bohoriceva 20, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Matej Mlinarič
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, Ljubljana University Medical Center, Bohoriceva 20, 1000 Ljubljana, Slovenia
| | - Daša Perko
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, Ljubljana University Medical Center, Vrazov trg 1, 1000 Ljubljana, Slovenia
| | - Žiga Iztok Remec
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, Ljubljana University Medical Center, Vrazov trg 1, 1000 Ljubljana, Slovenia
| | - Barbka Repič Lampret
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, Ljubljana University Medical Center, Vrazov trg 1, 1000 Ljubljana, Slovenia
| | - Tadej Battelino
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, Ljubljana University Medical Center, Bohoriceva 20, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | | | - Francjan J. van Spronsen
- Division of Metabolic Diseases, Beatrix Children’s Hospital, University Medical Center Groningen, University of Groningen, 9718 GZ Groningen, The Netherlands
| | | | - Urh Grošelj
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, Ljubljana University Medical Center, Bohoriceva 20, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
- Center for Rare Diseases, University Children’s Hospital, Ljubljana University Medical Center, Bohoričeva 20, 1000 Ljubljana, Slovenia
| |
Collapse
|
2
|
Feldmann R, Och U, Beckmann LS, Weglage J, Rutsch F. Children and Adolescents with Early Treated Phenylketonuria: Cognitive Development and Fluctuations of Blood Phenylalanine Levels. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:431. [PMID: 38673342 PMCID: PMC11050632 DOI: 10.3390/ijerph21040431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND We assessed the relationship between the cognitive development of children and adolescents with phenylketonuria (PKU) and fluctuations in peripheral phenylalanine (Phe) levels. METHODS We examined the neurocognitive performance of 33 children and adolescents with early treated PKU, of whom 18 were treated with sapropterin dihydrochloride, and 15 were on a classic diet. For 26 weeks, patients were assessed weekly for their blood phenylalanine (Phe) levels. Phe levels were analyzed for fluctuations indicated by the individual standard deviation. Fluctuations were compared to the standard deviation of 26 Phe level measurements before the study interval. We also assessed the concurrent IQ of the patients. This was repeated at one-, two-, and seven-year intervals. RESULTS Full-scale IQ in patients treated with a classic diet did not change within the follow-up. In patients treated with Sapropterin dihydrochloride, however, there was a considerable gain in full-scale IQ. This was particularly true if blood Phe fluctuations increased in patients of this treatment group. CONCLUSIONS Sapropterin dihydrochloride enhances Phe tolerance in patients with PKU. Increasing blood Phe fluctuations following enhanced Phe tolerance may indicate that the treatment not only allows patients to relax their Phe-restricted diet but also may support cognitive development in patients.
Collapse
Affiliation(s)
- Reinhold Feldmann
- Department of General Pediatrics, Münster University Children’s Hospital, 48149 Münster, Germany; (U.O.); (F.R.)
- Children’s Healthcare Center “Haus Walstedde”, 48317 Drensteinfurt, Germany
| | - Ulrike Och
- Department of General Pediatrics, Münster University Children’s Hospital, 48149 Münster, Germany; (U.O.); (F.R.)
| | - Lisa Sophie Beckmann
- Department of General Pediatrics, Münster University Children’s Hospital, 48149 Münster, Germany; (U.O.); (F.R.)
| | - Josef Weglage
- Children’s Healthcare Center “Haus Walstedde”, 48317 Drensteinfurt, Germany
| | - Frank Rutsch
- Department of General Pediatrics, Münster University Children’s Hospital, 48149 Münster, Germany; (U.O.); (F.R.)
| |
Collapse
|
3
|
Upadia J, Crivelly K, Noh G, Cunningham A, Cerminaro C, Li Y, Mckoin M, Chenevert M, Andersson HC. Maximal dietary responsiveness after tetrahydrobiopterin (BH4) in 19 phenylalanine hydroxylase deficiency patients: What super-responders can expect. Mol Genet Metab Rep 2024; 38:101050. [PMID: 38469087 PMCID: PMC10926188 DOI: 10.1016/j.ymgmr.2024.101050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 03/13/2024] Open
Abstract
Background Inherited phenylalanine hydroxylase deficiency, also known as phenylketonuria (PKU), causes poor growth and neurologic deficits in the untreated state. After ascertainment through newborn screen and dietary phenylalanine (Phe) restriction to achieve plasma Phe in the range of 120-360 μmol/L, these disease manifestations can be prevented. Poor compliance with protein restricted diets supported by medical food is typical in later years, beginning in the late toddler and teenage years. Pharmacologic doses of oral tetrahydrobiopterin (BH4; sapropterin dihydrochloride) is effective in reducing plasma Phe in about 40-50% of PKU patients but effectiveness is highly variable. Objective To assess the maximal responsiveness to 20 mg/kg/day oral BH4 as it affects plasma Phe and dietary Phe allowance in PKU patients. Materials and methods This was a single-center, retrospective observational study, combining case reports of individual patients. We reported an outcome of 85 patients with PKU who were trialed on BH4. Phe levels and dietary records of 19 BH4 "super-responders" were analyzed. Results Overall, 63.5% of the patients (54/85) were considered BH4 responders. However, we quantitated the dietary liberalization of 19 of our responsive patients (35%), those with at least a 2-fold increase in dietary Phe and maintenance of plasma Phe in treatment range. In these "super-responders", the mean plasma Phe at baseline was 371 ± 237 μmol/L and decreased to 284 ± 273 μmol/L after 1 year on BH4. Mean dietary Phe tolerance increased significantly from 595 ± 256 to 2260 ± 1414 mg/day (p ≤0.0001), while maintaining mean plasma Phe levels within treatment range. Four patients no longer required dietary Phe restriction and could discontinue medical food. The majority of patients had at least one BH4-responsive genotype. Conclusion This cohort demonstrates the maximally achievable dietary liberalization which some PKU patients may expect with BH4 therapy. Health benefits are considered to accrue in patients with increased intact protein.
Collapse
Affiliation(s)
- Jariya Upadia
- Hayward Genetics Center, New Orleans, LA 70112, USA
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Kea Crivelly
- Hayward Genetics Center, New Orleans, LA 70112, USA
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Grace Noh
- Hayward Genetics Center, New Orleans, LA 70112, USA
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Amy Cunningham
- Hayward Genetics Center, New Orleans, LA 70112, USA
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Caroline Cerminaro
- Hayward Genetics Center, New Orleans, LA 70112, USA
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Yuwen Li
- Hayward Genetics Center, New Orleans, LA 70112, USA
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Meredith Mckoin
- Hayward Genetics Center, New Orleans, LA 70112, USA
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Madeline Chenevert
- Hayward Genetics Center, New Orleans, LA 70112, USA
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Hans C. Andersson
- Hayward Genetics Center, New Orleans, LA 70112, USA
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
4
|
Vos EN, Demirbas D, Mangel M, Rubio-Gozalbo ME, Levy HL, Berry GT. The treatment of biochemical genetic diseases: From substrate reduction to nucleic acid therapies. Mol Genet Metab 2023; 140:107693. [PMID: 37716025 DOI: 10.1016/j.ymgme.2023.107693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/18/2023]
Abstract
Newborn screening (NBS) began a revolution in the management of biochemical genetic diseases, greatly increasing the number of patients for whom dietary therapy would be beneficial in preventing complications in phenylketonuria as well as in a few similar disorders. The advent of next generation sequencing and expansion of NBS have markedly increased the number of biochemical genetic diseases as well as the number of patients identified each year. With the avalanche of new and proposed therapies, a second wave of options for the treatment of biochemical genetic disorders has emerged. These therapies range from simple substrate reduction to enzyme replacement, and now ex vivo gene therapy with autologous cell transplantation. In some instances, it may be optimal to introduce nucleic acid therapy during the prenatal period to avoid fetopathy. However, as with any new therapy, complications may occur. It is important for physicians and other caregivers, along with ethicists, to determine what new therapies might be beneficial to the patient, and which therapies have to be avoided for those individuals who have less severe problems and for which standard treatments are available. The purpose of this review is to discuss the "Standard" treatment plans that have been in place for many years and to identify the newest and upcoming therapies, to assist the physician and other healthcare workers in making the right decisions regarding the initiation of both the "Standard" and new therapies. We have utilized several diseases to illustrate the applications of these different modalities and discussed for which disorders they may be suitable. The future is bright, but optimal care of the patient, including and especially the newborn infant, requires a deep knowledge of the disease process and careful consideration of the necessary treatment plan, not just based on the different genetic defects but also with regards to different variants within a gene itself.
Collapse
Affiliation(s)
- E Naomi Vos
- Division of Genetics & Genomics, Boston Children's Hospital; and Department of Pediatrics, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States of America; Manton Center for Orphan Disease Research, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States of America.
| | - Didem Demirbas
- Division of Genetics & Genomics, Boston Children's Hospital; and Department of Pediatrics, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States of America; Manton Center for Orphan Disease Research, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States of America.
| | - Matthew Mangel
- Division of Genetics & Genomics, Boston Children's Hospital; and Department of Pediatrics, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States of America.
| | - M Estela Rubio-Gozalbo
- Department of Pediatrics and Clinical Genetics, Maastricht University Medical Centre+, P. Debyelaan 25, 6229 HX Maastricht, the Netherlands; GROW, Maastricht University, Minderbroedersberg 4-6, 6211 LK Maastricht, the Netherlands; MetabERN: European Reference Network for Hereditary Metabolic Disorders, Udine, Italy; UMD: United for Metabolic Diseases Member, Amsterdam, the Netherlands.
| | - Harvey L Levy
- Division of Genetics & Genomics, Boston Children's Hospital; and Department of Pediatrics, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States of America.
| | - Gerard T Berry
- Division of Genetics & Genomics, Boston Children's Hospital; and Department of Pediatrics, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States of America; Manton Center for Orphan Disease Research, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States of America.
| |
Collapse
|
5
|
Wada Y, Totsune E, Mikami-Saito Y, Kikuchi A, Miyata T, Kure S. A method for phenylalanine self-monitoring using phenylalanine ammonia-lyase and a pre-existing portable ammonia detection system. Mol Genet Metab Rep 2023; 35:100970. [PMID: 37020603 PMCID: PMC10068251 DOI: 10.1016/j.ymgmr.2023.100970] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
Phenylketonuria is an inborn error of phenylalanine metabolism caused by a phenylalanine hydroxylase deficiency. To prevent the occurrence of neurological symptoms and maternal complications resulting from phenylketonuria, patients must adhere to a strict diet therapy, tetrahydrobiopterin supplementation, or pegvaliase injection to maintain blood phenylalanine levels within a recommended range throughout their lives. Therefore, monitoring blood phenylalanine levels is necessary to determine the recent metabolic status of phenylalanine in patients with PKU; however, there are no available instruments for individuals to monitor their own blood phenylalanine levels using whole fingertip blood. We developed a phenylalanine monitoring system (designated as PheCheck) that included a pre-existing portable ammonia detection device and phenylalanine ammonia-lyase, which converts phenylalanine to trans-cinnamic acid and ammonia. This system was able to remove 86.7% ± 0.03% of the ammonia contained in fingertip blood and successfully reduce background ammonia levels. A good correlation was found between the estimated plasma phenylalanine levels detected by PheCheck and plasma phenylalanine levels detected by high-performance liquid chromatography (R2 0.97). The entire PheCheck process for measuring blood phenylalanine takes only 20 min. PheCheck can lay the foundation for home phenylalanine monitoring with high feasibility because all the components are easily accessible. Further studies with a more user-friendly PheCheck optimized for practice are needed to improve blood phenylalanine control, reduce the burden on patients and/or caregivers, and prevent the sequelae associated with phenylketonuria.
Collapse
Affiliation(s)
- Yoichi Wada
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
- Corresponding author at: Department of Pediatrics, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan.
| | - Eriko Totsune
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| | - Yasuko Mikami-Saito
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| | - Atsuo Kikuchi
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| | - Toshio Miyata
- United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shigeo Kure
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| |
Collapse
|
6
|
Eichwald T, da Silva LDB, Staats Pires AC, Niero L, Schnorrenberger E, Filho CC, Espíndola G, Huang WL, Guillemin GJ, Abdenur JE, Latini A. Tetrahydrobiopterin: Beyond Its Traditional Role as a Cofactor. Antioxidants (Basel) 2023; 12:1037. [PMID: 37237903 PMCID: PMC10215290 DOI: 10.3390/antiox12051037] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Tetrahydrobiopterin (BH4) is an endogenous cofactor for some enzymatic conversions of essential biomolecules, including nitric oxide, and monoamine neurotransmitters, and for the metabolism of phenylalanine and lipid esters. Over the last decade, BH4 metabolism has emerged as a promising metabolic target for negatively modulating toxic pathways that may result in cell death. Strong preclinical evidence has shown that BH4 metabolism has multiple biological roles beyond its traditional cofactor activity. We have shown that BH4 supports essential pathways, e.g., to generate energy, to enhance the antioxidant resistance of cells against stressful conditions, and to protect from sustained inflammation, among others. Therefore, BH4 should not be understood solely as an enzyme cofactor, but should instead be depicted as a cytoprotective pathway that is finely regulated by the interaction of three different metabolic pathways, thus assuring specific intracellular concentrations. Here, we bring state-of-the-art information about the dependency of mitochondrial activity upon the availability of BH4, as well as the cytoprotective pathways that are enhanced after BH4 exposure. We also bring evidence about the potential use of BH4 as a new pharmacological option for diseases in which mitochondrial disfunction has been implicated, including chronic metabolic disorders, neurodegenerative diseases, and primary mitochondriopathies.
Collapse
Affiliation(s)
- Tuany Eichwald
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis 88037-100, SC, Brazil; (T.E.); (L.N.); (C.C.F.); (G.E.)
