1
|
The adverse effects of hypoxia on hiHep functions via HIF-1α/PGC-1α axis are alleviated by PFDC emulsion. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
2
|
Sarika PR, James NR, Anilkumar PR, Raj DK, Kumary TV. Microgravity as a means to incorporate HepG2 aggregates in polysaccharide-protein hybrid scaffold. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:27. [PMID: 26704544 DOI: 10.1007/s10856-015-5638-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/27/2015] [Indexed: 06/05/2023]
Abstract
Tissue culture under microgravity provides a venue which promotes cell-cell association while avoiding the detrimental effects of high shear stress. Hepatocytes cultured on carriers or entrapped within matrices under simulated microgravity conditions showed improved cell function and proliferation. In the present study, a new approach was adopted where a non-cell adherent scaffold was incorporated with hepatospheroids (HepG2) under microgravity. Gum arabic (GA) was cross-linked with gelatin (GA-Gel) and collagen (GA-Col) to prepare non-cell adherent scaffolds. Microgravity experiments with GA-Gel and GA-Col indicated that GA-Col is a better substrate compared to GA-Gel. Microgravity experiments of GA-Col scaffolds with HepG2 cells confirmed that the non-adherent surface with porous architecture can incorporate hepatocyte spheroids and maintain liver specific functions. Albumin and urea synthesis of hepatocytes was sustained up to 6 days under microgravity conditions in the presence of GA-Col scaffold. This new approach of using non-cell adherent matrix and microgravity environment for developing biological substitutes will be beneficial in tissue engineering, bioartificial liver devices and in vitro safety assessment of drugs.
Collapse
Affiliation(s)
- P R Sarika
- Department of Chemistry, Indian Institute of Space Science and Technology (IIST), Govt. of India, Valiamala, Thiruvananthapuram, 695 547, Kerala, India.
| | - Nirmala Rachel James
- Department of Chemistry, Indian Institute of Space Science and Technology (IIST), Govt. of India, Valiamala, Thiruvananthapuram, 695 547, Kerala, India.
| | - P R Anilkumar
- Tissue Culture Laboratory, Biomedical Technology Wing, Sree Chitra Thirunal Institute for Medical Sciences and Technology, Poojappura, Thiruvananthapuram, 695 012, Kerala, India.
| | - Deepa K Raj
- Tissue Culture Laboratory, Biomedical Technology Wing, Sree Chitra Thirunal Institute for Medical Sciences and Technology, Poojappura, Thiruvananthapuram, 695 012, Kerala, India.
| | - T V Kumary
- Tissue Culture Laboratory, Biomedical Technology Wing, Sree Chitra Thirunal Institute for Medical Sciences and Technology, Poojappura, Thiruvananthapuram, 695 012, Kerala, India.
| |
Collapse
|
3
|
Lü D, Gao Y, Luo C, Lü S, Wang Q, Xu X, Sun S, Wang C, Long M. Selectivity of biopolymer membranes using HepG2 cells. Regen Biomater 2016; 2:21-9. [PMID: 26816630 PMCID: PMC4669028 DOI: 10.1093/rb/rbu018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 11/20/2014] [Accepted: 12/18/2014] [Indexed: 12/23/2022] Open
Abstract
Bioartificial liver (BAL) system has emerged as an alternative treatment to bridge acute liver failure to either liver transplantation or liver regeneration. One of the main reasons that the efficacy of the current BAL systems was not convincing in clinical trials is attributed to the lack of friendly interface between the membrane and the hepatocytes in liver bioreactor, the core unit of BAL system. Here, we systematically compared the biological responses of hepatosarcoma HepG2 cells seeded on eight, commercially available biocompatible membranes made of acetyl cellulose–nitrocellulose mixed cellulose (CA–NC), acetyl cellulose (CA), nylon (JN), polypropylene (PP), nitrocellulose (NC), polyvinylidene fluoride (PVDF), polycarbonate (PC) and polytetrafluoroethylene (PTFE). Physicochemical analysis and mechanical tests indicated that CA, JN and PP membranes yield high adhesivity and reasonable compressive and/or tensile features with friendly surface topography for cell seeding. Cells prefer to adhere on CA, JN, PP or PTFE membranes with high proliferation rate in spheriod-like shape. Actin, albumin and cytokeratin 18 expressions are favorable for cells on CA or PP membrane, whereas protein filtration is consistent among all the eight membranes. These results further the understandings of cell growth, morphology and spreading, as well as protein filtration on distinct membranes in designing a liver bioreactor.
Collapse
Affiliation(s)
- Dongyuan Lü
- Center of Biomechanics and Bioengineering and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuxin Gao
- Center of Biomechanics and Bioengineering and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Chunhua Luo
- Center of Biomechanics and Bioengineering and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Shouqian Lü
- Center of Biomechanics and Bioengineering and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Qian Wang
- Center of Biomechanics and Bioengineering and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xianghong Xu
- Center of Biomechanics and Bioengineering and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Shujin Sun
- Center of Biomechanics and Bioengineering and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Chengzhi Wang
- Center of Biomechanics and Bioengineering and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Mian Long
- Center of Biomechanics and Bioengineering and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- *Correspondence address. Center of Biomechanics and Bioengineering and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China. Tel: +86-10-82544131; Fax: +86-10-82544131; E-mail:
| |
Collapse
|
4
|
Usta OB, McCarty WJ, Bale S, Hegde M, Jindal R, Bhushan A, Golberg I, Yarmush ML. Microengineered cell and tissue systems for drug screening and toxicology applications: Evolution of in-vitro liver technologies. TECHNOLOGY 2015; 3:1-26. [PMID: 26167518 PMCID: PMC4494128 DOI: 10.1142/s2339547815300012] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The liver performs many key functions, the most prominent of which is serving as the metabolic hub of the body. For this reason, the liver is the focal point of many investigations aimed at understanding an organism's toxicological response to endogenous and exogenous challenges. Because so many drug failures have involved direct liver toxicity or other organ toxicity from liver generated metabolites, the pharmaceutical industry has constantly sought superior, predictive in-vitro models that can more quickly and efficiently identify problematic drug candidates before they incur major development costs, and certainly before they are released to the public. In this broad review, we present a survey and critical comparison of in-vitro liver technologies along a broad spectrum, but focus on the current renewed push to develop "organs-on-a-chip". One prominent set of conclusions from this review is that while a large body of recent work has steered the field towards an ever more comprehensive understanding of what is needed, the field remains in great need of several key advances, including establishment of standard characterization methods, enhanced technologies that mimic the in-vivo cellular environment, and better computational approaches to bridge the gap between the in-vitro and in-vivo results.
