1
|
Diana V, Ottolina A, Botti F, Fumagalli E, Calcagno E, De Paola M, Cagnotto A, Invernici G, Parati E, Curti D, Mennini T. Neural precursor-derived astrocytes of wobbler mice induce apoptotic death of motor neurons through reduced glutamate uptake. Exp Neurol 2010; 225:163-72. [DOI: 10.1016/j.expneurol.2010.06.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 05/17/2010] [Accepted: 06/07/2010] [Indexed: 11/16/2022]
|
2
|
Mazzone G, Margaryan G, Kuzhandaivel A, Nasrabady S, Mladinic M, Nistri A. Kainate-induced delayed onset of excitotoxicity with functional loss unrelated to the extent of neuronal damage in the in vitro spinal cord. Neuroscience 2010; 168:451-62. [DOI: 10.1016/j.neuroscience.2010.03.055] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 03/19/2010] [Accepted: 03/26/2010] [Indexed: 11/29/2022]
|
3
|
Bilsland LG, Nirmalananthan N, Yip J, Greensmith L, Duchen MR. Expression of mutant SOD1 in astrocytes induces functional deficits in motoneuron mitochondria. J Neurochem 2008; 107:1271-83. [PMID: 18808448 DOI: 10.1111/j.1471-4159.2008.05699.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by motoneuron degeneration resulting in paralysis and eventual death. ALS is regarded as a motoneuron-specific disorder but increasing evidence indicates non-neuronal cells play a significant role in disease pathogenesis. Although the precise aetiology of ALS remains unclear, mutations in the superoxide dismutase (SOD1) gene are known to account for approximately 20% of familial ALS. We examined the influence of SOD1(G93A) expression in astrocytes on mitochondrial homeostasis in motoneurons in a primary astrocyte : motoneuron co-culture model. SOD1(G93A) expression in astrocytes induced changes in mitochondrial function of both SOD1(G93A) and wild-type motoneurons. In the presence of SOD1(G93A) astrocytes, mitochondrial redox state of both wild-type and SOD1(G93A) motoneurons was more reduced and mitochondrial membrane potential decreased. While intra-mitochondrial calcium levels [Ca(2+)](m) were elevated in SOD1(G93A) motoneurons, changes in mitochondrial function did not correlate with [Ca(2+)](m). Thus, expression of SOD1(G93A) in astrocytes directly alters mitochondrial function even in embryonic motoneurons, irrespective of genotype. These early deficits in mitochondrial function induced by surrounding astrocytes may increase the vulnerability of motoneurons to other neurotoxic mechanisms involved in ALS pathogenesis.
Collapse
Affiliation(s)
- Lynsey G Bilsland
- Sobell Department of Movement Disorders and Motor Neuroscience, Institute of Neurology, Queen Square, London, UK
| | | | | | | | | |
Collapse
|
4
|
Morphological features and responses to AMPA receptor-mediated excitotoxicity of mouse motor neurons: comparison in purified, mixed anterior horn or motor neuron/glia cocultures. J Neurosci Methods 2008; 170:85-95. [DOI: 10.1016/j.jneumeth.2007.12.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Revised: 11/30/2007] [Accepted: 12/30/2007] [Indexed: 11/23/2022]
|
5
|
Mennini T, De Paola M, Bigini P, Mastrotto C, Fumagalli E, Barbera S, Mengozzi M, Viviani B, Corsini E, Marinovich M, Torup L, Van Beek J, Leist M, Brines M, Cerami A, Ghezzi P. Nonhematopoietic erythropoietin derivatives prevent motoneuron degeneration in vitro and in vivo. Mol Med 2007; 12:153-60. [PMID: 17088947 PMCID: PMC1626597 DOI: 10.2119/2006-00045.mennini] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Accepted: 07/13/2006] [Indexed: 12/11/2022] Open
Abstract
Chronic treatment with asialo erythropoietin (ASIALO-EPO) or carbamylated erythropoietin (CEPO) improved motor behavior and reduced motoneuron loss and astrocyte and microglia activation in the cervical spinal cord of wobbler mice, an animal model of amyotrophic lateral sclerosis, but had no effect on hematocrit values. ASIALO-EPO and CEPO, like the parent compound EPO, protected primary motoneuron cultures from kainate-induced death in vitro. Both EPO receptor and the common CD131 beta chain were expressed in cultured motoneurons and in the anterior horn of wobbler mice spinal cord. Our results strongly support a role for the common beta chain CD131 in the protective effect of EPO derivatives on motoneuron degeneration. Thus CEPO, which does not bind to the classical homodimeric EPO receptor and is devoid of hematopoietic activity, could be effective in chronic treatment aimed at reducing motoneuron degeneration.