- Laboratory for Energy Metabolism, Division of Metabolic Disorders, CHOC Children’s Hospital, Orange, CA 92868, USA; (W.-L.H.); (J.E.A.)
| | - Lucila de Bortoli da Silva
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis 88037-100, SC, Brazil; (T.E.); (L.N.); (C.C.F.); (G.E.)
| | - Ananda Christina Staats Pires
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis 88037-100, SC, Brazil; (T.E.); (L.N.); (C.C.F.); (G.E.)
- Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Laís Niero
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis 88037-100, SC, Brazil; (T.E.); (L.N.); (C.C.F.); (G.E.)
| | - Erick Schnorrenberger
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis 88037-100, SC, Brazil; (T.E.); (L.N.); (C.C.F.); (G.E.)
| | - Clovis Colpani Filho
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis 88037-100, SC, Brazil; (T.E.); (L.N.); (C.C.F.); (G.E.)
| | - Gisele Espíndola
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis 88037-100, SC, Brazil; (T.E.); (L.N.); (C.C.F.); (G.E.)
- Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Wei-Lin Huang
- Laboratory for Energy Metabolism, Division of Metabolic Disorders, CHOC Children’s Hospital, Orange, CA 92868, USA; (W.-L.H.); (J.E.A.)
| | - Gilles J. Guillemin
- Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - José E. Abdenur
- Laboratory for Energy Metabolism, Division of Metabolic Disorders, CHOC Children’s Hospital, Orange, CA 92868, USA; (W.-L.H.); (J.E.A.)
| | - Alexandra Latini
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis 88037-100, SC, Brazil; (T.E.); (L.N.); (C.C.F.); (G.E.)
- Laboratory for Energy Metabolism, Division of Metabolic Disorders, CHOC Children’s Hospital, Orange, CA 92868, USA; (W.-L.H.); (J.E.A.)
| |
Collapse
|
7
|
Chen A, Pan Y, Chen J. Clinical, genetic, and experimental research of hyperphenylalaninemia. Front Genet 2023; 13:1051153. [PMID: 36685931 PMCID: PMC9845280 DOI: 10.3389/fgene.2022.1051153] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/06/2022] [Indexed: 01/06/2023] Open
Abstract
Hyperphenylalaninemia (HPA) is the most common amino acid metabolism defect in humans. It is an autosomal-recessive disorder of the phenylalanine (Phe) metabolism, in which high Phe concentrations and low tyrosine (Tyr) concentrations in the blood cause phenylketonuria (PKU), brain dysfunction, light pigmentation and musty odor. Newborn screening data of HPA have revealed that the prevalence varies worldwide, with an average of 1:10,000. Most cases of HPA result from phenylalanine hydroxylase (PAH) deficiency, while a small number of HPA are caused by defects in the tetrahydrobiopterin (BH4) metabolism and DnaJ heat shock protein family (Hsp40) member C12 (DNAJC12) deficiency. Currently, the molecular pathophysiology of the neuropathology associated with HPA remains incompletely understood. Dietary restriction of Phe has been highly successful, although outcomes are still suboptimal and patients find it difficult to adhere to the treatment. Pharmacological treatments, such as BH4 and phenylalanine ammonia lyase, are available. Gene therapy for HPA is still in development.
Collapse
Affiliation(s)
- Anqi Chen
- Department of Forensic Medicine, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yukun Pan
- Barbell Therapeutics Co. Ltd., Shanghai, China,*Correspondence: Yukun Pan, ; Jinzhong Chen,
| | - Jinzhong Chen
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China,*Correspondence: Yukun Pan, ; Jinzhong Chen,
| |
Collapse
|
8
|
Sarkissian CN, Scriver PP, Prevost L, Levy HL. Charles Scriver: Epitome of the physician scientist. Mol Genet Metab 2022; 137:388-398. [PMID: 36503822 DOI: 10.1016/j.ymgme.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
Charles Scriver is a towering figure in the medical genetics community. At 92 he can look back upon a remarkable career that established the field of biochemical genetics, a subsection of medical genetics that is translating the developments in basic genetics into the diagnoses and treatments of inherited biochemical diseases. This biographical sketch summarizes the key achievements of Dr. Scriver in research and medicine, integrating the different components of medical genetics into comprehensive provincial programs, teaching a generation of physicians and researchers, and developing worldwide collaborations. Charles has been a mighty figure in so many ways. He began his career by bringing amino acid chromatography from London to North America, thereby greatly enlarging the scope of metabolic disorders. Subsequently, his editorship of the classic Metabolic and Molecular Bases of Inherited Disease brought metabolism into genetics and established the field of biochemical genetics. He discovered a number of new diseases and was the first to recognize shared mediated amino acid transporters in the kidney, a medical breakthrough that has become a basic concept of amino acid homeostasis. He led the formation of the Quebec Network of Genetic Medicine, incorporating screening, diagnosis, counseling, treatment and research of genetic diseases, which to this day serves as a model for collaborative and comprehensive medical genetic programs internationally. He initiated the development of sapropterin (Kuvan®), the first non-dietary treatment for phenylketonuria (PKU) and helped identify the mechanism of this cofactor's action on phenylalanine hydroxylase in variants of PKU. His laboratory also led the development of phenylalanine ammonia lyase (Palynziq®), an enzyme substitution therapy that now serves as an alternative to dietary treatment for PKU. The ecosystem that Charles generated at the deBelle laboratory was collegial and highly fruitful. With the input and support of his remarkable wife Zipper, he found a way to integrate the concept of family into his work environment. Bustling with an endless series of evolving activities, he generated an inclusive setting which drew on the talents of brilliant clinical and research staff, as well as the input of patients and their families. In all these efforts, Charles managed to answer his own musings summarized in the following three questions: Who do we serve? How do we serve? Why do we serve? Charles Scriver's life is one well lived. An extraordinary physician scientist whose accomplishments are cause for pause and wonder; generating volumes of contribution which will forever seem impossible for one individual to deliver.
Collapse
Affiliation(s)
| | | | - Lynne Prevost
- Department of Biochemical Genetics, Montreal Children's Hospital, Montreal, Quebec, Canada.
| | - Harvey L Levy
- Division of Genetics and Genomics, Boston Children's Hospital, Department of Pediatrics Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Liemburg GB, Huijbregts SCJ, Rutsch F, Feldmann R, Jahja R, Weglage J, Och U, Burgerhof JGM, van Spronsen FJ. Metabolic control during the neonatal period in phenylketonuria: associations with childhood IQ. Pediatr Res 2022; 91:874-878. [PMID: 34497359 DOI: 10.1038/s41390-021-01728-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/13/2021] [Accepted: 07/09/2021] [Indexed: 01/26/2023]
Abstract
BACKGROUND In phenylketonuria, treatment and subsequent lowering of phenylalanine levels usually occur within the first month of life. This study investigated whether different indicators of metabolic control during the neonatal period were associated with IQ during late childhood/early adolescence. METHODS Overall phenylalanine concentration during the first month of life (total "area under the curve"), proportion of phenylalanine concentrations above upper target level (360 μmol/L) and proportion below lower target level (120 μmol/L) during this period, diagnostic phenylalanine levels, number of days until phenylalanine levels were <360 μmol/L, and lifetime and concurrent phenylalanine levels were correlated with IQ scores of 64 PKU patients (mean age 10.8 years, SD 2.9). RESULTS Overall phenylalanine concentration and proportion of phenylalanine concentrations >360 μmol/L during the first month of life negatively correlated with IQ in late childhood/early adolescence. Separately, phenylalanine concentrations during different periods within the first month of life (0-10 days, 11-20 days, 21-30 days) were negatively correlated with later IQ as well, but correlation strengths did not differ significantly. No further significant associations were found. CONCLUSIONS In phenylketonuria, achievement of target-range phenylalanine levels during the neonatal period is important for cognition later in life, also when compared to other indicators of metabolic control. IMPACT In phenylketonuria, it remains unclear during which age periods or developmental stages metabolic control is most important for later cognitive outcomes. Phenylalanine levels during the neonatal period were clearly and negatively related to later IQ, whereas no significant associations were observed for other indices of metabolic control. This emphasizes the relative importance of this period for cognitive development in phenylketonuria. No further distinctions were observed in strength of associations with later IQ between different indicators of metabolic control during the neonatal period. Thus, achievement of good metabolic control within 1 month after birth appears "safe" with respect to later cognitive outcomes.
Collapse
Affiliation(s)
- Geertje B Liemburg
- Division of Metabolic Diseases, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Stephan C J Huijbregts
- Department of Clinical Child and Adolescent Studies/Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands.
| | - Frank Rutsch
- Department of Pediatrics, Münster University, University Children's Hospital, Münster, Germany
| | - Reinhold Feldmann
- Department of Pediatrics, Münster University, University Children's Hospital, Münster, Germany
| | - Rianne Jahja
- Division of Metabolic Diseases, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Josef Weglage
- Department of Pediatrics, Münster University, University Children's Hospital, Münster, Germany
| | - Ulrike Och
- Department of Pediatrics, Münster University, University Children's Hospital, Münster, Germany
| | - Johannes G M Burgerhof
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Francjan J van Spronsen
- Division of Metabolic Diseases, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
10
|
Tamura M, Seki S, Kakurai Y, Chikada S, Wada K. Sapropterin for phenylketonuria: A Japanese post-marketing surveillance study. Pediatr Int 2022; 64:e14939. [PMID: 34331785 PMCID: PMC9305189 DOI: 10.1111/ped.14939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 06/20/2021] [Accepted: 07/08/2021] [Indexed: 01/05/2023]
Abstract
BACKGROUND The aim of this study was to assess the long-term safety and efficacy of sapropterin in a real-world setting in Japanese patients with tetrahydrobiopterin (BH4)-responsive phenylketonuria. METHODS This post-marketing surveillance study enrolled all of the patients in Japan with confirmed BH4-responsive PKU who were administrated sapropterin between July 2008 and October 2017. Patients were observed at least every 3 months during follow up, with key data collected on treatment exposure/duration, effectiveness according to physician's judgement, serum phenylalanine levels, and adverse events. RESULTS Of 87 enrolled patients, 85 patients (male, 42.4%; outpatients, 96.5%) were included in the safety and efficacy analysis sets. Treatment started at age <4 years in 43 (50.6%) patients and the most common starting daily dose was 5-10 mg/kg (n = 41, 48.2%) with the overall duration of treatment between 0.2 and 17.2 years. Serum phenylalanine levels, according to loading tests, reduced from a baseline level of 9.66 mg/dL (range 0.48-36.80 mg/dL) by >30% in 84 patients. Treatment was deemed effective in 79 of 85 patients (92.9%, 95% confidence interval: 85.3-97.4). One patient (1.2%) experienced an adverse drug reaction (alanine aminotransferase increased) 50 days after the start of administration, which resolved without complications with continued treatment. CONCLUSIONS Sapropterin appears well tolerated and highly effective in Japanese patients treated in a real-world setting, including those who start treatment at age <4 years and pregnant women.
Collapse
Affiliation(s)
- Mina Tamura
- Pharmacoepidemiology & PMS DepartmentDaiichi Sankyo Company LimitedTokyoJapan
| | - Shizuka Seki
- Safety & Risk Management DepartmentDaiichi Sankyo Company LimitedTokyoJapan
| | - Yasuyuki Kakurai
- Data Intelligence DepartmentDaiichi Sankyo Company LimitedTokyoJapan
| | - Shuichi Chikada
- Pharmacoepidemiology & PMS DepartmentDaiichi Sankyo Company LimitedTokyoJapan
| | - Kento Wada
- Clinical Safety & Pharmacovigilance DivisionDaiichi Sankyo Company LimitedTokyoJapan
| |
Collapse
|
11
|
Dobrowolski SF, Tourkova IL, Sudano CR, Larrouture QC, Blair HC. A New View of Bone Loss in Phenylketonuria. Organogenesis 2021; 17:50-55. [PMID: 34432558 DOI: 10.1080/15476278.2021.1949865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Osteopenia is common in phenylalanine hydroxylase deficient phenylketonuria (PKU). PKU is managed by limiting dietary phenylalanine. Osteopenia in PKU might reflect a therapeutic diet, with reduced bone forming materials. However, osteopenia occurs in patients who never received dietary therapy or following short-term therapy. Humans and animal studies find no correlation between bone loss, plasma hyperphenylalaninemia, bone formation, and resorption markers. Work in the Pahenu2 mouse recently showed a mesenchymal stem cell (MSC) developmental defect in the osteoblast pathway. Specifically, Pahenu2 MSCs are affected by energy dysregulation and oxidative stress. In PKU, MSCs oximetry and respirometry show mitochondrial respiratory-chain complex 1 deficit and over-representation of superoxide, producing reactive oxygen species affecting mitochondrial function. Similar mechanisms are involved in aging bone and other rare defects including alkaptonuria and homocysteinemia. Novel interventions to support energy and reduce oxidative stress may restore bone formation PKU patients, and in metabolic diseases with related mechanisms.