Collapse
Affiliation(s)
- O B Usta
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, 51 Blossom St., Boston, MA 02114, USA
| | - W J McCarty
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, 51 Blossom St., Boston, MA 02114, USA
| | - S Bale
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, 51 Blossom St., Boston, MA 02114, USA
| | - M Hegde
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, 51 Blossom St., Boston, MA 02114, USA
| | - R Jindal
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, 51 Blossom St., Boston, MA 02114, USA
| | - A Bhushan
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, 51 Blossom St., Boston, MA 02114, USA
| | - I Golberg
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, 51 Blossom St., Boston, MA 02114, USA
| | - M L Yarmush
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, 51 Blossom St., Boston, MA 02114, USA ; Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd., Piscataway, NJ 08854, USA
| |
Collapse
|
5
|
Sarika PR, Sidhy Viha CV, Sajin Raj RG, Nirmala RJ, Anil Kumar PR. A non-adhesive hybrid scaffold from gelatin and gum Arabic as packed bed matrix for hepatocyte perfusion culture. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 46:341-7. [PMID: 25491996 DOI: 10.1016/j.msec.2014.10.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 09/27/2014] [Accepted: 10/21/2014] [Indexed: 10/24/2022]
Abstract
Development of liver support systems has become one of the most investigated areas for the last 50 years because of the shortage of donor organs for orthotopic liver transplantations. Bioartificial liver (BAL) device is one of the alternatives for liver failure which provides a curing method and support patients to recover from certain liver failure diseases. The biological compartment of BAL is called the bioreactor where functionally active hepatocytes are maintained to support the liver specific functions. We have developed a packed bed bioreactor with a cytocompatible, polysaccharide-protein hybrid scaffold. The scaffold prepared from gelatin and gum Arabic acts as a packed bed matrix for hepatocyte culture. Quantitative evaluation of the hepatocytes cultured using packed bed bioreactor demonstrated that cells maintained liver specific functions like albumin and urea synthesis for seven days. These results indicated that the system can be scaled up to form the biological component of a bioartificial liver.
Collapse
Affiliation(s)
- P R Sarika
- Department of Chemistry, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram, Kerala 695 547, India
| | - C V Sidhy Viha
- Tissue Culture Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Trivandrum, Kerala 695 012, India
| | - R G Sajin Raj
- Device Testing Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Trivandrum, Kerala 695 012, India
| | - Rachel James Nirmala
- Department of Chemistry, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram, Kerala 695 547, India
| | - P R Anil Kumar
- Tissue Culture Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Trivandrum, Kerala 695 012, India.
| |
Collapse
|
6
|
Yu CB, Pan XP, Yu L, Yu XP, Du WB, Cao HC, Li J, Chen P, Li LJ. Evaluation of a novel choanoid fluidized bed bioreactor for future bioartificial livers. World J Gastroenterol 2014; 20:6869-77. [PMID: 24944477 PMCID: PMC4051926 DOI: 10.3748/wjg.v20.i22.6869] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 02/26/2014] [Accepted: 03/06/2014] [Indexed: 02/07/2023] Open
Abstract
AIM To construct and evaluate the functionality of a choanoid-fluidized bed bioreactor (CFBB) based on microencapsulated immortalized human hepatocytes. METHODS Encapsulated hepatocytes were placed in the constructed CFBB and circulated through Dulbecco's Modified Eagle's Medium (DMEM) for 12 h, and then through exchanged plasma for 6 h, and compared with encapsulated cells cultivated under static conditions in a spinner flask. Levels of alanine aminotransferase (ALT) and albumin were used to evaluate the CFBB during media circulation, whereas levels of ALT, total bilirubin (TBil), and albumin were used to evaluate it during plasma circulation. Mass transfer and hepatocyte injury were evaluated by comparing the results from the two experimental conditions. In addition, the viability and microstructure of encapsulated cells were observed in the different environments. RESULTS The bioartificial liver model based on a CFBB was verified by in vitro experiments. The viability of encapsulated cells accounting for 84.6% ± 3.7% in CFBB plasma perfusion was higher than the 74.8% ± 3.1% in the static culture group (P < 0.05) after 6 h. ALT release from cells was 29 ± 3.5 U/L vs 40.6 ± 3.2 U/L at 12 h (P < 0.01) in the CFBB medium circulation and static medium culture groups, respectively. Albumin secretion from cells was 234.2 ± 27.8 μg/1 × 10(7) cells vs 167.8 ± 29.3 μg/1 × 10(7) cells at 6 h (P < 0.01), 274.4 ± 34.6 μg/1 × 10(7) cells vs 208.4 ± 49.3 μg/1 × 10(7) cells (P < 0.05) at 12 h, in the two medium circulation/culture groups, respectively. Furthermore, ALT and TBil levels were 172.3 ± 24.1 U/L vs 236.3 ± 21.5 U/L (P < 0.05), 240.1 ± 23.9 μmol/L vs 241.9 ± 31.4 μmol/L (P > 0.05) at 6 h in the CFBB plasma perfusion and static plasma culture groups, respectively. There was no significant difference in albumin concentration between the two experimental plasma groups at any time point. The microstructure of the encapsulated hepatocytes remained healthier in the CFBB group compared with the static culture group after 6 h of plasma perfusion. CONCLUSION The CFBB can function as a bioartificial liver based on a bioreactor. The efficacy of this novel bioreactor is promising for the study of liver failure.
Collapse
|
7
|
Horst OV, Chavez MG, Jheon AH, Desai T, Klein OD. Stem cell and biomaterials research in dental tissue engineering and regeneration. Dent Clin North Am 2012; 56:495-520. [PMID: 22835534 PMCID: PMC3494412 DOI: 10.1016/j.cden.2012.05.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
This review summarizes approaches used in tissue engineering and regenerative medicine, with a focus on dental applications. Dental caries and periodontal disease are the most common diseases resulting in tissue loss. To replace or regenerate new tissues, various sources of stem cells have been identified such as somatic stem cells from teeth and peridontium. Advances in biomaterial sciences including microfabrication, self-assembled biomimetic peptides, and 3-dimensional printing hold great promise for whole-organ or partial tissue regeneration to replace teeth and periodontium.
Collapse
Affiliation(s)
- Orapin V. Horst
- Division of Endodontics, Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, Box 0758, 521 Parnassus Avenue, Clinical Science Building 627, San Francisco, CA 94143-0758, USA
| | - Miquella G. Chavez
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, Box 2330, 1700 4th Street, San Francisco, CA 94158-2330, USA
- Department of Orofacial Sciences, University of California, San Francisco, Box 0442, 513 Parnassus Avenue, San Francisco, CA 94143-0442, USA
| | - Andrew H. Jheon
- Department of Orofacial Sciences, University of California, San Francisco, Box 0442, 513 Parnassus Avenue, San Francisco, CA 94143-0442, USA
| | - Tejal Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, Box 2330, 1700 4th Street, San Francisco, CA 94158-2330, USA
- Department of Physiology, University of California, San Francisco, Byers Hall Room 203C, MC 2520, 1700 4th Street, San Francisco, CA 94158-2330, USA
| | - Ophir D. Klein
- Department of Orofacial Sciences, University of California, San Francisco, Box 0442, 513 Parnassus Avenue, San Francisco, CA 94143-0442, USA
- Department of Pediatrics, University of California, San Francisco, Box 0442, 513 Parnassus Avenue, San Francisco, CA 94143-0442, USA
- Corresponding author. Department of Orofacial Sciences, University of California, San Francisco, Box 0442, 513 Parnassus Avenue, San Francisco, CA 94143-0442.
| |
Collapse
|
8
|
Berthiaume F, Maguire TJ, Yarmush ML. Tissue engineering and regenerative medicine: history, progress, and challenges. Annu Rev Chem Biomol Eng 2012; 2:403-30. [PMID: 22432625 DOI: 10.1146/annurev-chembioeng-061010-114257] [Citation(s) in RCA: 389] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The past three decades have seen the emergence of an endeavor called tissue engineering and regenerative medicine in which scientists, engineers, and physicians apply tools from a variety of fields to construct biological substitutes that can mimic tissues for diagnostic and research purposes and can replace (or help regenerate) diseased and injured tissues. A significant portion of this effort has been translated to actual therapies, especially in the areas of skin replacement and, to a lesser extent, cartilage repair. A good amount of thoughtful work has also yielded prototypes of other tissue substitutes such as nerve conduits, blood vessels, liver, and even heart. Forward movement to clinical product, however, has been slow. Another offshoot of these efforts has been the incorporation of some new exciting technologies (e.g., microfabrication, 3D printing) that may enable future breakthroughs. In this review we highlight the modest beginnings of the field and then describe three application examples that are in various stages of development, ranging from relatively mature (skin) to ongoing proof-of-concept (cartilage) to early stage (liver). We then discuss some of the major issues that limit the development of complex tissues, some of which are fundamentals-based, whereas others stem from the needs of the end users.
Collapse
Affiliation(s)
- François Berthiaume
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| | | | | |
Collapse
|
9
|
Nussler AK, Zeilinger K, Schyschka L, Ehnert S, Gerlach JC, Yan X, Lee SML, Ilowski M, Thasler WE, Weiss TS. Cell therapeutic options in liver diseases: cell types, medical devices and regulatory issues. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2011; 22:1087-1099. [PMID: 21461918 DOI: 10.1007/s10856-011-4306-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 03/24/2011] [Indexed: 05/30/2023]
Abstract
Although significant progress has been made in the field of orthotopic liver transplantation, cell-based therapies seem to be a promising alternative to whole-organ transplantation. The reasons are manifold but organ shortage is the main cause for this approach. However, many problems such as the question which cell type should be used or which application site is best for transplantation have been raised. In addition, some clinicians have had success by cultivating liver cells in bioreactors for temporary life support. Besides answering the question which cell type, which injection site or even which culture form should be used for liver support recent international harmonization of legal requirements is needed to be addressed by clinicians, scientists and companies dealing with cellular therapies. We here briefly summarize the possible cell types used to partially or temporarily correct liver diseases, the most recent development of bioreactor technology and important regulatory issues.
Collapse
Affiliation(s)
- Andreas K Nussler
- Department of Traumatology, MRI, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, 81675, Munich, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Yagi H, Parekkadan B, Suganuma K, Soto-Gutierrez A, Tompkins RG, Tilles AW, Yarmush ML. Long-term superior performance of a stem cell/hepatocyte device for the treatment of acute liver failure. Tissue Eng Part A 2010; 15:3377-88. [PMID: 19397469 DOI: 10.1089/ten.tea.2008.0681] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cell-based technologies to support/restore organ function represent one of the most promising avenues in the treatment of acute liver failure (ALF). Recently, mesenchymal stem cells (MSCs) have been reported as a new therapeutic for inflammatory conditions. Here, we demonstrate the efficacy of MSCs, when cocultured with hepatocytes, to provide combination hepatic and antiinflammatory therapy in the setting of ALF. MSCs were shown to have multiple beneficial effects in vitro that were relevant in a therapeutic context, including (1) hepatocellular functional support, (2) secretion of molecules that inhibit hepatocyte apoptosis, and (3) modulation of an acute phase response by hepatocytes cultured in ALF-induced serum. In addition, we show that the MSC secretome is dynamically changed in response to serum exposure from ALF rats. We then conducted a therapeutic trial of liver assist devices (LADs). LADs containing cocultures of MSCs and hepatocytes provided a greater survival benefit compared to other coculture and monocellular control LADs. Treatment with MSC-hepatocyte devices was associated with specific improvements in hepatic functional and histological parameters as well as decreasing inflammatory serum cytokine levels, validating a combined therapeutic effect. Moreover, MSC coculture reduced the overall cell mass of the device by an order of magnitude. These findings demonstrate the importance of nonparenchymal cells in the cellular composition of LADs, and strongly support the integration of MSCs into hepatocyte-coculture-based LADs as a potential destination therapy for ALF.