Collapse
Affiliation(s)
- Steven F Dobrowolski
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Irina L Tourkova
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA.,Pittsburgh Veteran's Affairs Medical Center, Pittsburgh, PA, USA
| | - Cayla R Sudano
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Quitterie C Larrouture
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA.,Pittsburgh Veteran's Affairs Medical Center, Pittsburgh, PA, USA
| | - Harry C Blair
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA.,Pittsburgh Veteran's Affairs Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
12
|
Li Y, Tan Z, Zhang Y, Zhang Z, Hu Q, Liang K, Jun Y, Ye Y, Li YC, Li C, Liao L, Xu J, Xing Z, Pan Y, Chatterjee SS, Nguyen TK, Hsiao H, Egranov SD, Putluri N, Coarfa C, Hawke DH, Gunaratne PH, Tsai KL, Han L, Hung MC, Calin GA, Namour F, Guéant JL, Muntau AC, Blau N, Sutton VR, Schiff M, Feillet F, Zhang S, Lin C, Yang L. A noncoding RNA modulator potentiates phenylalanine metabolism in mice. Science 2021; 373:662-673. [PMID: 34353949 PMCID: PMC9714245 DOI: 10.1126/science.aba4991] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 08/31/2020] [Accepted: 06/25/2021] [Indexed: 12/13/2022]
Abstract
The functional role of long noncoding RNAs (lncRNAs) in inherited metabolic disorders, including phenylketonuria (PKU), is unknown. Here, we demonstrate that the mouse lncRNA Pair and human HULC associate with phenylalanine hydroxylase (PAH). Pair-knockout mice exhibited excessive blood phenylalanine (Phe), musty odor, hypopigmentation, growth retardation, and progressive neurological symptoms including seizures, which faithfully models human PKU. HULC depletion led to reduced PAH enzymatic activities in human induced pluripotent stem cell-differentiated hepatocytes. Mechanistically, HULC modulated the enzymatic activities of PAH by facilitating PAH-substrate and PAH-cofactor interactions. To develop a therapeutic strategy for restoring liver lncRNAs, we designed GalNAc-tagged lncRNA mimics that exhibit liver enrichment. Treatment with GalNAc-HULC mimics reduced excessive Phe in Pair -/- and Pah R408W/R408W mice and improved the Phe tolerance of these mice.
Collapse
Affiliation(s)
- Yajuan Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhi Tan
- Intelligent Molecular Discovery Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Yaohua Zhang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhao Zhang
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
| | - Qingsong Hu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ke Liang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yao Jun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Youqiong Ye
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
| | - Yi-Chuan Li
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
| | - Chunlai Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lan Liao
- Genetically Engineered Mouse Core, Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jianming Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhen Xing
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yinghong Pan
- Department of Biochemistry and Biology, University of Houston, Houston, TX 77030, USA
| | - Sujash S Chatterjee
- Department of Biochemistry and Biology, University of Houston, Houston, TX 77030, USA
| | - Tina K Nguyen
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Heidi Hsiao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sergey D Egranov
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - David H Hawke
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Preethi H Gunaratne
- Department of Biochemistry and Biology, University of Houston, Houston, TX 77030, USA
| | - Kuang-Lei Tsai
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
| | - Leng Han
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology, and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan
- Department of Biotechnology, Asia University, Taichung 413, Taiwan
| | - George A Calin
- Department of Translational Molecular Pathology, Division of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Fares Namour
- Department of Molecular Medicine and Reference Center for Inborn Errors of Metabolism, University Hospital of Nancy, Nancy F-54000, France
- INSERM, U1256, NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, Nancy F-54000, France
| | - Jean-Louis Guéant
- Department of Molecular Medicine and Reference Center for Inborn Errors of Metabolism, University Hospital of Nancy, Nancy F-54000, France
- INSERM, U1256, NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, Nancy F-54000, France
| | - Ania C Muntau
- University Children's Hospital, University Medical Center Hamburg Eppendorf, Hamburg 20246, Germany
| | - Nenad Blau
- Division of Metabolism, University Children's Hospital Zurich, CH-8032 Zurich, Switzerland
| | - V Reid Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Manuel Schiff
- Necker Hospital, APHP, Reference Center for Inborn Error of Metabolism and Filière G2M, Pediatrics Department, University of Paris, Paris 75007, France
- Inserm UMR_S1163, Institut Imagine, Paris 75015, France
| | - François Feillet
- INSERM, U1256, NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, Nancy F-54000, France.
- Pediatric Department Reference Center for Inborn Errors of Metabolism Children University Hospital Nancy, Nancy F-54000, France
| | - Shuxing Zhang
- Intelligent Molecular Discovery Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
- The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chunru Lin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
- The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Liuqing Yang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
- The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
13
|
Abstract
Phenylketonuria (PKU; also known as phenylalanine hydroxylase (PAH) deficiency) is an autosomal recessive disorder of phenylalanine metabolism, in which especially high phenylalanine concentrations cause brain dysfunction. If untreated, this brain dysfunction results in severe intellectual disability, epilepsy and behavioural problems. The prevalence varies worldwide, with an average of about 1:10,000 newborns. Early diagnosis is based on newborn screening, and if treatment is started early and continued, intelligence is within normal limits with, on average, some suboptimal neurocognitive function. Dietary restriction of phenylalanine has been the mainstay of treatment for over 60 years and has been highly successful, although outcomes are still suboptimal and patients can find the treatment difficult to adhere to. Pharmacological treatments are available, such as tetrahydrobiopterin, which is effective in only a minority of patients (usually those with milder PKU), and pegylated phenylalanine ammonia lyase, which requires daily subcutaneous injections and causes adverse immune responses. Given the drawbacks of these approaches, other treatments are in development, such as mRNA and gene therapy. Even though PAH deficiency is the most common defect of amino acid metabolism in humans, brain dysfunction in individuals with PKU is still not well understood and further research is needed to facilitate development of pathophysiology-driven treatments.
Collapse
Affiliation(s)
- Francjan J van Spronsen
- Beatrix Children's Hospital, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands.
| | - Nenad Blau
- University Children's Hospital in Zurich, Zurich, Switzerland
| | - Cary Harding
- Department of Molecular and Medical Genetics and Department of Pediatrics, Oregon Health & Science University, Oregon, USA
| | | | - Nicola Longo
- Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA
| | - Annet M Bosch
- University of Amsterdam, Department of Pediatrics, Division of Metabolic Disorders, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
14
|
Ilgaz F, Marsaux C, Pinto A, Singh R, Rohde C, Karabulut E, Gökmen-Özel H, Kuhn M, MacDonald A. Protein Substitute Requirements of Patients with Phenylketonuria on BH4 Treatment: A Systematic Review and Meta-Analysis. Nutrients 2021; 13:1040. [PMID: 33807079 PMCID: PMC8004763 DOI: 10.3390/nu13031040] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/12/2021] [Accepted: 03/19/2021] [Indexed: 11/16/2022] Open
Abstract
The traditional treatment for phenylketonuria (PKU) is a phenylalanine (Phe)-restricted diet, supplemented with a Phe-free/low-Phe protein substitute. Pharmaceutical treatment with synthetic tetrahydrobiopterin (BH4), an enzyme cofactor, allows a patient subgroup to relax their diet. However, dietary protocols guiding the adjustments of protein equivalent intake from protein substitute with BH4 treatment are lacking. We systematically reviewed protein substitute usage with long-term BH4 therapy. Electronic databases were searched for articles published between January 2000 and March 2020. Eighteen studies (306 PKU patients) were eligible. Meta-analyses demonstrated a significant increase in Phe and natural protein intakes and a significant decrease in protein equivalent intake from protein substitute with cofactor therapy. Protein substitute could be discontinued in 51% of responsive patients, but was still required in 49%, despite improvement in Phe tolerance. Normal growth was maintained, but micronutrient deficiency was observed with BH4 treatment. A systematic protocol to increase natural protein intake while reducing protein substitute dose should be followed to ensure protein and micronutrient requirements are met and sustained. We propose recommendations to guide healthcare professionals when adjusting dietary prescriptions of PKU patients on BH4. Studies investigating new therapeutic options in PKU should systematically collect data on protein substitute and natural protein intakes, as well as other nutritional factors.
Collapse
Affiliation(s)
- Fatma Ilgaz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, 06100 Ankara, Turkey; (F.I.); (H.G.-Ö.)
| | - Cyril Marsaux
- Danone Nutricia Research, 3584CT Utrecht, The Netherlands;
| | - Alex Pinto
- Department of Dietetics, Birmingham Women’s and Children’s Hospital, Birmingham B4 6NH, UK; (A.P.); (A.M.)
| | - Rani Singh
- Metabolic Genetics Nutrition Program, Department of Human Genetics, Emory University, Atlanta, GA 30322, USA;
| | - Carmen Rohde
- Department of Paediatrics of the University Clinics Leipzig, University of Leipzig, 04103 Leipzig, Germany;
| | - Erdem Karabulut
- Department of Biostatistics, Faculty of Medicine, Hacettepe University, 06100 Ankara, Turkey;
| | - Hülya Gökmen-Özel
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, 06100 Ankara, Turkey; (F.I.); (H.G.-Ö.)
| | - Mirjam Kuhn
- Danone Nutricia Research, 3584CT Utrecht, The Netherlands;
| | - Anita MacDonald
- Department of Dietetics, Birmingham Women’s and Children’s Hospital, Birmingham B4 6NH, UK; (A.P.); (A.M.)
| |
Collapse
|
15
|
The Adult Phenylketonuria (PKU) Gut Microbiome. Microorganisms 2021; 9:microorganisms9030530. [PMID: 33806544 PMCID: PMC8001843 DOI: 10.3390/microorganisms9030530] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/16/2022] Open
Abstract
Phenylketonuria (PKU) is an inborn error of phenylalanine metabolism primarily treated through a phenylalanine-restrictive diet that is frequently supplemented with an amino acid formula to maintain proper nutrition. Little is known of the effects of these dietary interventions on the gut microbiome of PKU patients, particularly in adults. In this study, we sequenced the V4 region of the 16S rRNA gene from stool samples collected from adults with PKU (n = 11) and non-PKU controls (n = 21). Gut bacterial communities were characterized through measurements of diversity and taxa abundance. Additionally, metabolic imputation was performed based on detected bacteria. Gut community diversity was lower in PKU individuals, though this effect was only statistically suggestive. A total of 65 genera across 5 phyla were statistically differentially abundant between PKU and control samples (p < 0.001). Additionally, we identified six metabolic pathways that differed between groups (p < 0.05), with four enriched in PKU samples and two in controls. While the child PKU gut microbiome has been previously investigated, this is the first study to explore the gut microbiome of adult PKU patients. We find that microbial diversity in PKU children differs from PKU adults and highlights the need for further studies to understand the effects of dietary restrictions.
Collapse
|
16
|
Shintaku H, Ohura T, Takayanagi M, Kure S, Owada M, Matsubara Y, Yoshino M, Okano Y, Ito T, Okuyama T, Nakamura K, Matuo M, Endo F, Ida H. Guide for diagnosis and treatment of hyperphenylalaninemia. Pediatr Int 2021; 63:8-12. [PMID: 33423362 DOI: 10.1111/ped.14399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/20/2020] [Accepted: 07/16/2020] [Indexed: 11/29/2022]
Abstract
IMPORTANCE Sapropterin hydrochloride, a natural coenzyme (6R-tetrahydrobiopterin) of phenylalanine hydroxylase, was first approved as a treatment for tetrahydrobiopterin deficiency in 1992 in Japan, and was then approved as a treatment for a tetrahydrobiopterin-responsive hyperphenylalaninemia in 2007 and 2008, in the USA and Japan, respectively. Guidelines are required on the proper use of sapropterin hydrochloride for tetrahydrobiopterin-responsive hyperphenylalaninemia. OBSERVATIONS It is recommended that tetrahydrobiopterin-responsive hyperphenylalaninemia should be diagnosed in all cases of hyperphenylalaninemia, including phenylketonuria, by tetrahydrobiopterin administration tests rather than by phenotype or blood phenylalanine levels. CONCLUSIONS AND RELEVANCE If tetrahydrobiopterin-responsive hyperphenylalaninemia is diagnosed, all ages can be treated with sapropterin hydrochloride. Although there are reports that sapropterin hydrochloride is effective and safe for the prevention of maternal phenylketonuria, further investigation is required.
Collapse
Affiliation(s)
- Haruo Shintaku
- Department of Pediatrics, Osaka City University Graduate School of Medicine, Osaka, Japan
| | | | - Masaki Takayanagi
- Department of Physical Therapy, Faculty of Health Care and Medical Sports, Teikyo Heisei University, Tokyo, Japan
| | - Shigeo Kure
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Misao Owada
- First Division on Special Formula, Imperial Gift Foundation Boshi Aiiku Kai, Tokyo, Japan
| | | | - Makoto Yoshino
- Laboratory of Gene Therapy and Regenerative Medicine, Cognitive and Molecular Research Institute of Brain Diseases, Kurume University, Fukuoka, Japan
| | | | - Tetsuya Ito
- Department of Pediatrics, Fujita Health University School of Medicine, Aichi, Japan
| | - Torayuki Okuyama
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Kimitoshi Nakamura
- Department of Pediatrics, Faculty of Life Science, Kumamoto University, Kumamoto, Japan
| | - Masafumi Matuo
- Graduate School of Rehabilitation, Kobe Gakuin University, Hyogo, Japan
| | - Fumio Endo
- Kumamoto Ezuko Medical Care Center, kumamoto, Japan
| | - Hiroyuki Ida
- Department of Pediatrics, The Jikei University, Tokyo, Japan
| |
Collapse
|
17
|
Zhang J, Qian L, Wang C, Teng M, Duan M, Chen X, Li X, Wang C. UPLC-TOF-MS/MS metabolomics analysis of zebrafish metabolism by spirotetramat. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115310. [PMID: 32798906 DOI: 10.1016/j.envpol.2020.115310] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
Spirotetramat, a member of tetronic and tetramic acid derivatives, is a unique insecticide and acaricide. Although the effect on zebrafish embryos lipid biosynthesis of spirotetramat has been characterized, the energy metabolism and toxic effect mechanism warrant further investigation. To investigate the toxic mechanism of spirotetramat on energy metabolism, zebrafish embryos were exposed to 100, 500 and 1000 µg/L of spirotetramat for 4 days. Untargeted metabolomics showed the synthesis and degradation of ketone pathway metabolites (R)-3-Hydroxybutyric acid and Acetoacetate significantly decreased, as well as increasing the abundance of Anti-Acetyl Coenzyme A Carboxylase protein (ACC1). Down-regulation of the genes related to ß-oxidation and the tricarboxylic acid cycle in the embryos show decreased energy metabolism. Carnitine palmitoyltransferase 1 (CPT- I) significantly decreased while citrate synthase (CS) significantly increased. Additionally, mitochondrial lesions in embryos were found using electron microscopy. Our study provides novel and robust perspectives, which show that spirotetramat treatment in embryos leads to metabolic disturbances that adversely affect cellular energy homeostasis.
Collapse
Affiliation(s)
- Jie Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Le Qian
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Chen Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Miaomiao Teng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Manman Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xiangguang Chen
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xuefeng Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Chengju Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
18
|
Liguori L, Monticelli M, Allocca M, Hay Mele B, Lukas J, Cubellis MV, Andreotti G. Pharmacological Chaperones: A Therapeutic Approach for Diseases Caused by Destabilizing Missense Mutations. Int J Mol Sci 2020; 21:ijms21020489. [PMID: 31940970 PMCID: PMC7014102 DOI: 10.3390/ijms21020489] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 02/07/2023] Open
Abstract
The term “pharmacological chaperone” was introduced 20 years ago. Since then the approach with this type of drug has been proposed for several diseases, lysosomal storage disorders representing the most popular targets. The hallmark of a pharmacological chaperone is its ability to bind a protein specifically and stabilize it. This property can be beneficial for curing diseases that are associated with protein mutants that are intrinsically active but unstable. The total activity of the affected proteins in the cell is lower than normal because they are cleared by the quality control system. Although most pharmacological chaperones are reversible competitive inhibitors or antagonists of their target proteins, the inhibitory activity is neither required nor desirable. This issue is well documented by specific examples among which those concerning Fabry disease. Direct specific binding is not the only mechanism by which small molecules can rescue mutant proteins in the cell. These drugs and the properly defined pharmacological chaperones can work together with different and possibly synergistic modes of action to revert a disease phenotype caused by an unstable protein.
Collapse
Affiliation(s)
- Ludovica Liguori
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (L.L.); (M.A.)
- Istituto di Chimica Biomolecolare–CNR, 80078 Pozzuoli, Italy;
| | - Maria Monticelli
- Dipartimento di Biologia, Università Federico II, 80126 Napoli, Italy;
| | - Mariateresa Allocca
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (L.L.); (M.A.)
- Istituto di Chimica Biomolecolare–CNR, 80078 Pozzuoli, Italy;
| | - Bruno Hay Mele
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy;
| | - Jan Lukas
- Translational Neurodegeneration Section “Albrecht-Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany;
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany
| | - Maria Vittoria Cubellis
- Istituto di Chimica Biomolecolare–CNR, 80078 Pozzuoli, Italy;
- Dipartimento di Biologia, Università Federico II, 80126 Napoli, Italy;
- Correspondence: ; Tel.: +39-081-679118; Fax: +39-081-679233
| | | |
Collapse
|
19
|
Iijima H, Ishige N, Kubota M. Clinical Application of Liquid Chromatography Tandem Mass Spectrometry Using Dried Blood Spot as a More Rapid Method for Determination of Methylmalonic Acid, Propionylcarnitine, and Total Homocysteine. JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2020. [DOI: 10.1590/2326-4594-jiems-2019-0005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
20
|
Gassió R, González MJ, Sans O, Artuch R, Sierra C, Ormazabal A, Cuadras D, Campistol J. Prevalence of sleep disorders in early-treated phenylketonuric children and adolescents. Correlation with dopamine and serotonin status. Eur J Paediatr Neurol 2019; 23:685-691. [PMID: 31522993 DOI: 10.1016/j.ejpn.2019.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 07/31/2019] [Accepted: 08/14/2019] [Indexed: 11/25/2022]
Abstract
Phenylketonuric (PKU) patients are a population at risk for sleep disorders due to deficits in neurotransmitter synthesis. We aimed to study the prevalence of sleep disorders in early-treated PKU children and adolescents and assessed correlations with dopamine and serotonin status. We compared 32 PKU patients (16 females, 16 males; mean age 12 years), with a healthy control group of 32 subjects (16 females, 16 males; mean age 11.9 years). 19 PKU patients were under dietary treatment and 13 on tetrahydrobiopterin therapy. Concurrent phenylalanine (Phe), index of dietary control and variability in Phe in the last year, tyrosine, tryptophan, prolactin, and ferritin in plasma, platelet serotonin concentration, and melatonin, homovanillic and 5-hydroxyindoleacetic acid excretion in urine were analyzed. Sleep was assessed using Bruni's Sleep Disturbance Scale for Children. Sleep disorders were similar in both groups, 15.6% in control group and 12.5% in PKU group. In PKU patients, no correlations were found with peripheral biomarkers of neurotransmitter synthesis nor different Phe parameters, 43.3% had low melatonin excretion and 43.8% low platelet serotonin concentrations. Despite melatonin and serotonin deficits in early-treated PKU patients, the prevalence of sleep disorders is similar to that of the general population.
Collapse
Affiliation(s)
- Rosa Gassió
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain; Department of Neurology, Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - María Julieta González
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain; Department of Neurology, Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain.
| | - Oscar Sans
- Department of Neurology, Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain; Pediatric Sleep Unit, Neurophysiology Division, Department of Neurology, Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Rafael Artuch
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain; Department of Clinical Biochemistry, Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain; Biomedical Network Research Center for Rare Diseases (CIBER-ER), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Cristina Sierra
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain; Department of Clinical Biochemistry, Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Aida Ormazabal
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain; Department of Clinical Biochemistry, Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain; Biomedical Network Research Center for Rare Diseases (CIBER-ER), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Daniel Cuadras
- Methodological and Statistical Advice Service for Research, Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Spain
| | - Jaume Campistol
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain; Department of Neurology, Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain; Biomedical Network Research Center for Rare Diseases (CIBER-ER), Institute of Health Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
21
|
Gundorova P, Kuznetsova IA, Agladze D, Margvelashvili L, Kldiashvili E, Kvlividze O, Kutsev SI, Polyakov AV. Molecular-Genetic Study of Phenylketonuria in Patients from Georgia. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419080064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Kulikova EA, Kulikov AV. Tryptophan hydroxylase 2 as a therapeutic target for psychiatric disorders: focus on animal models. Expert Opin Ther Targets 2019; 23:655-667. [PMID: 31216212 DOI: 10.1080/14728222.2019.1634691] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Tryptophan hydroxylase 2 (TPH2) is the key, rate-limiting enzyme of serotonin (5-HT) synthesis in the brain. Some polymorphic variants of the human Tph2 gene are associated with psychiatric disorders. Area covered: This review focuses on the mechanisms underlying the association between the TPH2 activity and behavioral disturbances in models of psychiatric disorders. Specifically, it discusses: 1) genetic and posttranslational mechanisms defining the TPH2 activity, 2) behavioral effects of knockout and loss-of-function mutations in the mouse Tph2 gene, 3) pharmacological inhibition and the activation of the TPH2 activity and 4) alterations in the brain TPH2 activity in animal models of psychiatric disorders. We show the dual role of the TPH2 activity: both deficit and excess of the TPH2 activity cause significant behavioral disturbances in animal models of depression, anxiety, aggression, obsessive-compulsive disorders, schizophrenia, and catalepsy. Expert opinion: Pharmacological chaperones correcting the structure of the TPH2 molecule are promising tools for treatment of some hereditary psychiatric disorders caused by loss-of-function mutations in the human Tph2 gene; while some stress-induced affective disorders, associated with the elevated TPH2 activity, may be effectively treated by TPH2 inhibitors. This dual role of TPH2 should be taken into consideration during therapy of psychiatric disorders.
Collapse
Affiliation(s)
- Elizabeth A Kulikova
- a Federal Research Center Institute of Cytology and Genetics , Siberian Division of the Russian Academy of Science , Novosibirsk , Russia
| | - Alexander V Kulikov
- a Federal Research Center Institute of Cytology and Genetics , Siberian Division of the Russian Academy of Science , Novosibirsk , Russia
| |
Collapse
|
23
|
Kure S, Shintaku H. Tetrahydrobipterin-responsive phenylalanine hydroxylase deficiency. J Hum Genet 2019; 64:67-71. [PMID: 30504912 DOI: 10.1038/s10038-018-0529-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/16/2018] [Accepted: 10/19/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Shigeo Kure
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Haruo Shintaku
- Department of Pediatrics, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
24
|
The Use of Glycomacropeptide in Patients with Phenylketonuria: A Systematic Review and Meta-Analysis. Nutrients 2018; 10:nu10111794. [PMID: 30453665 PMCID: PMC6266274 DOI: 10.3390/nu10111794] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 10/29/2018] [Accepted: 11/12/2018] [Indexed: 01/02/2023] Open
Abstract
In phenylketonuria (PKU), synthetic protein derived from L-amino acids (AAs) is essential in a low-phenylalanine (Phe) diet. Glycomacropeptide (GMP), an intact protein, is very low in Phe in its native form. It has been modified and adapted for PKU to provide an alternative protein source through supplementation with rate-limiting amino acids (GMP-AAs), although it still contains residual Phe. This review aims to systematically evaluate published intervention studies on the use of GMP-AAs in PKU by considering its impact on blood Phe control (primary aim) and changes in tyrosine control, nutritional biomarkers, and patient acceptability or palatability (secondary aims). Four electronic databases were searched for articles published from 2007 to June 2018. Of the 274 studies identified, only eight were included. Bias risk was assessed and a quality appraisal of the body of evidence was completed. A meta-analysis was performed with two studies with adequate comparable methodology which showed no differences between GMP-AAs and AAs for any of the interventions analysed. This work underlines the scarcity and nature of studies with GMP-AAs interventions. All were short-term with small sample sizes. There is a need for better-designed studies to provide the best evidence-based recommendations.
Collapse
|
25
|
Shirzadeh T, Saeidian AH, Bagherian H, Salehpour S, Setoodeh A, Alaei MR, Youssefian L, Samavat A, Touati A, Fallah MS, Vahidnezhad H, Karimipoor M, Azadmehr S, Raeisi M, Bandehi Sarhadi A, Zafarghandi Motlagh F, Jamali M, Zeinali Z, Abiri M, Zeinali S. Molecular genetics of a cohort of 635 cases of phenylketonuria in a consanguineous population. J Inherit Metab Dis 2018; 41:1159-1167. [PMID: 30159852 DOI: 10.1007/s10545-018-0228-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 06/09/2018] [Accepted: 06/26/2018] [Indexed: 11/28/2022]
Abstract
Phenylketonuria (PKU) is an inborn error of amino acid metabolism caused by mutations in the phenylalanine hydroxylase (PAH) gene, characterized by intellectual deficit and neuropsychiatric complications in untreated patients with estimated frequency of about one in 10,000 to 15,000 live births. PAH deficiency can be detected by neonatal screening in nearly all cases with hyperphenylalaninemia on a heel prick blood spot. Molecular testing of the PAH gene can then be performed in affected family members. Herein, we report molecular study of 635 patients genetically diagnosed with PKU from all ethnicities in Iran. The disease-causing mutations were found in 611 (96.22%) of cases. To the best of our knowledge, this is the most comprehensive molecular genetics study of PKU in Iran, identifying 100 distinct mutations in the PAH gene, including 15 previously unreported mutations. Interestingly, we found unique cases of PKU with uniparental disomy, germline mosaicism, and coinheritance with another Mendelian single-gene disorder that provides new insights for improving the genetic counseling, prenatal diagnosis (PND), and/or pre-implantation genetic diagnosis (PGD) for the inborn error of metabolism group of disorders.
Collapse
Affiliation(s)
- Tina Shirzadeh
- Kawsar Human Genetics Research Center, 41 Majlesi St., Vali Asr St., Tehran, 1595645513, Iran
| | - Amir Hossein Saeidian
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Genetic, Genomics and Cancer Biology PhD Program, Thomas Jefferson University, Philadelphia, PA, USA
| | - Hamideh Bagherian
- Kawsar Human Genetics Research Center, 41 Majlesi St., Vali Asr St., Tehran, 1595645513, Iran
| | - Shadab Salehpour
- Department of Pediatric Endocrinology and Metabolism, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aria Setoodeh
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pediatrics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Alaei
- Department of Pediatric Endocrinology and Metabolism, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Youssefian
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Genetic, Genomics and Cancer Biology PhD Program, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashraf Samavat
- Genetics Office, CDC, Ministry of Health of Iran, Tehran, Iran
| | - Andrew Touati
- Drexel University College of Medicine, Philadelphia, PA, USA
| | - Mohammad-Sadegh Fallah
- Kawsar Human Genetics Research Center, 41 Majlesi St., Vali Asr St., Tehran, 1595645513, Iran
| | - Hassan Vahidnezhad
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Morteza Karimipoor
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sarah Azadmehr
- Kawsar Human Genetics Research Center, 41 Majlesi St., Vali Asr St., Tehran, 1595645513, Iran
| | - Marzieh Raeisi
- Research Institute for Endocrine Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of cellular and molecular biology, Islamic Azad University North Tehran branch, Tehran, Iran
| | - Ameneh Bandehi Sarhadi
- Kawsar Human Genetics Research Center, 41 Majlesi St., Vali Asr St., Tehran, 1595645513, Iran
| | | | - Mojdeh Jamali
- Kawsar Human Genetics Research Center, 41 Majlesi St., Vali Asr St., Tehran, 1595645513, Iran
| | - Zahra Zeinali
- Kawsar Human Genetics Research Center, 41 Majlesi St., Vali Asr St., Tehran, 1595645513, Iran
| | - Maryam Abiri
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Sirous Zeinali
- Kawsar Human Genetics Research Center, 41 Majlesi St., Vali Asr St., Tehran, 1595645513, Iran.