Collapse
Affiliation(s)
- Hiroshi Yagi
- Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Shriners Hospitals for Children and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Gordon J, Palmer AF. Impact of Increased Oxygen Delivery via Bovine Red Blood Cell Supplementation of Culturing Media on Select Metabolic and Synthetic Functions of C3A Hepatocytes Maintained within a Hollow Fiber Bioreactor. ACTA ACUST UNITED AC 2009; 33:297-306. [PMID: 16152694 DOI: 10.1081/bio-200066626] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Hepatocytes are highly dependent upon appropriate oxygen provision for activity and viability. However, oxygen delivery to hepatocytes cultured within a hollow fiber bioreactor is believed to be problematic because of large diffusion distances, a high hepatocyte oxygen consumption rate and low aqueous media oxygen solubility. Supplementation of bioreactor media with bovine red blood cells (bRBCs) is one means of improving oxygen delivery to hepatocytes as hemoglobin contained within bRBCs binds oxygen. The impact of supplementing hepatocyte culturing media with bRBCs (approximately 5 x 10(8) bRBCs/ml) on hepatocyte activity (albumin and lactate production and glucose consumption) was studied. Decreased hepatocyte lactate production to glucose consumption ratios were found for the case when bRBCs were added to circulating culturing media, which indicated the presence of a more aerobic environment in comparison to the control (no bRBC supplementation). Additionally, albumin synthesis was found to be improved when the circulating media was supplemented with bRBCs. Our results thus support the use of bRBCs to improve oxygen delivery to hepatocytes maintained within a hollow fiber bioreactor.
Collapse
Affiliation(s)
- Jason Gordon
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | | |
Collapse
|
12
|
Consolo F, Fiore GB, Truscello S, Caronna M, Morbiducci U, Montevecchi FM, Redaelli A. A Computational Model for the Optimization of Transport Phenomena in a Rotating Hollow-Fiber Bioreactor for Artificial Liver. Tissue Eng Part A 2008. [DOI: 10.1089/ten.tea.2008.0213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
13
|
Poyck PP, Mareels G, Hoekstra R, van Wijk AC, van der Hoeven TV, van Gulik TM, Verdonck PR, Chamuleau RA. Enhanced Oxygen Availability Improves Liver-specific Functions of the AMC Bioartificial Liver. Artif Organs 2008; 32:116-26. [DOI: 10.1111/j.1525-1594.2007.00500.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Cho CH, Parashurama N, Park EYH, Suganuma K, Nahmias Y, Park J, Tilles AW, Berthiaume F, Yarmush ML. Homogeneous differentiation of hepatocyte-like cells from embryonic stem cells: applications for the treatment of liver failure. FASEB J 2007; 22:898-909. [PMID: 17942827 DOI: 10.1096/fj.06-7764com] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
One of the major hurdles of cellular therapies for the treatment of liver failure is the low availability of functional human hepatocytes. While embryonic stem (ES) cells represent a potential cell source for therapy, current methods for differentiation result in mixed cell populations or low yields of the cells of interest. Here we describe a rapid, direct differentiation method that yields a homogeneous population of endoderm-like cells with 95% purity. Mouse ES cells cultured on top of collagen-sandwiched hepatocytes differentiated and proliferated into a uniform and homogeneous cell population of endoderm-like cells. The endoderm-like cell population was positive for Foxa2, Sox17, and AFP and could be further differentiated into hepatocyte-like cells, demonstrating hepatic morphology, functionality, and gene and protein expression. Incorporating the hepatocyte-like cells into a bioartificial liver device to treat fulminant hepatic failure improved animal survival, thereby underscoring the therapeutic potential of these cells.
Collapse
Affiliation(s)
- Cheul H Cho
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Cho CH, Park J, Nagrath D, Tilles AW, Berthiaume F, Toner M, Yarmush ML. Oxygen uptake rates and liver-specific functions of hepatocyte and 3T3 fibroblast co-cultures. Biotechnol Bioeng 2007; 97:188-99. [PMID: 17054120 DOI: 10.1002/bit.21225] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Bioartificial liver (BAL) devices have been developed to treat patients undergoing acute liver failure. One of the most important parameters to consider in designing these devices is the oxygen consumption rate of the seeded hepatocytes which are known to have oxygen consumption rates 10 times higher than most other cell types. Hepatocytes in various culture configurations have been tested in BAL devices including those formats that involve co-culture of hepatocytes with other cell types. In this study, we investigated, for the first time, oxygen uptake rates (OUR)s of hepatocytes co-cultured with 3T3-J2 fibroblasts at various hepatocyte to fibroblast seeding ratios. OURs were determined by measuring the rate of oxygen disappearance using a ruthenium-coated optical probe after closing and sealing the culture dish. Albumin and urea production rates were measured to assess hepatocyte function. Lower hepatocyte density co-cultures demonstrated significantly higher OURs (2 to 3.5-fold) and liver- specific functions (1.6-fold for albumin and 4.5-fold for urea production) on a per cell basis than those seeded at higher densities. Increases in OUR correlated well with increased liver-specific functions. OURs (V(m)) were modeled by fitting Michaelis-Menten kinetics and the model predictions closely correlated with the experimental data. This study provides useful information for predicting BAL design parameters that will avoid oxygen limitations, as well as maximize metabolic functions.