- Department of Molecular Medicine, Biotech Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
26
|
Rocha JC, MacDonald A. Treatment options and dietary supplements for patients with phenylketonuria. Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2018.1536541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Júlio César Rocha
- Centro de Genética Médica, Centro Hospitalar do Porto - CHP, Porto, Portugal
- Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, Porto, Portugal
- Center for Health Technology and Services Research (CINTESIS), Porto, Portugal
| | | |
Collapse
|
27
|
Sakamoto O, Arai-Ichinoi N, Murayama K, Kure S. Successful control of maternal phenylketonuria by tetrahydrobiopterin. Pediatr Int 2018; 60:985-986. [PMID: 30345699 DOI: 10.1111/ped.13678] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/02/2018] [Accepted: 08/10/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Osamu Sakamoto
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| | | | - Kei Murayama
- Center for Medical Genetics and Department of Metabolism, Chiba Children's Hospital, Chiba, Japan
| | - Shigeo Kure
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| |
Collapse
|
28
|
Scherer T, Allegri G, Sarkissian CN, Ying M, Grisch-Chan HM, Rassi A, Winn SR, Harding CO, Martinez A, Thöny B. Tetrahydrobiopterin treatment reduces brain L-Phe but only partially improves serotonin in hyperphenylalaninemic ENU1/2 mice. J Inherit Metab Dis 2018; 41:709-718. [PMID: 29520738 PMCID: PMC6041158 DOI: 10.1007/s10545-018-0150-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 01/26/2018] [Accepted: 01/30/2018] [Indexed: 12/16/2022]
Abstract
Hyperphenylalaninemia (HPA) caused by hepatic phenylalanine hydroxylase (PAH) deficiency has severe consequences on brain monoamine neurotransmitter metabolism. We have studied monoamine neurotransmitter status and the effect of tetrahydrobiopterin (BH4) treatment in Pahenu1/enu2 (ENU1/2) mice, a model of partial PAH deficiency. These mice exhibit elevated blood L-phenylalanine (L-Phe) concentrations similar to that of mild hyperphenylalaninemia (HPA), but brain levels of L-Phe are still ~5-fold elevated compared to wild-type. We found that brain L-tyrosine, L-tryptophan, BH4 cofactor and catecholamine concentrations, and brain tyrosine hydroxylase (TH) activity were normal in these mice but that brain serotonin, 5-hydroxyindolacetic acid (5HIAA) and 3-methoxy-4-hydroxyphenylglycol (MHPG) content, and brain TH protein, as well as tryptophan hydroxylase type 2 (TPH2) protein levels and activity were reduced in comparison to wild-type mice. Parenteral L-Phe loading conditions did not lead to significant changes in brain neurometabolite concentrations. Remarkably, enteral BH4 treatment, which normalized brain L-Phe levels in ENU1/2 mice, lead to only partial recovery of brain serotonin and 5HIAA concentrations. Furthermore, indirect evidence indicated that the GTP cyclohydrolase I (GTPCH) feedback regulatory protein (GFRP) complex may be a sensor for brain L-Phe elevation to ameliorate the toxic effects of HPA. We conclude that BH4 treatment of HPA toward systemic L-Phe lowering reverses elevated brain L-Phe content but the recovery of TPH2 protein and activity as well as serotonin levels is suboptimal, indicating that patients with mild HPA and mood problems (depression or anxiety) treated with the current diet may benefit from supplementation with BH4 and 5-OH-tryptophan.
Collapse
Affiliation(s)
- Tanja Scherer
- Department of Pediatrics, Divisions of Metabolism and of Clinical Chemistry and Biochemistry, University of Zürich, Zürich, Switzerland
| | - Gabriella Allegri
- Department of Pediatrics, Divisions of Metabolism and of Clinical Chemistry and Biochemistry, University of Zürich, Zürich, Switzerland
| | | | - Ming Ying
- Department of Biomedicine and K.G. Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
| | - Hiu Man Grisch-Chan
- Department of Pediatrics, Divisions of Metabolism and of Clinical Chemistry and Biochemistry, University of Zürich, Zürich, Switzerland
| | - Anahita Rassi
- Department of Pediatrics, Divisions of Metabolism and of Clinical Chemistry and Biochemistry, University of Zürich, Zürich, Switzerland
| | - Shelley R Winn
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Science & Health University, Portland, OR, USA
| | - Cary O Harding
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Science & Health University, Portland, OR, USA
| | - Aurora Martinez
- Department of Biomedicine and K.G. Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, Bergen, Norway.
| | - Beat Thöny
- Department of Pediatrics, Divisions of Metabolism and of Clinical Chemistry and Biochemistry, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
29
|
Zhang Z, Gao JJ, Feng Y, Zhu LL, Yan H, Shi XF, Chang AM, Shi Y, Wang P. Mutational spectrum of the phenylalanine hydroxylase gene in patients with phenylketonuria in the central region of China. Scand J Clin Lab Invest 2018; 78:211-218. [PMID: 29390883 DOI: 10.1080/00365513.2018.1434898] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 01/23/2018] [Accepted: 01/28/2018] [Indexed: 01/15/2023]
Abstract
Phenylketonuria (PKU, OMIM 261600) caused by phenylalanine hydroxylase (PAH) deficiency is an autosomal recessive disease that is characterized by abnormalities of phenylalanine metabolism. In this study, a total of 77 patients, originating from the central region of China and who were diagnosed with PAH deficiency at the third affiliated hospital of Zhengzhou University, were enrolled in this study. The 13 exons and 12 flanking introns of the PAH gene were analyzed by Sanger sequencing and next generation sequencing. The sequencing data were aligned to the hg19, PAHvdb and HGMD databases to characterize the genotypes of PKU patients, and genotype-phenotype correlations and BH4 responsiveness predictions were performed using BIOPKUdb. In total, 149 alleles were characterized among the 154 PKU alleles. These mutations were located in exons 2-13, and intron 12 of the PAH gene, with a relative frequency of ≥5%, for EX6-96A>G, p.R241C, p.R243Q, p.V399V and p.R53H. Additionally, a novel variant, p.D84G, was identified. The genotype correlated with clinical symptoms in 33.3-100% of the cases, depending on the disease severity, and BH4 responsiveness predictions show that only five patients with MHP-PKU and one patient with Mild-PKU were predicted to be BH4 responsive. In conclusion, we have characterized the mutational spectrum of PAH in the central region of China and have identified a novel mutation. The hotspot mutation information might be useful for screening, diagnosis and treatment of PKU.
Collapse
Affiliation(s)
- Zhan Zhang
- a The Third Affiliated Hospital of Zhengzhou University , Zhengzhou , China
- b Shangqiu Medical College , Shangqiu , China
| | - Jun-Jun Gao
- a The Third Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Yang Feng
- a The Third Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Lin-Lin Zhu
- c School of Laboratory Medicine , Xinxiang Medical University , Xinxiang , China
| | - Huan Yan
- a The Third Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Xu-Feng Shi
- d Department of Obstetrics , Henan Province People's Hospital , Zhengzhou , China
| | - Ai-Min Chang
- a The Third Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Ying Shi
- a The Third Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Ping Wang
- a The Third Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| |
Collapse
|
30
|
Ohashi A, Mamada K, Harada T, Naito M, Takahashi T, Aizawa S, Hasegawa H. Organic anion transporters, OAT1 and OAT3, are crucial biopterin transporters involved in bodily distribution of tetrahydrobiopterin and exclusion of its excess. Mol Cell Biochem 2017; 435:97-108. [PMID: 28534121 PMCID: PMC5632347 DOI: 10.1007/s11010-017-3060-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 05/04/2017] [Indexed: 01/05/2023]
Abstract
Tetrahydrobiopterin (BH4) is a common coenzyme of phenylalanine-, tyrosine-, and tryptophan hydroxylases, alkylglycerol monooxygenase, and NO synthases (NOS). Synthetic BH4 is used medicinally for BH4-responsive phenylketonuria and inherited BH4 deficiency. BH4 supplementation has also drawn attention as a therapy for various NOS-related cardio-vascular diseases, but its use has met with limited success in decreasing BH2, the oxidized form of BH4. An increase in the BH2/BH4 ratio leads to NOS dysfunction. Previous studies revealed that BH4 supplementation caused a rapid urinary loss of BH4 accompanied by an increase in the blood BH2/BH4 ratio and an involvement of probenecid-sensitive but unknown transporters was strongly suggested in these processes. Here we show that OAT1 and OAT3 enabled cells to take up BP (BH4 and/or BH2) in a probenecid-sensitive manner using rat kidney slices and transporter-expressing cell systems, LLC-PK1 cells and Xenopus oocytes. Both OAT1 and OAT3 preferred BH2 and sepiapterin as their substrate roughly 5- to 10-fold more than BH4. Administration of probenecid acutely reduced the urinary exclusion of endogenous BP accompanied by a rise in blood BP in vivo. These results indicated that OAT1 and OAT3 played crucial roles: (1) in determining baseline levels of blood BP by excluding endogenous BP through the urine, (2) in the rapid distribution to organs of exogenous BH4 and the exclusion to urine of a BH4 excess, particularly when BH4 was administered, and (3) in scavenging blood BH2 by cellular uptake as the gateway to the salvage pathway of BH4, which reduces BH2 back to BH4.
Collapse
Affiliation(s)
- Akiko Ohashi
- Department of Anatomy, Nihon University School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda, Tokyo, 101-8310, Japan.
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Chiyoda, Tokyo, 101-8310, Japan.
| | - Kaori Mamada
- Department of Biosciences, Teikyo University of Science and Technology, Uenohara, Yamanashi, 401-0193, Japan
| | - Tomonori Harada
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, Itabashi, Tokyo, 173-8610, Japan
| | - Masako Naito
- Department of Anatomy, Nihon University School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda, Tokyo, 101-8310, Japan
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Chiyoda, Tokyo, 101-8310, Japan
| | - Tomihisa Takahashi
- Department of Anatomy, Nihon University School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda, Tokyo, 101-8310, Japan
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Chiyoda, Tokyo, 101-8310, Japan
| | - Shin Aizawa
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, Itabashi, Tokyo, 173-8610, Japan
| | - Hiroyuki Hasegawa
- Department of Anatomy, Nihon University School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda, Tokyo, 101-8310, Japan
| |
Collapse
|
31
|
van Wegberg AMJ, MacDonald A, Ahring K, Bélanger-Quintana A, Blau N, Bosch AM, Burlina A, Campistol J, Feillet F, Giżewska M, Huijbregts SC, Kearney S, Leuzzi V, Maillot F, Muntau AC, van Rijn M, Trefz F, Walter JH, van Spronsen FJ. The complete European guidelines on phenylketonuria: diagnosis and treatment. Orphanet J Rare Dis 2017; 12:162. [PMID: 29025426 PMCID: PMC5639803 DOI: 10.1186/s13023-017-0685-2] [Citation(s) in RCA: 494] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 07/11/2017] [Indexed: 12/22/2022] Open
Abstract
Phenylketonuria (PKU) is an autosomal recessive inborn error of phenylalanine metabolism caused by deficiency in the enzyme phenylalanine hydroxylase that converts phenylalanine into tyrosine. If left untreated, PKU results in increased phenylalanine concentrations in blood and brain, which cause severe intellectual disability, epilepsy and behavioural problems. PKU management differs widely across Europe and therefore these guidelines have been developed aiming to optimize and standardize PKU care. Professionals from 10 different European countries developed the guidelines according to the AGREE (Appraisal of Guidelines for Research and Evaluation) method. Literature search, critical appraisal and evidence grading were conducted according to the SIGN (Scottish Intercollegiate Guidelines Network) method. The Delphi-method was used when there was no or little evidence available. External consultants reviewed the guidelines. Using these methods 70 statements were formulated based on the highest quality evidence available. The level of evidence of most recommendations is C or D. Although study designs and patient numbers are sub-optimal, many statements are convincing, important and relevant. In addition, knowledge gaps are identified which require further research in order to direct better care for the future.