Collapse
Affiliation(s)
- Cheul H Cho
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Maguire T, Davidovich AE, Wallenstein EJ, Novik E, Sharma N, Pedersen H, Androulakis IP, Schloss R, Yarmush M. Control of hepatic differentiation via cellular aggregation in an alginate microenvironment. Biotechnol Bioeng 2007; 98:631-44. [PMID: 17390383 DOI: 10.1002/bit.21435] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Integral to the development of embryonic stem cell therapeutic strategies for hepatic disorders is the identification and establishment of a controllable hepatic differentiation strategy. In order to address this issue we have established an alginate microencapsulation approach which provides a means to modulate the differentiation process through changes in key encapsulation parameters. We report that a wide array of hepatocyte specific markers is expressed by cells differentiated during a 23-day period within an alginate bead microenvironment. These include urea and albumin secretion, glycogen storage, and cytochrome P450 transcription factor activity. In addition, we demonstrate that cellular aggregation is integral to the control of differentiation within the bead environment and this process is mediated by the E-cadherin protein. The temporal expression of surface E-cadherin and hepatocyte functional expression occur concomitantly and both cellular aggregation and albumin synthesis are blocked in the presence of anti E-cadherin immunoglobulin. Furthermore, by establishing a compartmental model of differentiation, which incorporates this aggregation phenomenon, we can optimize key encapsulation parameters.
Collapse
Affiliation(s)
- Tim Maguire
- Department of Biomedical Engineering, Rutgers University, 617 Bowser Road, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Shinoda M, Tilles AW, Kobayashi N, Wakabayashi G, Takayanagi A, Totsugawa T, Harada H, Obara H, Suganuma K, Berthiaume F, Shimazu M, Shimizu N, Tanaka N, Kitajima M, Tompkins RG, Toner M, Yarmush ML. A bioartificial liver device secreting interleukin-1 receptor antagonist for the treatment of hepatic failure in rats. J Surg Res 2006; 137:130-40. [PMID: 17081566 PMCID: PMC3201777 DOI: 10.1016/j.jss.2006.08.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Revised: 07/24/2006] [Accepted: 08/09/2006] [Indexed: 01/12/2023]
Abstract
BACKGROUND Liver transplantation is the treatment of choice for many patients with fulminant hepatic failure (FHF). A major limitation of this treatment is the lack of available donors. An optimally functioning bio-artificial liver (BAL) device has the potential to provide critical hepatic support to patients with FHF. In this study, we examined the efficacy of combining interleukin-1 (IL-1) receptor blockade with the synthetic function of hepatocytes in a BAL device for the treatment of FHF. MATERIALS AND METHODS We injected an adenoviral vector encoding human IL-1 receptor antagonist (AdIL-1Ra) into the liver of D-galactosamine (GalN) intoxicated rats via the portal vein. We also transfected primary rat hepatocytes and reversibly immortalized human hepatocytes (TTNT cells) with AdIL-1Ra, and incorporated these transfected hepatocytes into our flat-plate BAL device and evaluated their efficacy in our GalN-induced FHF rat model after 10 h of extracorporeal perfusion. RESULTS Rats injected with AdIL-1Ra showed significant reductions in the plasma levels of hepatic enzymes. Primary rat hepatocytes transfected with AdIL-1Ra secreted IL-1Ra without losing their original synthetic function. Incorporating these cells into the BAL device and testing in a GalN-induced FHF rat model resulted in significant reductions in plasma IL-6 levels and significantly improved animal survival. Incorporating the AdIL-1Ra transfected TTNT cells in the BAL device and testing in the GalN-induced FHF rat model resulted in significantly reduced plasma IL-6 levels, and a trend toward improved survival was seen. CONCLUSION Hepatocytes producing IL-1Ra are a promising cell source for BAL devices in the treatment of GalN-induced FHF.
Collapse
Affiliation(s)
- Masahiro Shinoda
- Center for Engineering in Medicine and Department of Surgery, Massachusetts General Hospital, Shriners Hospitals for Children, and Harvard Medical School, Boston, Massachusetts
| | - Arno W. Tilles
- Center for Engineering in Medicine and Department of Surgery, Massachusetts General Hospital, Shriners Hospitals for Children, and Harvard Medical School, Boston, Massachusetts
| | - Naoya Kobayashi
- Department of Surgery, Okayama University Graduate School of Medicine and Dentistry, Shikata-cho, Okayama, Japan
| | - Go Wakabayashi
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | | | - Toshinori Totsugawa
- Department of Surgery, Okayama University Graduate School of Medicine and Dentistry, Shikata-cho, Okayama, Japan
| | - Hirohisa Harada
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Hideaki Obara
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Kazuhiro Suganuma
- Center for Engineering in Medicine and Department of Surgery, Massachusetts General Hospital, Shriners Hospitals for Children, and Harvard Medical School, Boston, Massachusetts
| | - François Berthiaume
- Center for Engineering in Medicine and Department of Surgery, Massachusetts General Hospital, Shriners Hospitals for Children, and Harvard Medical School, Boston, Massachusetts
| | - Motohide Shimazu
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Nobuyoshi Shimizu
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
| | - Noriaki Tanaka
- Department of Surgery, Okayama University Graduate School of Medicine and Dentistry, Shikata-cho, Okayama, Japan
| | - Masaki Kitajima
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Ronald G. Tompkins
- Center for Engineering in Medicine and Department of Surgery, Massachusetts General Hospital, Shriners Hospitals for Children, and Harvard Medical School, Boston, Massachusetts
| | - Mehmet Toner
- Center for Engineering in Medicine and Department of Surgery, Massachusetts General Hospital, Shriners Hospitals for Children, and Harvard Medical School, Boston, Massachusetts
| | - Martin L. Yarmush
- Center for Engineering in Medicine and Department of Surgery, Massachusetts General Hospital, Shriners Hospitals for Children, and Harvard Medical School, Boston, Massachusetts
- To whom correspondence and reprint requests should be addressed at Shriners Hospitals for Children, 51 Blossom Street, Boston, MA 02114.
| |
Collapse
|
18
|
Shinoda M, Tilles AW, Wakabayashi G, Takayanagi A, Harada H, Obara H, Suganuma K, Berthiaume F, Shimazu M, Shimizu N, Kitajima M, Tompkins RG, Toner M, Yarmush ML. Treatment of fulminant hepatic failure in rats using a bioartificial liver device containing porcine hepatocytes producing interleukin-1 receptor antagonist. ACTA ACUST UNITED AC 2006; 12:1313-23. [PMID: 16771644 PMCID: PMC3202215 DOI: 10.1089/ten.2006.12.1313] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Fulminant hepatic failure (FHF) is a serious clinical condition that is associated with high mortality. There is evidence that FHF is an inflammatory disease, which is supported clinically by elevated serum levels of cytokines. In an effort to develop hepatocytes with additional functions for use in our bioartificial liver (BAL) device, we focused on interleukin-1 (IL-1) blockade as a therapeutic modality. Primary porcine hepatocytes were isolated from the livers of miniature swine and then transfected with an adenoviral vector encoding human interleukin-1 receptor antagonist (AdIL-1Ra). The transfected hepatocytes secreted human IL-1Ra. These transfected hepatocytes were incorporated into a flat-plate BAL device to evaluate their efficacy in treating D-galactosamine (GalN)- induced FHF in a rat model. After extracorporeal perfusion with the BAL device containing the transfected hepatocytes, there were significant reductions in the plasma levels of hepatic enzymes (aspartate aminotransferase and alanine aminotransferase) and cytokines (IL-1 and IL-6), indicating a beneficial effect. Animal survival was significantly improved in the treated group compared to the control group. These experiments demonstrate that combining inflammatory cytokine blockade with a functional BAL device may be an effective therapeutic option in the treatment of FHF.
Collapse
Affiliation(s)
- Masahiro Shinoda
- Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Hybrid extracorporeal liver support is an option to assist liver transplantation therapy. An overview on liver cell bioreactors is given and our own development is described. Furthermore, the prospects of the utilization of human liver cells from discarded transplantation organs due to steatosis, cirrhosis, or traumatic injury, and liver progenitor cells are discussed. Our Modular Extracorporeal Liver Support (MELS) concept proposes an integrative approach for the treatment of hepatic failure with appropriate extracorporeal therapy units, tailored to suit the actual clinical needs of each patient. The CellModule is a specific bioreactor (charged actually with primary human liver cells, harvested from human donor livers found to be unsuitable for transplantation). The DetoxModule enables albumin dialysis for the removal of albumin-bound toxins, reducing the biochemical burden of the liver cells and replacing the bile excretion of hepatocytes in the bioreactor. A Dialysis Module for continuous veno-venous hemofiltration can be added to the system if required in hepato-renal syndrome.
Collapse
Affiliation(s)
- Jörg C Gerlach
- Department of Surgery and Bioengineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA, USA.
| |
Collapse
|
20
|
Abstract
AIM To evaluate the functions of a new bioartificial liver (BAL) system in vitro and in vitro. METHODS The BAL system was configured by inoculating porcine hepatocyte spheroids into the cell circuit of a hollow fiber bioreactor. In the experiments of BAL in vitro, the levels of alanine aminotransferase (ALT), total bilirubin (TB), and albumin (ALB) in the circulating hepatocyte suspension and RPMI-1640 medium were determined during 6 h of circulation in the BAL device. In the experiments of BAL in vitro, acute liver failure (ALF) model in canine was induced by an end-side portocaval shunt combined with common bile duct ligation and transaction. Blood ALT, TB and ammonia levels of ALF in canines were determined before and after BAL treatment. RESULTS During 6 h of circulation in vitro, there was no significant change of ALT, whereas the TB and ALB levels gradually increased with time both in the hepatocyte suspension and in RPMI-1640 medium. In the BAL treatment group, blood ALT, TB and ammonia levels of ALF in canines decreased significantly. CONCLUSION The new BAL system has the ability to perform liver functions and can be used to treat ALF.
Collapse
Affiliation(s)
- Zhong Chen
- Department of General Surgery, Affiliated Hospital, Nantong University, Nantong 226001, Jiangsu Province, China.
| | | |
Collapse
|
21
|
Maguire T, Novik E, Schloss R, Yarmush M. Alginate-PLL microencapsulation: effect on the differentiation of embryonic stem cells into hepatocytes. Biotechnol Bioeng 2006; 93:581-91. [PMID: 16345081 DOI: 10.1002/bit.20748] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The emergence of hepatocyte based clinical and pharmaceutical technologies, has been limited by the absence of a stable hepatocyte cell source. Embryonic stem cells may represent a potential solution to this cell source limitation problem since they are highly proliferative, renewable, and pluripotent. Although many investigators have described techniques to effectively differentiate stem cells into a variety of mature cell lineages, their practicality is limited by: (1) low yields of fully differentiated cells, (2) absence of large scale processing considerations, and (3) ineffective downstream enrichment protocols. Thus, a differentiation platform that may be modified to induce and sustain differentiated cell function and scaled to increase differentiated cell yield would improve current stem cell differentiation strategies. Microencapsulation provides a vehicle for the discrete control of key cell culture parameters such as the diffusion of growth factors, metabolites, and wastes. In addition, both cell seeding density and bead composition may be manipulated. In order to assess the feasibility of directing stem cell differentiation via microenvironment regulation, we have developed a murine embryonic stem cell (ES) alginate poly-l-lysine microencapsulation hepatocyte differentiation system. Our results indicate that the alginate microenvironment maintains cell viability, is conducive to ES cell differentiation, and maintains differentiated cellular function. This system may ultimately assist in developing scalable stem cell differentiation strategies.
Collapse
Affiliation(s)
- Tim Maguire
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
22
|
Diekmann S, Bader A, Schmitmeier S. Present and Future Developments in Hepatic Tissue Engineering for Liver Support Systems : State of the art and future developments of hepatic cell culture techniques for the use in liver support systems. Cytotechnology 2006; 50:163-79. [PMID: 19003077 PMCID: PMC3476010 DOI: 10.1007/s10616-006-6336-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Accepted: 01/03/2006] [Indexed: 12/23/2022] Open
Abstract
The liver is the most important organ for the biotransformation of xenobiotics, and the failure to treat acute or acute-on-chronic liver failure causes high mortality rates in affected patients. Due to the lack of donor livers and the limited possibility of the clinical management there has been growing interest in the development of extracorporeal liver support systems as a bridge to liver transplantation or to support recovery during hepatic failure. Earlier attempts to provide liver support comprised non-biological therapies based on the use of conventional detoxification procedures, such as filtration and dialysis. These techniques, however, failed to meet the expected efficacy in terms of the overall survival rate due to the inadequate support of several essential liver-specific functions. For this reason, several bioartificial liver support systems using isolated viable hepatocytes have been constructed to improve the outcome of treatment for patients with fulminant liver failure by delivering essential hepatic functions. However, controlled trials (phase I/II) with these systems have shown no significant survival benefits despite the systems' contribution to improvements in clinical and biochemical parameters. For the development of improved liver support systems, critical issues, such as the cell source and culture conditions for the long-term maintenance of liver-specific functions in vitro, are reviewed in this article. We also discuss aspects concerning the performance, biotolerance and logistics of the selected bioartificial liver support systems that have been or are currently being preclinically and clinically evaluated.