Collapse
Affiliation(s)
- A. M. J. van Wegberg
- Division of Metabolic Diseases, Beatrix Children’s Hospital, University Medical Center Groningen, PO BOX 30.001, 9700 RB Groningen, The Netherlands
| | - A. MacDonald
- Dietetic Department, Birmingham Children’s Hospital, Birmingham, UK
| | - K. Ahring
- Department of PKU, Kennedy Centre, Glostrup, Denmark
| | - A. Bélanger-Quintana
- Metabolic Diseases Unit, Department of Paediatrics, Hospital Ramon y Cajal Madrid, Madrid, Spain
| | - N. Blau
- University Children’s Hospital, Dietmar-Hoppe Metabolic Centre, Heidelberg, Germany
- University Children’s Hospital Zürich, Zürich, Switzerland
| | - A. M. Bosch
- Department of Paediatrics, Division of Metabolic Disorders, Academic Medical Centre, University Hospital of Amsterdam, Amsterdam, The Netherlands
| | - A. Burlina
- Division of Inherited Metabolic Diseases, Department of Paediatrics, University Hospital of Padova, Padova, Italy
| | - J. Campistol
- Neuropaediatrics Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
| | - F. Feillet
- Department of Paediatrics, Hôpital d’Enfants Brabois, CHU Nancy, Vandoeuvre les Nancy, France
| | - M. Giżewska
- Department of Paediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology of the Developmental Age, Pomeranian Medical University, Szczecin, Poland
| | - S. C. Huijbregts
- Department of Clinical Child and Adolescent Studies-Neurodevelopmental Disorders, Faculty of Social Sciences, Leiden University, Leiden, The Netherlands
| | - S. Kearney
- Clinical Psychology Department, Birmingham Children’s Hospital, Birmingham, UK
| | - V. Leuzzi
- Department of Paediatrics, Child Neurology and Psychiatry, Sapienza University of Rome, Via dei Sabelli 108, 00185 Rome, Italy
| | - F. Maillot
- CHRU de Tours, Université François Rabelais, INSERM U1069, Tours, France
| | - A. C. Muntau
- University Children’s Hospital, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - M. van Rijn
- Division of Metabolic Diseases, Beatrix Children’s Hospital, University Medical Center Groningen, PO BOX 30.001, 9700 RB Groningen, The Netherlands
| | - F. Trefz
- Department of Paediatrics, University of Heidelberg, Heidelberg, Germany
| | - J. H. Walter
- Medicine, Manchester Academic Health Sciences Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - F. J. van Spronsen
- Division of Metabolic Diseases, Beatrix Children’s Hospital, University Medical Center Groningen, PO BOX 30.001, 9700 RB Groningen, The Netherlands
| |
Collapse
|
32
|
Evans M, Truby H, Boneh A. The relationship between dietary intake, growth and body composition in Phenylketonuria. Mol Genet Metab 2017; 122:36-42. [PMID: 28739202 DOI: 10.1016/j.ymgme.2017.07.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/19/2017] [Accepted: 07/19/2017] [Indexed: 10/19/2022]
Abstract
AIM Phenylketonuria (PKU) is an inborn error of protein metabolism that results from perturbation in phenylalanine hydroxylase activity leading to elevated blood levels of phenylalanine (phe). We aimed to explore the relationships between dietary patterns (total-protein, natural-protein, amino-acid formula), and the ratio of protein to energy intake with growth and body composition. METHOD Longitudinal prospective data (1-6 measurements) of growth, dietary intake and body composition in patients treated with phe-restricted diet only (D-PKU; n=32), and tetrahydrobiopterin (BH4)±phe-restricted diet (BH4-PKU; n=5) were collected over a two-year period. Healthy siblings provided control data (n=21). RESULTS There were no significant differences in weight-, height-, BMI z-score or percent body fat mass (%fatmass) between the D-PKU, BH4-PKU and control groups or between the all-types of PKU combined and controls, which confirmed 'normal' growth in the PKU cohort. Total-protein intake in the all-types of PKU group met or exceeded WHO safe protein recommendations. There were no significant relationships between anthropometric and dietary variables. Significant negative correlations were found in body composition: %fatmass and total-protein intake (rs=-0.690, p≤0.001), natural-protein intake (rs=-0.534, p=0.001), and AAF intake (rs=-0.510, p=0.001). Age was significantly correlated with %fatmass (rs=0.493, p=0.002) A total-protein intake of 1.5-2.6g/kg/day and natural-protein intake >0.5g/kg/day were associated with improved body composition. An apparent safe P:E ratio of 3.0-4.5g protein/100kcal was strongly associated with appropriate growth outcomes. CONCLUSIONS Clinical decision-making needs to consider both the enhancement of natural-protein tolerance and the application of an apparent 'safe' protein to energy ratio to support optimal growth and body composition in PKU.
Collapse
Affiliation(s)
- Maureen Evans
- Department of Metabolic Medicine, The Royal Children's Hospital, Flemington Road, Parkville, Melbourne, Victoria 3052, Australia; Department of Nutrition and Food Services, Royal Children's Hospital, Flemington Road, Parkville, Melbourne, Victoria 3052, Australia; Be Active Sleep Eat (BASE) Facility, Department of Nutrition and Dietetics, Monash University, Faculty of Medicine, Nursing and Health Sciences, Level 1, 264 Ferntree Gully Road Notting Hill, Melbourne, Victoria 3168, Australia.
| | - Helen Truby
- Be Active Sleep Eat (BASE) Facility, Department of Nutrition and Dietetics, Monash University, Faculty of Medicine, Nursing and Health Sciences, Level 1, 264 Ferntree Gully Road Notting Hill, Melbourne, Victoria 3168, Australia.
| | - Avihu Boneh
- Department of Metabolic Medicine, The Royal Children's Hospital, Flemington Road, Parkville, Melbourne, Victoria 3052, Australia; Be Active Sleep Eat (BASE) Facility, Department of Nutrition and Dietetics, Monash University, Faculty of Medicine, Nursing and Health Sciences, Level 1, 264 Ferntree Gully Road Notting Hill, Melbourne, Victoria 3168, Australia; Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia.
| |
Collapse
|
33
|
Porta F, Spada M, Ponzone A. Early Screening for Tetrahydrobiopterin Responsiveness in Phenylketonuria. Pediatrics 2017; 140:e20161591. [PMID: 28679641 DOI: 10.1542/peds.2016-1591] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/19/2016] [Indexed: 11/24/2022] Open
Abstract
Since 2007, synthetic tetrahydrobiopterin (BH4) has been approved as a therapeutic option in BH4-responsive phenylketonuria (PKU) and since 2015 extended to infants younger than 4 years in Europe. The current definition of BH4 responsiveness relies on the observation of a 20% to 30% blood phenylalanine (Phe) decrease after BH4 administration, under nonstandardized conditions. By this definition, however, patients with the same genotype or even the same patients were alternatively reported as responsive or nonresponsive to the cofactor. These inconsistencies are troubling, as frustrating patient expectations and impairing cost-effectiveness of BH4-therapy. Here we tried a quantitative procedure through the comparison of the outcome of a simple Phe and a combined Phe plus BH4 loading in a series of infants with PKU, most of them harboring genotypes already reported as BH4 responsive. Under these ideal conditions, blood Phe clearance did not significantly differ after the 2 types of loading, and a 20% to 30% decrease of blood Phe occurred irrespective of BH4 administration in milder forms of PKU. Such early screening for BH4 responsiveness, based on a quantitative assay, is essential for warranting an evidence-based and cost-effective therapy in those patients with PKU eventually but definitely diagnosed as responsive to the cofactor.
Collapse
Affiliation(s)
- Francesco Porta
- Department of Pediatrics, University of Torino, Torino, Italy
| | - Marco Spada
- Department of Pediatrics, University of Torino, Torino, Italy
| | - Alberto Ponzone
- Department of Pediatrics, University of Torino, Torino, Italy
| |
Collapse
|
34
|
Jaffe EK. New protein structures provide an updated understanding of phenylketonuria. Mol Genet Metab 2017; 121:289-296. [PMID: 28645531 PMCID: PMC5549558 DOI: 10.1016/j.ymgme.2017.06.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 06/08/2017] [Indexed: 11/16/2022]
Abstract
Phenylketonuria (PKU) and less severe hyperphenylalaninemia (HPA) constitute the most common inborn error of amino acid metabolism, and is most often caused by defects in phenylalanine hydroxylase (PAH) function resulting in accumulation of Phe to neurotoxic levels. Despite the success of dietary intervention in preventing permanent neurological damage, individuals living with PKU clamor for additional non-dietary therapies. The bulk of disease-associated mutations are PAH missense variants, which occur throughout the entire 452 amino acid human PAH protein. While some disease-associated mutations affect protein structure (e.g. truncations) and others encode catalytically dead variants, most have been viewed as defective in protein folding/stability. Here we refine this view to address how PKU-associated missense variants can perturb the equilibrium among alternate native PAH structures (resting-state PAH and activated PAH), thus shifting the tipping point of this equilibrium to a neurotoxic Phe concentration. This refined view of PKU introduces opportunities for the design or discovery of therapeutic pharmacological chaperones that can help restore the tipping point to healthy Phe levels and how such a therapeutic might work with or without the inhibitory pharmacological chaperone BH4. Dysregulation of an equilibrium of architecturally distinct native PAH structures departs from the concept of "misfolding", provides an updated understanding of PKU, and presents an enhanced foundation for understanding genotype/phenotype relationships.
Collapse
Affiliation(s)
- Eileen K Jaffe
- Fox Chase Cancer Center - Temple University Health System, 333 Cottman Ave, Philadelphia, PA 19111, USA.
| |
Collapse
|
35
|
Kör D, Yılmaz BŞ, Bulut FD, Ceylaner S, Mungan NÖ. Improved metabolic control in tetrahydrobiopterin (BH4), responsive phenylketonuria with sapropterin administered in two divided doses vs. a single daily dose. J Pediatr Endocrinol Metab 2017; 30:713-718. [PMID: 28593914 DOI: 10.1515/jpem-2016-0461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 04/06/2017] [Indexed: 11/15/2022]
Abstract
BACKGROUND Phenylketonuria (PKU) often requires a lifelong phenylalanine (Phe)-restricted diet. Introduction of 6R-tetrahydrobiopterin (BH4) has made a huge difference in the diets of patients with PKU. BH4 is the co-factor of the enzyme phenylalanine hydroxylase (PAH) and improves PAH activity and, thus, Phe tolerance in the diet. A limited number of published studies suggest a pharmacodynamic profile of BH4 more suitable to be administered in divided daily doses. METHODS After a 72-h BH4 loading test, sapropterin was initiated in 50 responsive patients. This case-control study was conducted by administering the same daily dose of sapropterin in group 1 (n=24) as a customary single dose or in two divided doses in group 2 (n=26) over 1 year. RESULTS Mean daily consumption of Phe increased significantly after the first year of BH4 treatment in group 2 compared to group 1 (p<0.05). At the end of the first year of treatment with BH4, another dramatic difference observed between the two groups was the ability to transition to a Phe-free diet. Eight patients from group 2 and two from group 1 could quit dietary restriction. CONCLUSIONS When given in two divided daily doses, BH4 was more efficacious than a single daily dose in increasing daily Phe consumption, Phe tolerance and the ability to transition to a Phe-unrestricted diet at the end of the first year of treatment.
Collapse
|
36
|
Gundorova P, Stepanova AA, Bushueva TV, Belyashova EY, Zinchenko RA, Amelina SS, Kutsev SI, Polyakov AV. Genotyping of patients with phenylketonuria from different regions of Russia for determining BH4 responsiveness. RUSS J GENET+ 2017. [DOI: 10.1134/s1022795417060060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
37
|
Feldmann R, Wolfgart E, Weglage J, Rutsch F. Sapropterin treatment does not enhance the health-related quality of life of patients with phenylketonuria and their parents. Acta Paediatr 2017; 106:953-959. [PMID: 28235150 DOI: 10.1111/apa.13799] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/23/2016] [Accepted: 02/21/2017] [Indexed: 01/17/2023]
Abstract
AIM Sapropterin causes reductions in blood phenylalanine concentrations in sensitive patients with phenylketonuria (PKU). We examined whether the subsequent relaxation of dietary restrictions influenced the quality of life (QoL) of patients and parents. METHODS The study cohort comprised 112 patients with PKU followed at the metabolic centre at Münster University Children's Hospital, Germany, from 2012 to 2015. A sapropterin response was defined as a ≥30% reduction in blood phenylalanine levels. The QoL of 38 children and adolescents from the study cohort, with a mean age of 12.4 (range 6.6-18.7) years, was assessed in an outpatient setting and 49 parents of children with PKU also commented on their child's QoL and their own. The participants' QoL was assessed before the start of therapy, and again after six months, using self-report questionnaires. RESULTS After six months of continuous therapy or diet, QoL was largely unchanged in the patients, according to their self-reports and the parental reports. QoL also remained unchanged in the parents. CONCLUSION Sapropterin did not seem to improve QoL in PKU patients and their parents. Patients with PKU had already reached high levels of QoL following classic diets, and these levels were not easily improved by sapropterin.
Collapse
Affiliation(s)
- Reinhold Feldmann
- Department of General Pediatrics, Münster University Children's Hospital, Münster, Germany
| | - Eva Wolfgart
- Department of General Pediatrics, Münster University Children's Hospital, Münster, Germany
| | - Josef Weglage
- Department of General Pediatrics, Münster University Children's Hospital, Münster, Germany
| | - Frank Rutsch
- Department of General Pediatrics, Münster University Children's Hospital, Münster, Germany
| |
Collapse
|
38
|
Spécola N, Chiesa A. Alternative Therapies for PKU. JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2017. [DOI: 10.1177/2326409816685734] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Norma Spécola
- Unidad de Metabolismo, Hospital de Niños de La Plata, Buenos Aires, Argentina
| | - Ana Chiesa
- División de Endocrinología. Hospital de Niños R, FEI, Gutiérrez, Buenos Aires, Argentina
| |
Collapse
|
39
|
Concolino D, Mascaro I, Moricca MT, Bonapace G, Matalon K, Trapasso J, Radhakrishnan G, Ferrara C, Matalon R, Strisciuglio P. Long-term treatment of phenylketonuria with a new medical food containing large neutral amino acids. Eur J Clin Nutr 2017; 71:51-55. [PMID: 27623981 PMCID: PMC5222990 DOI: 10.1038/ejcn.2016.166] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 07/08/2016] [Accepted: 07/31/2016] [Indexed: 11/12/2022]
Abstract
BACKGROUND/OBJECTIVES Phenylketonuria (PKU) is an autosomal recessive disease caused by deficient activity of phenylalanine hydroxylase. A low phenylalanine (Phe) diet is used to treat PKU. The diet is very restrictive, and dietary adherence tends to decrease as patients get older. Methods to improve dietary adherence and blood Phe control are continuously under investigation. SUBJECTS/METHODS A new formula Phe-neutral amino acid (PheLNAA) has been tested in this study with the purpose of improving the compliance and lowering blood phenylalanine. The formula has been tested for nitrogen balance, and it is nutritionally complete. It is fortified with more nutritional additives that can be deficient in the PKU diet, such as B12, Biotin, DHA, Lutein and increased levels of large neutral amino acids to help lower blood Phe. The new formula has been tested on 12 patients with a loading test of 4 weeks. RESULTS Fifty-eight percent of patients had a significant decline in blood Phe concentration from baseline throughout the study. The PheLNAA was well tolerated with excellent compliance and without illnesses during the study. CONCLUSIONS In conclusion, the new formula is suitable for life-long treatment of PKU, and it offers the PKU clinic a new choice for treatment.
Collapse
Affiliation(s)
- D Concolino
- Department of Medical and Surgical Science, Pediatrics Unit, University 'Magna Graecia', Catanzaro, Italy
| | - I Mascaro
- Department of Medical and Surgical Science, Pediatrics Unit, University 'Magna Graecia', Catanzaro, Italy
| | - M T Moricca
- Department of Medical and Surgical Science, Pediatrics Unit, University 'Magna Graecia', Catanzaro, Italy
| | - G Bonapace
- Department of Medical and Surgical Science, Pediatrics Unit, University 'Magna Graecia', Catanzaro, Italy
| | - K Matalon
- Department of Health and Human Performance, University of Houston, Houston, TX, USA
| | - J Trapasso
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| | - G Radhakrishnan
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| | - C Ferrara
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - R Matalon
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| | - P Strisciuglio
- Department of Translational medical Science, Section of Pediatrics, Federico II University, Naples, Italy
| |
Collapse
|
40
|
Messina MA, Meli C, Conoci S, Petralia S. A facile method for urinary phenylalanine measurement on paper-based lab-on-chip for PKU therapy monitoring. Analyst 2017; 142:4629-4632. [DOI: 10.1039/c7an01115f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A miniaturized paper-based lab-on-chip (LoC) was developed for the facile measurement of urinary Phe (phenylalanine) level on PKU (Phenylketonuria) treated patient.
Collapse
Affiliation(s)
- M. A. Messina
- Azienda Ospedaliero Universitaria Policlinico Vittorio Emanuele
- Catania
- Italy
| | - C. Meli
- Azienda Ospedaliero Universitaria Policlinico Vittorio Emanuele
- Catania
- Italy
| | - S. Conoci
- STMicroelectronics
- Stradale Primosole
- 50-95121 Catania
- Italy
| | - S. Petralia
- STMicroelectronics
- Stradale Primosole
- 50-95121 Catania
- Italy
| |
Collapse
|
41
|
Rocha JC, MacDonald A. Dietary intervention in the management of phenylketonuria: current perspectives. PEDIATRIC HEALTH MEDICINE AND THERAPEUTICS 2016; 7:155-163. [PMID: 29388626 PMCID: PMC5683291 DOI: 10.2147/phmt.s49329] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Phenylketonuria (PKU) is a well-described inborn error of amino acid metabolism that has been treated for >60 years. Enzyme deficiency causes accumulation of phenylalanine (Phe) and if left untreated will lead to profound and irreversible intellectual disability in most children. Traditionally, it has been managed with a low-Phe diet supplemented with a Phe-free protein substitute although newer treatment options mainly in combination with diet are available for some subgroups of patients with PKU, for example, sapropterin, large neutral amino acids, and glycomacropeptide. The diet consists of three parts: 1) severe restriction of dietary Phe; 2) replacement of non-Phe l-amino acids with a protein substitute commonly supplemented with essential fatty acids and other micronutrients; and 3) low-protein foods from fruits, some vegetables, sugars, fats and oil, and special low-protein foods (SLPF). The prescription of diet is challenging for health professionals. The high-carbohydrate diet supplied by a limited range of foods may program food preferences and contribute to obesity in later life. Abnormal tasting and satiety-promoting protein substitutes are administered to coincide with peak appetite times to ensure their consumption, but this practice may impede appetite for other important foods. Intermittent dosing of micronutrients when combined with l-amino acid supplements may lead to their poor bioavailability. Much work is required on the ideal nutritional profiling for special SLPF and Phe-free l-amino acid supplements. Although non-diet treatments are being studied, it is important to continue to fully understand all the consequences of diet therapy as it is likely to remain the foundation of therapy for many years.
Collapse
Affiliation(s)
- Júlio César Rocha
- Centro de Genética Médica, Centro Hospitalar do Porto - CHP.,Faculdade de Ciências da Saúde, Universidade Fernando Pessoa.,Center for Health Technology and Services Research (CINTESIS), Porto, Portugal
| | | |
Collapse
|
42
|
Abstract
Cerebral neurotransmitter (NT) deficiency has been suggested as a contributing factor in the pathophysiology of brain dysfunction in phenylketonuria (PKU), even in early-treated phenylketonuric patients. The study aimed to review dopamine and serotonin status in PKU, and the effect of the impaired neurotransmission. Several mechanisms are involved in the pathophysiology of PKU, primarily characterized by impaired dopamine and serotonin synthesis. These deficits are related to executive dysfunctions and social-emotional problems, respectively, in early treated patients. Blood phenylalanine is the main biomarker for treatment compliance follow-up, but further investigations and validation of peripheral biomarkers may be performed to monitor NT status. The development of new therapies is needed not only for decreasing blood and brain phenylalanine levels but also to improve NT syntheses.
Collapse
|
43
|
Ohashi A, Saeki Y, Harada T, Naito M, Takahashi T, Aizawa S, Hasegawa H. Tetrahydrobiopterin Supplementation: Elevation of Tissue Biopterin Levels Accompanied by a Relative Increase in Dihydrobiopterin in the Blood and the Role of Probenecid-Sensitive Uptake in Scavenging Dihydrobiopterin in the Liver and Kidney of Rats. PLoS One 2016; 11:e0164305. [PMID: 27711248 PMCID: PMC5053593 DOI: 10.1371/journal.pone.0164305] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 09/22/2016] [Indexed: 12/21/2022] Open
Abstract
Tetrahydrobiopterin (BH4) is an essential cofactor of nitric oxide synthase (NOS) and aromatic amino acid hydroxylases. BH4 and 7,8-dihydrobiopterin (BH2) are metabolically interchangeable at the expense of NADPH. Exogenously administered BH4 can be metabolized by the body, similar to vitamins. At present, synthetic BH4 is used as an orphan drug for patients with inherited diseases requiring BH4 supplementation. BH4 supplementation has also drawn attention as a means of treating certain cardiovascular symptoms, however, its application in human patients remains limited. Here, we tracked biopterin (BP) distribution in blood, bile, urine, liver, kidney and brain after BH4 administration (5 mg/kg rat, i.v.) with or without prior treatment with probenecid, a potent inhibitor of uptake transporters particularly including organic anion transporter families such as OTA1 and OAT3. The rapid excretion of BP in urine was driven by elevated blood concentrations and its elimination reached about 90% within 120 min. In the very early period, BP was taken up by the liver and kidney and gradually released back to the blood. BH4 administration caused a considerable decrease in the BH4% in blood BP as an inevitable compensatory process. Probenecid treatment slowed down the decrease in blood BP and simultaneously inhibited its initial rapid excretion in the kidney. At the same time, the BH4% was further lowered, suggesting that the probenecid-sensitive BP uptake played a crucial role in BH2 scavenging in vivo. This suggested that the overproduced BH2 was taken up by organs by means of the probenecid-sensitive process, and was then scavenged by counter-conversion to BH4 via the BH4 salvage pathway. Taken together, BH4 administration was effective at raising BP levels in organs over the course of hours but with extremely low efficiency. Since a high BH2 relative to BH4 causes NOS dysfunction, the lowering of the BH4% must be avoided in practice, otherwise the desired effect of the supplementation in ameliorating NOS dysfunction would be spoiled.
Collapse
Affiliation(s)
- Akiko Ohashi
- Department of Anatomy, Nihon University School of Dentistry, Chiyoda, Tokyo, Japan
| | - Yusuke Saeki
- Department of Biosciences, Teikyo University of Science and TechnologyUenohara, Yamanashi, Japan
| | - Tomonori Harada
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, Itabashi, Tokyo, Japan
| | - Masako Naito
- Department of Anatomy, Nihon University School of Dentistry, Chiyoda, Tokyo, Japan
| | - Tomihisa Takahashi
- Department of Anatomy, Nihon University School of Dentistry, Chiyoda, Tokyo, Japan
| | - Shin Aizawa
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, Itabashi, Tokyo, Japan
| | - Hiroyuki Hasegawa
- Department of Anatomy, Nihon University School of Dentistry, Chiyoda, Tokyo, Japan
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, Itabashi, Tokyo, Japan
| |
Collapse
|
44
|
Abstract
More than 950 phenylalanine hydroxylase (PAH) gene variants have been identified in people with phenylketonuria (PKU). These vary in their consequences for the residual level of PAH activity, from having little or no effect to abolishing PAH activity completely. Advances in genotyping technology and the availability of locus-specific and genotype databases have greatly expanded our understanding of the correlations between individual gene variant, residual PAH activity, tetrahydrobiopterin (BH4 ) responsiveness, and the clinical PKU phenotype. Most patients (∼76%) have compound heterozygous PAH gene variants and one mutated allele may markedly influence the activity of the second mutated allele, which in turn may influence either positively or negatively the activity of the biologically active heterotetrameric form of the PAH. While it is possible to predict the level of BH4 responsiveness (∼71%) and PKU severity (∼78%) from the nature of the underlying gene variants, these relationships remain complex and incompletely understood. A greater understanding of these relationships may increase the potential for individualized management of PKU in future. Inherited deficiencies in BH4 metabolism account for about 1%-2% of all hyperphenylalaninemias and are clinically more severe than PKU. Almost 90% of all patients are deficient in 6-pyruvoyl-tetrahydropterin synthase and dihydropteridine reductase.
Collapse
Affiliation(s)
- Nenad Blau
- Dietmar-Hopp-Metabolic Center, University Children's Hospital, Heidelberg, Germany
| |
Collapse
|
45
|
Dateki S, Watanabe S, Nakatomi A, Kinoshita E, Matsumoto T, Yoshiura KI, Moriuchi H. Genetic background of hyperphenylalaninemia in Nagasaki, Japan. Pediatr Int 2016; 58:431-3. [PMID: 27173423 DOI: 10.1111/ped.12924] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 11/30/2015] [Accepted: 01/13/2016] [Indexed: 11/28/2022]
Abstract
Phenylketonuria (PKU) and related hyperphenylalaninemia (HPA) are caused by a deficiency in hepatic phenylalanine hydroxylase (PAH). The incidence of PKU in Nagasaki prefecture is higher than that in all parts of Japan (1/15 894 vs 1/120 000). To investigate the genetic background of patients with HPA in Nagasaki prefecture, mutation analysis was done in 14 patients with PKU or mild HPA. Homozygous or compound heterozygous PAH mutations were identified in all the patients. The spectrum of PAH mutations in the cohort was broad and similar to those in all parts of Japan and East Asian countries. R53H is the most common mutation in patients with mild HPA. The present results provide further support for genotype-phenotype correlations in patients with HPA. The high incidence of PKU in Nagasaki, the westernmost part of Japan, might be due to migration of people with PAH mutations from China and Korea, and geographic factors.
Collapse
Affiliation(s)
- Sumito Dateki
- Department of Pediatrics, Nagasaki University Hospital, Nagasaki, Japan
| | - Satoshi Watanabe
- Department of Pediatrics, Nagasaki University Hospital, Nagasaki, Japan.,Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Akiko Nakatomi
- Department of Pediatrics, Nagasaki University Hospital, Nagasaki, Japan
| | | | - Tadashi Matsumoto
- Division of Developmental Disabilities, Misakaenosono Mutsumi Developmental, Medical and Welfare Center, Isahaya, Japan
| | - Koh-Ichiro Yoshiura
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hiroyuki Moriuchi
- Department of Pediatrics, Nagasaki University Hospital, Nagasaki, Japan
| |
Collapse
|
46
|
Tansek MZ, Groselj U, Kelvisar M, Kobe H, Lampret BR, Battelino T. Long-term BH4 (sapropterin) treatment of children with hyperphenylalaninemia - effect on median Phe/Tyr ratios. J Pediatr Endocrinol Metab 2016; 29:561-6. [PMID: 26910740 DOI: 10.1515/jpem-2015-0337] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 12/30/2015] [Indexed: 11/15/2022]
Abstract
BACKGROUND Phenylalanine hydroxylase deficiency causes various degrees of hyperphenylalaninemia (HPA). Tetrahydrobiopterin (BH4; sapropterin) reduces phenylalanine (Phe) levels in responders, enabling relaxation of dietary therapy. We aimed to assess long-term effects of BH4 treatment in HPA patients. METHODS Nine pre-pubertal BH4 responsive children were treated with BH4 for at least 2 years. The median dietary tolerance to Phe and levels of blood Phe, tyrosine (Tyr), zinc, selenium and vitamin B12 and anthropometric measurements, in the 2 years periods before and after the introduction of BH4 treatment were analyzed and compared. Adverse effects of BH4 were assessed. RESULTS The daily Phe tolerance had tripled, from pretreatment median value of 620 mg (IQR 400-700 mg) to 2000 (IQR 1000-2000 mg) after 2 years of follow up (p<0.001). The median blood Phe levels during the 2 years period before introducing BH4 did not change significantly during the 2 years on therapy (from 200 μmol/L; IQR 191-302 to 190 μmol/L; IQR 135-285 μmol/L), but the median blood Phe/Tyr ratio had lowered significantly from pre-treatment value 4.7 to 2.4 during the 2 years on therapy (p=0.01). Median zinc, selenium, vitamin B12 levels and anthropometric measurements did not change while on BH4 therapy (p=NS). No adverse effects were noticed. CONCLUSIONS BH4 therapy enabled patients much higher dietary Phe intakes, with no noticeable adverse effects. Median blood Phe and Tyr levels, median zinc, selenium, vitamin B12 levels and anthropometric measurements did not change significantly on BH4 therapy, but median Phe/Tyr ratios had lowered.