Collapse
Affiliation(s)
- Sonja Diekmann
- Center for Biotechnology and Biomedicine, Cell Techniques and Applied Stem Cell Biotechnology, University of Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Augustinus Bader
- Center for Biotechnology and Biomedicine, Cell Techniques and Applied Stem Cell Biotechnology, University of Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Stephanie Schmitmeier
- Center for Biotechnology and Biomedicine, Cell Techniques and Applied Stem Cell Biotechnology, University of Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany
| |
Collapse
|
23
|
Abstract
AIM: To evaluate the functions of a new bioartificial liver (BAL) system in vitro and in vitro.
MEHTODS: The BAL system was configurated by inoculating porcine hepatocyte spheroids into the cell circuit of a hollow fiber bioreactor. In the experiments of BAL in vitro, the levels of alanine aminotransferase (ALT), total bilirubin (TB), and albumin (ALB) in the circulating hepatocyte suspension and RPMI-1640 medium were determined during 6 h of circulation in the BAL device. In the experiments of BAL in vitro, acute liver failure (ALF) model in canine was induced by an end-side portocaval shunt combined with common bile duct ligation and transaction. Blood ALT, TB and ammonia levels of ALF in canines were determined before and after BAL treatment.
RESULTS: During 6 h of circulation in vitro, there was no significant change of ALT, whereas the TB and ALB levels gradually increased with time both in the hepatocyte suspension and in RPMI-1640 medium. In the BAL treatment group, blood ALT, TB and ammonia levels of ALF in canines decreased significantly.
CONCLUSION: The new BAL system has the ability to perform liver functions and can be used to treat ALF.
Collapse
|
24
|
Li LJ, Du WB, Zhang YM, Li J, Pan XP, Chen JJ, Cao HC, Chen Y, Chen YM. Evaluation of a bioartificial liver based on a nonwoven fabric bioreactor with porcine hepatocytes in pigs. J Hepatol 2006; 44:317-24. [PMID: 16356580 DOI: 10.1016/j.jhep.2005.08.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Revised: 07/26/2005] [Accepted: 08/12/2005] [Indexed: 12/15/2022]
Abstract
BACKGROUND/AIMS We developed a bioartificial liver (BAL) based on a direct hemoperfusion typed nonwoven fabric bioreactor containing porcine hepatocytes. In this study, the efficacy of our BAL was evaluated with a pig fulminant hepatic failure (FHF) model. METHODS FHF was induced with intravenous administration of D-galactosamine (1.3 g/kg) in each pig. Twelve hours post D-galactosamine injection, fifteen pigs were divided into: a BAL group (n = 5), in which pigs received the BAL treatment with 1.0 to 1.3 x 10(9) hepatocytes for 6 h, a sham BAL group (n = 5), in which pigs received the BAL treatment without hepatocytes, and a FHF group (n = 5), in which pigs only received intensive care. Parameters related to liver function and animal survival up to 168 h were determined. RESULTS In the BAL group, blood ammonia and plasma lactate levels were lower, and serum glucose levels and Fischer index were higher than those in the other two groups. Survival time of pigs in the BAL group was significantly prolonged as compared with the sham BAL and the FHF group. CONCLUSIONS The BAL based on a nonwoven fabric bioreactor containing porcine hepatocytes appears to be effective in the treatment of FHF in pigs.
Collapse
Affiliation(s)
- Lan Juan Li
- Key Laboratory of Infectious Diseases, Ministry of Public Health, Department of Infectious Diseases, The 1st Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Park JK, Lee DH. Bioartificial liver systems: current status and future perspective. J Biosci Bioeng 2005; 99:311-9. [PMID: 16233796 DOI: 10.1263/jbb.99.311] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Accepted: 02/12/2005] [Indexed: 12/30/2022]
Abstract
Because the liver is a multifunctional and a vital organ for survival, the management of acute liver failure requires the support of a huge number of metabolic functions performed by the organ. Many early detoxification-based artificial liver techniques failed to treat the patients owing to the inadequate support of the many essential hepatic functions. For this reason, a bioartificial liver (BAL) comprising of viable hepatocytes on a mechanical support is believed to more likely provide these essential functions than a purely mechanical device. From 1990, nine clinical studies of various BAL systems have been reported, most of which utilize a hollow fiber technology, and a much larger number of various BAL systems have been suggested to show an enhanced performance. Safety issues such as immunological reactions, zoonosis and tumorgenicity have been successfully addressed for regulatory approval, but a recent report from a large-scale, randomized, and controlled phase III trial of a leading BAL system (HepatAssist) failed to meet our expectation of efficacy in terms of the overall survival rate. In this paper, we review the current BAL systems actively studied and discuss critical issues such as the hepatocyte bioreactor configuration and the hepatocyte source. On the basis of the insights gained from previously developed BAL systems and the rapid progress in stem cell technology, the short-term and long-term future perspectives of BAL systems are suggested.
Collapse
Affiliation(s)
- Jung-Keug Park
- Department of Chemical and Biochemical Engineering, Dongguk University, 3-26 Pil-dong, Choong-gu, Seoul 100-715, Korea.
| | | |
Collapse
|
26
|
Clayton RF, Rinaldi A, Kandyba EE, Edward M, Willberg C, Klenerman P, Patel AH. Liver cell lines for the study of hepatocyte functions and immunological response. Liver Int 2005; 25:389-402. [PMID: 15780065 DOI: 10.1111/j.1478-3231.2005.01017.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
BACKGROUND Liver cell lines closely resembling primary hepatocyte are essential for research on hepatitis viruses and hepatocyte function. Currently used cell lines are derived from hepatic tumours and have altered gene expression. AIMS The generation and characterisation of novel human hepatocyte lines (HHLs) derived from healthy human liver, retaining the primary hepatocyte phenotype. RESULTS Primary hepatocytes were immortalised with Moloney's mouse leukaemia virus expressing E6 and E7 proteins of human papillomavirus, and cultures propagated long-term. All HHLs contained markers of hepatocyte and biliary phenotype (cytokeratins 7, 8, 18 and 19), Cytochrome P450 and albumin. The HHLs did not express high levels of p53 or alpha-fetoprotein. When grown in a collagen sandwich culture, or at the air-liquid interface, HHLs were maintained as monolayer whereas Huh-7 and HepG2 formed thick layers. All HHLs showed increased capacity to bind recombinant hepatitis C virus-like particles in comparison with Huh-7 and HepG2. We also demonstrate that HHLs contained active gap junctions, and that the cells respond to stimulation with IFN-alpha by upregulation of major histocompatibility complex (MHC)-I and -II. CONCLUSIONS These HHLs retain primary hepatocyte phenotype and should be useful for investigating mechanisms of entry and replication of hepatotropic viruses, and should also be valuable in the study of hepatocyte biology and pathology.
Collapse
|
27
|
Lai PH, Sielaff TD, Hu WS. Sustaining a Bioartificial Liver under Hypothermic Conditions. ACTA ACUST UNITED AC 2005; 11:427-37. [PMID: 15869421 DOI: 10.1089/ten.2005.11.427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Bioartificial liver (BAL) devices employing xenogeneic hepatocytes are being developed as a temporary support of liver failure. For clinical applications, transporting such a device from the manufacturing site to the hospital is necessary. We investigated the effect of hypothermic treatment on the performance of the collagen-entrapment BAL device developed at the University of Minnesota. A number of chemical protectants were examined for their effectiveness in minimizing damage to hepatocytes. Preincubation with protectant (tauroursodeoxycholic acid, TUDCA) before hypothermic treatment improved posttreatment BAL performance. Oxygen consumption and albumin and urea synthesis all resumed at levels comparable to pretreatment levels. The method described will facilitate the application of BAL in the treatment of liver failure.
Collapse
Affiliation(s)
- Pamela H Lai
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, USA
| | | | | |
Collapse
|
28
|
Nakae H, Yonekawa C, Moon S, Tajimi K. The series-parallel circuit in the treatment of fulminant hepatitis. Ther Apher Dial 2004; 8:153-9. [PMID: 15255130 DOI: 10.1111/j.1526-0968.2003.00125.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We developed a series-parallel treatment method for combined plasma exchange (PE) and continuous hemodiafiltration (CHDF) therapy in fulminant hepatitis. We then compared total serum bilirubin, citrate, and cytokine levels obtained by the new methods to those obtained with treatment by the single and reverse-parallel PE methods. Ten adult patients with fulminant hepatitis consented to participate. Plasma exchange was conducted 25 times by the single method (PE only), 16 times by the reverse-parallel method, and 37 times by the series-parallel method. The percentage of total bilirubin removed was highest with the single method followed in order by that with the series-parallel and reverse-parallel methods; the differences were significant. The percentage increase in citrate level was highest with the single method, followed in order by that with the series-parallel and the reverse-parallel methods; these differences were also significant. There was no significant difference in serum interleukin (IL)-6 levels after PE, by the single or the reverse-parallel methods. However, the IL-6 level decreased significantly following PE by the series-parallel method. The serum IL-18 level decreased significantly following PE by each of the three methods. Thus, removal of excess bilirubin, citrate, and cytokines by the series-parallel method, a simple maneuver with excellent removal rates, was considered effective.
Collapse
Affiliation(s)
- Hajime Nakae
- Department of Integrated Medicine, Division of Emergency and Critical Care Medicine, Akita University School of Medicine, Akita, Japan.
| | | | | | | |
Collapse
|
29
|
N/A. N/A. Shijie Huaren Xiaohua Zazhi 2004; 12:2156-2158. [DOI: 10.11569/wcjd.v12.i9.2156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
30
|
Sugimachi K, Sosef MN, Baust JM, Fowler A, Tompkins RG, Toner M. Long-term function of cryopreserved rat hepatocytes in a coculture system. Cell Transplant 2004; 13:187-95. [PMID: 15129765 DOI: 10.3727/000000004773301799] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The goal of this study was to investigate postpreservation long-term function of cryopreserved primary rat hepatocytes using the hepatocyte/3T3-J2 fibroblast coculture system. The long-term function of thawed hepatocytes cocultured with fibroblasts was evaluated and compared with hepatocytes cultured without fibroblasts. Fresh isolated primary rat hepatocytes were frozen at a controlled rate (-1 degrees C/min) up to -80 degrees C, and then stored in liquid nitrogen for up to 90 days. Thawed hepatocytes were thereafter cocultured with 3T3-J2 murine fibroblasts and cocultivation was monitored for 14 days. The viability of fresh isolated hepatocytes was 91.4%, and that of cryopreserved hepatocytes was 82.1%. Cellular morphology and polarity, which were determined by the localization of actin filaments and connexin-32, were successfully maintained in cryopreserved hepatocytes following cryopreservation. Albumin and urea synthesis reached the maximum level and became stable after day 7 in coculture in both fresh and cryopreserved hepatocytes. Urea synthesis of cryopreserved hepatocytes was maintained 89.0% of nonfrozen fresh control, and albumin production of cryopreserved hepatocytes was 63.7% of control in coculture. Cytochrome P450 activity, which was measured by deethylation of ethoxyresorufin, was also maintained in cryopreserved hepatocytes at 88.6% of nonfrozen fresh control in coculture. The retention of synthetic and detoxification activities was verified to be well preserved during extended low-temperature storage (90 days). Both fresh control and cryopreserved hepatocytes cultured without fibroblast did not retain their synthetic and detoxification functions in long-term culture. These data illustrate that, through the utilization of our cryopreservation procedure, primary hepatocyte function was successfully maintained when placed into coculture configuration following thawing.
Collapse
Affiliation(s)
- Keishi Sugimachi
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | |
Collapse
|