Collapse
|
47
|
Aldámiz-Echevarría L, Llarena M, Bueno MA, Dalmau J, Vitoria I, Fernández-Marmiesse A, Andrade F, Blasco J, Alcalde C, Gil D, García MC, González-Lamuño D, Ruiz M, Ruiz MA, Peña-Quintana L, González D, Sánchez-Valverde F, Desviat LR, Pérez B, Couce ML. Molecular epidemiology, genotype-phenotype correlation and BH4 responsiveness in Spanish patients with phenylketonuria. J Hum Genet 2016; 61:731-44. [PMID: 27121329 DOI: 10.1038/jhg.2016.38] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 03/16/2016] [Accepted: 03/24/2016] [Indexed: 01/26/2023]
Abstract
Phenylketonuria (PKU), the most common inborn error of amino acid metabolism, is caused by mutations in the phenylalanine-4-hydroxylase (PAH) gene. This study aimed to assess the genotype-phenotype correlation in the PKU Spanish population and the usefulness in establishing genotype-based predictions of BH4 responsiveness in our population. It involved the molecular characterization of 411 Spanish PKU patients: mild hyperphenylalaninemia non-treated (mild HPA-NT) (34%), mild HPA (8.8%), mild-moderate (20.7%) and classic (36.5%) PKU. BH4 responsiveness was evaluated using a 6R-BH4 loading test. We assessed genotype-phenotype associations and genotype-BH4 responsiveness in our population according to literature and classification of the mutations. The mutational spectrum analysis showed 116 distinct mutations, most missense (70.7%) and located in the catalytic domain (62.9%). The most prevalent mutations were c.1066-11G>A (9.7%), p.Val388Met (6.6%) and p.Arg261Gln (6.3%). Three novel mutations (c.61-13del9, p.Ile283Val and p.Gly148Val) were reported. Although good genotype-phenotype correlation was observed, there was no exact correlation for some genotypes. Among the patients monitored for the 6R-BH4 loading test: 102 were responders (87, carried either one or two BH4-responsive alleles) and 194 non-responders (50, had two non-responsive mutations). More discrepancies were observed in non-responders. Our data reveal a great genetic heterogeneity in our population. Genotype is quite a good predictor of phenotype and BH4 responsiveness, which is relevant for patient management, treatment and follow-up.
Collapse
Affiliation(s)
- Luis Aldámiz-Echevarría
- Unit of Metabolism, Cruces University Hospital, BioCruces Health Research Institute, GCV-CIBER de Enfermedades Raras (CIBERER), Plaza de Cruces s/n, Barakaldo, Spain
| | - Marta Llarena
- Unit of Metabolism, Cruces University Hospital, BioCruces Health Research Institute, GCV-CIBER de Enfermedades Raras (CIBERER), Plaza de Cruces s/n, Barakaldo, Spain
| | - María A Bueno
- Metabolic Disorders, Dietetics and Nutrition Unit, Virgen del Rocío University Hospital, Manuel Siurot Avenue s/n, Sevilla, Spain
| | - Jaime Dalmau
- Nutrition and Metabolopathologies Unit, La Fe University Hospital, Bulevar Sur s/n, Valencia, Spain
| | - Isidro Vitoria
- Nutrition and Metabolopathologies Unit, La Fe University Hospital, Bulevar Sur s/n, Valencia, Spain
| | - Ana Fernández-Marmiesse
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, CIBERER, Health Research Institute of Santiago de Compostela (IDIS), A Choupana, s/n, Santiago de Compostela, A Coruña, Spain
| | - Fernando Andrade
- Unit of Metabolism, Cruces University Hospital, BioCruces Health Research Institute, GCV-CIBER de Enfermedades Raras (CIBERER), Plaza de Cruces s/n, Barakaldo, Spain
| | - Javier Blasco
- Gastroenterology, Hepatology and Child Nutrition Unit, Carlos Haya University Hospital, Avda. Arroyo de los Ángeles s/n, Málaga, Spain
| | - Carlos Alcalde
- Paediatrics Unit, Río Hortega University Hospital, Valladolid, Spain
| | - David Gil
- Gastroenterology Unit, Virgen de la Arrixaca University Hospital, Ctra. Madrid-Cartagena s/n, El Palmar, Murcia, Spain
| | - María C García
- Metabolic Pathologies Unit, Miguel Servet University Hospital, Zaragoza, Spain
| | | | - Mónica Ruiz
- Paediatrics Unit, Nuestra Señora de la Candelaria University Hospital, Santa Cruz de Tenerife, Spain
| | - María A Ruiz
- Metabolic Pathologies and Neuropaediatrics Unit, Son Espases University Hospital, Palma de Mallorca, Spain
| | - Luis Peña-Quintana
- Paediatric Gastroenterology, Hepatology and Nutrition Unit, Mother and Child Hospital Complex, Avda. Marítima del Sur s/n, Las Palmas de Gran Canaria, Spain
| | - David González
- Metabolic Pathologies Unit, Maternal and Child Hospital, Badajoz, Spain
| | - Felix Sánchez-Valverde
- Gastroenterology and Paediatric Nutrition Unit, Virgen del Camino Hospital, Pamplona, Spain
| | - Lourdes R Desviat
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular Severo Ochoa CSIC-UAM, CIBERER, IdiPaz, Madrid, Spain
| | - Belen Pérez
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular Severo Ochoa CSIC-UAM, CIBERER, IdiPaz, Madrid, Spain
| | - María L Couce
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, CIBERER, Health Research Institute of Santiago de Compostela (IDIS), A Choupana, s/n, Santiago de Compostela, A Coruña, Spain
| |
Collapse
|
48
|
Shen N, Heintz C, Thiel C, Okun JG, Hoffmann GF, Blau N. Co-expression of phenylalanine hydroxylase variants and effects of interallelic complementation on in vitro enzyme activity and genotype-phenotype correlation. Mol Genet Metab 2016; 117:328-35. [PMID: 26803807 DOI: 10.1016/j.ymgme.2016.01.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 01/09/2016] [Indexed: 02/04/2023]
Abstract
BACKGROUND In phenylketonuria (PKU) patients, the combination of two phenylalanine hydroxylase (PAH) alleles is the main determinant of residual enzyme activity in vivo and in vitro. Inconsistencies in genotype-phenotype correlations have been observed in compound heterozygous patients and a particular combination of two PAH alleles may produce a phenotype that is different from the expected one, possibly due to interallelic complementation. METHODS A dual eukaryotic vector system with two distinct PAH proteins N-terminally fused to different epitope tags was used to investigate the co-expression of PAH alleles reported in patients with inconsistent phenotypes. PAH variant proteins were transiently co-transfected in COS-7 cells. PAH activity was measured by liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS-MS), and protein expression was measured by Western blot. Genotypes were compared with predicted PAH activity from the PAH locus-specific database (PAHvdb) and with phenotypes and tetrahydrobiopterin (BH4) responsiveness from more than 10,000 PKU patients (BIOPKU database). RESULTS Through the expression and co-expression of 17 variant alleles we demonstrated that interallelic interaction could be both positive and negative. The co-expressions of p.[I65T];[R261Q] (19.5% activity; predicted 43.5%) and p.[I65T];[R408W] (15.0% vs. 26.8% activity) are examples of genotypes with negative interallelic interaction. The co-expressions of p.[E178G];[Q232E] (55.0% vs.36.4%) and p.[P384S];[R408W] (56.1% vs. 40.8%) are examples of positive subunit interactions. Inconsistencies of PAH residual enzyme activity in vitro and of PKU patients' phenotypes were observed as well. The PAH activity of p.[R408W];[A300S] is 18.0% of the wild-type activity; however, 88% of patients with this genotype exhibit mild hyperphenylalaninemias (MHPs). CONCLUSION The co-expression of two distinct PAH variants revealed possible dominance effects (positive or negative) by one of the variants on residual PAH activity as a result of interallelic complementation.
Collapse
Affiliation(s)
- Nan Shen
- Dietmar-Hopp Metabolic Center, University Children's Hospital, Department of General Pediatrics, Heidelberg, Germany
| | - Caroline Heintz
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Christian Thiel
- Dietmar-Hopp Metabolic Center, University Children's Hospital, Department of General Pediatrics, Heidelberg, Germany
| | - Jürgen G Okun
- Dietmar-Hopp Metabolic Center, University Children's Hospital, Department of General Pediatrics, Heidelberg, Germany
| | - Georg F Hoffmann
- Dietmar-Hopp Metabolic Center, University Children's Hospital, Department of General Pediatrics, Heidelberg, Germany
| | - Nenad Blau
- Dietmar-Hopp Metabolic Center, University Children's Hospital, Department of General Pediatrics, Heidelberg, Germany.
| |
Collapse
|
49
|
Taylor BA, Zaleski AL, Dornelas EA, Thompson PD. The impact of tetrahydrobiopterin administration on endothelial function before and after smoking cessation in chronic smokers. Hypertens Res 2016; 39:144-50. [PMID: 26606877 DOI: 10.1038/hr.2015.130] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 10/22/2015] [Accepted: 10/27/2015] [Indexed: 12/28/2022]
Abstract
Cardiovascular disease mortality is reduced following smoking cessation but the reversibility of specific atherogenic risk factors such as endothelial dysfunction is less established. We assessed brachial artery flow-mediated dilation (FMD) in 57 chronic smokers and 15 healthy controls, alone and after oral tetrahydrobiopterin (BH4) administration, to assess the extent to which reduced bioactivity of BH4, a cofactor for the endothelial nitric oxide synthase enzyme (eNOS), contributes to smoking-associated reductions in FMD. Thirty-four smokers then ceased cigarette and nicotine use for 1 week, after which FMD (±BH4 administration) was repeated. Brachial artery FMD was calculated as the peak dilatory response observed relative to baseline (%FMD). Endothelium-independent dilation was assessed by measuring the dilatory response to sublingual nitroglycerin (%NTG). Chronic smokers exhibited reduced %FMD relative to controls: (5.6±3.0% vs. 8.1±3.7%; P<0.01) and %NTG was not different between groups (P=0.22). BH4 administration improved FMD in both groups (P=0.03) independent of smoking status (P=0.78) such that FMD was still lower in smokers relative to controls (6.6±3.3% vs. 9.8±3.2%; P<0.01). With smoking cessation, FMD increased significantly (from 5.0±2.9 to 7.8±3.2%;P<0.01); %NTG was not different (P=0.57) and BH4 administration did not further improve FMD (P=0.33). These findings suggest that the blunted FMD observed in chronic smokers, likely due at least in part to reduced BH4 bioactivity and eNOS uncoupling, can be restored with smoking cessation. Post-cessation BH4 administration does not further improve endothelial function in chronic smokers, unlike the effect observed in nonsmokers, indicating a longer-term impact of chronic smoking on vascular function that is not acutely reversible.
Collapse
Affiliation(s)
- Beth A Taylor
- Division of Cardiology, Henry Low Heart Center, Hartford Hospital, Hartford, CT, USA
- Department of Kinesiology, University of Connecticut, Storrs, CT, USA
- University of Connecticut School of Medicine, Farmington, CT, USA
| | - Amanda L Zaleski
- Division of Cardiology, Henry Low Heart Center, Hartford Hospital, Hartford, CT, USA
- Department of Kinesiology, University of Connecticut, Storrs, CT, USA
| | - Ellen A Dornelas
- Division of Cardiology, Henry Low Heart Center, Hartford Hospital, Hartford, CT, USA
- University of Connecticut School of Medicine, Farmington, CT, USA
| | - Paul D Thompson
- Division of Cardiology, Henry Low Heart Center, Hartford Hospital, Hartford, CT, USA
- University of Connecticut School of Medicine, Farmington, CT, USA
| |
Collapse
|
50
|
Winn SR, Scherer T, Thöny B, Harding CO. High dose sapropterin dihydrochloride therapy improves monoamine neurotransmitter turnover in murine phenylketonuria (PKU). Mol Genet Metab 2016; 117:5-11. [PMID: 26653793 PMCID: PMC4706464 DOI: 10.1016/j.ymgme.2015.11.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 11/25/2015] [Indexed: 01/08/2023]
Abstract
Central nervous system (CNS) deficiencies of the monoamine neurotransmitters, dopamine and serotonin, have been implicated in the pathophysiology of neuropsychiatric dysfunction in phenylketonuria (PKU). Increased brain phenylalanine concentration likely competitively inhibits the activities of tyrosine hydroxylase (TH) and tryptophan hydroxylase (TPH), the rate limiting steps in dopamine and serotonin synthesis respectively. Tetrahydrobiopterin (BH4) is a required cofactor for TH and TPH activity. Our hypothesis was that treatment of hyperphenylalaninemic Pah(enu2/enu2) mice, a model of human PKU, with sapropterin dihydrochloride, a synthetic form of BH4, would stimulate TH and TPH activities leading to improved dopamine and serotonin synthesis despite persistently elevated brain phenylalanine. Sapropterin (20, 40, or 100mg/kg body weight in 1% ascorbic acid) was administered daily for 4 days by oral gavage to Pah(enu2/enu2) mice followed by measurement of brain biopterin, phenylalanine, tyrosine, tryptophan and monoamine neurotransmitter content. A significant increase in brain biopterin content was detected only in mice that had received the highest sapropterin dose, 100mg/kg. Blood and brain phenylalanine concentrations were unchanged by sapropterin therapy. Sapropterin therapy also did not alter the absolute amounts of dopamine and serotonin in brain but was associated with increased homovanillic acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA), dopamine and serotonin metabolites respectively, in both wild type and Pah(enu2/enu2) mice. Oral sapropterin therapy likely does not directly affect central nervous system monoamine synthesis in either wild type or hyperphenylalaninemic mice but may stimulate synaptic neurotransmitter release and subsequent metabolism.
Collapse
Affiliation(s)
- Shelley R Winn
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Mailstop L-103, 3181 Sam Jackson Park Rd., Portland, OR 97239, USA
| | - Tanja Scherer
- Department of Pediatrics, University of Zurich, Steinweissstrasse 75, Zurich CH-8032, Switzerland
| | - Beat Thöny
- Department of Pediatrics, University of Zurich, Steinweissstrasse 75, Zurich CH-8032, Switzerland
| | - Cary O Harding
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Mailstop L-103, 3181 Sam Jackson Park Rd., Portland, OR 97239, USA.
| |
Collapse
|