Collapse
Affiliation(s)
- Tiziana Mennini
- Department of Molecular Biochemistry and Pharmacology, “Mario Negri” Institute for Pharmacological Research, Milan, Italy
- Address correspondence and reprint requests to Tiziana Mennini, Mario Negri Institute for Pharmacological Research, Via Eritrea 62, 20157 Milan, Italy. Phone: +390239014402; fax: +39023546277; e-mail:
| | - Massimiliano De Paola
- Department of Molecular Biochemistry and Pharmacology, “Mario Negri” Institute for Pharmacological Research, Milan, Italy
| | - Paolo Bigini
- Department of Molecular Biochemistry and Pharmacology, “Mario Negri” Institute for Pharmacological Research, Milan, Italy
| | - Cristina Mastrotto
- Department of Molecular Biochemistry and Pharmacology, “Mario Negri” Institute for Pharmacological Research, Milan, Italy
| | - Elena Fumagalli
- Department of Molecular Biochemistry and Pharmacology, “Mario Negri” Institute for Pharmacological Research, Milan, Italy
| | - Sara Barbera
- Department of Molecular Biochemistry and Pharmacology, “Mario Negri” Institute for Pharmacological Research, Milan, Italy
| | - Manuela Mengozzi
- Department of Molecular Biochemistry and Pharmacology, “Mario Negri” Institute for Pharmacological Research, Milan, Italy
| | - Barbara Viviani
- Laboratory of Toxicology and Centre of Excellence of Neurodegenerative Diseases, Department of Pharmacological Sciences, University of Milan, Italy
| | - Emanuela Corsini
- Laboratory of Toxicology and Centre of Excellence of Neurodegenerative Diseases, Department of Pharmacological Sciences, University of Milan, Italy
| | - Marina Marinovich
- Laboratory of Toxicology and Centre of Excellence of Neurodegenerative Diseases, Department of Pharmacological Sciences, University of Milan, Italy
| | - Lars Torup
- Department of Neuropharmacology, H. Lundbeck A/S, Valby-Copenhagen, Denmark
| | - Johan Van Beek
- Department of Disease Biology, H. Lundbeck A/S, Valby-Copenhagen, Denmark
| | - Marcel Leist
- Faculty of Biology, University of Konstanz, Germany
| | | | | | - Pietro Ghezzi
- Department of Molecular Biochemistry and Pharmacology, “Mario Negri” Institute for Pharmacological Research, Milan, Italy
- The Kenneth S. Warren Institute, Kitchawan, NY, USA
| |
Collapse
|
6
|
Elger B, Schneider M, Winter E, Carvelli L, Bonomi M, Fracasso C, Guiso G, Colovic M, Caccia S, Mennini T. Optimized synthesis of AMPA receptor antagonist ZK 187638 and neurobehavioral activity in a mouse model of neuronal ceroid lipofuscinosis. ChemMedChem 2007; 1:1142-8. [PMID: 16972289 DOI: 10.1002/cmdc.200600144] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Previous structure-activity relationship studies in the search for a potent, noncompetitive alpha-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) receptor antagonist led to 2,3-dimethyl-6-phenyl-12H-[1,3]dioxolo[4,5-h]imidazo[1,2-c][2,3]benzodiazepine (ZK 187638). However, the first synthesis had some drawbacks regarding reagents, processes, and overall yield, which furthermore decreased when the synthesis was scaled up. Therefore, we now report a new synthetic route for this compound which requires fewer steps and is suited for large-scale production. This compound significantly relieved the symptoms of neuromuscular deficit in mnd mice, a model of neuronal ceroid lipofuscinosis with motor neuron dysfunction. After oral administration, the concentrations of the compound in the brain and spinal cord were about threefold higher than those in the plasma. In summary, this novel AMPA antagonist is accessible through an optimized synthetic route, has good neurobehavioral activity, oral bioavailability, and favorable brain penetration. This opens new possibilities for the treatment of devastating neurological diseases that are mediated by the AMPA receptor.
Collapse
Affiliation(s)
- Bernd Elger
- Schering AG, Muellerstrasse 178, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
De Paola M, Buanne P, Biordi L, Bertini R, Ghezzi P, Mennini T. Chemokine MIP-2/CXCL2, acting on CXCR2, induces motor neuron death in primary cultures. Neuroimmunomodulation 2007; 14:310-6. [PMID: 18391506 DOI: 10.1159/000123834] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Accepted: 02/08/2008] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Chemokines are implicated in many diseases of the central nervous system (CNS). Although their primary role is to induce inflammation through the recruitment of leukocytes by their chemotactic activity, they may also have direct effects on neuronal cells. We evaluated the expression of CXCR1 and CXCR2 and investigated the effect of CXCR2 activation by the agonist MIP-2 (CXCL2) on primary cultured motor neurons. To specifically assess the role of CXCR2 in the neurotoxicity induced by MIP-2, we used the CXCR1/2 inhibitor reparixin and studied the effect of the chemokine on motor neuron cultures from CXCR2-deficient mice. METHODS Primary motor neurons prepared from rat or mouse embryos were treated with MIP-2 and reparixin. Motor neuron viability and receptor expression were assessed by immunocytochemical techniques. RESULTS Rat primary motor neurons expressed CXCR2 receptors and recombinant rat MIP-2 induced dose-dependent neurotoxicity. This neurotoxicity was counteracted by reparixin, a specific CXCR1/2 inhibitor, and was not observed in motor neurons from CXCR2-deficient mice. CONCLUSIONS CXCR2 activation might directly contribute to motor neuron degeneration. Thus, chemokines acting on CXCR2, including IL-8, may have direct pathogenic effects in CNS diseases, independent of the induction of leukocyte migration.
Collapse
|
8
|
Kalinin S, Polak PE, Madrigal JLM, Gavrilyuk V, Sharp A, Chauhan N, Marien M, Colpaert F, Feinstein DL. Beta-amyloid-dependent expression of NOS2 in neurons: prevention by an alpha2-adrenergic antagonist. Antioxid Redox Signal 2006; 8:873-83. [PMID: 16771677 DOI: 10.1089/ars.2006.8.873] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The neurotransmitter noradrenaline (NA) exerts important antiinflammatory effects on glial cells including suppression of the inducible form of nitric oxide synthase (NOS2). The authors examined the consequences of manipulating NA in vivo by treating adult rats with the neurotoxin DSP4, which selectively lesions noradrenergic neurons of the locus ceruleus (LC), and reduces cortical NA levels. Following LC lesion, intracortical injection of aggregated amyloid beta 1-42 (Abeta1-42) caused appearance of NOS2 within neurons, and increased neuronal damage assessed by staining for nonphosphorylated neurofilament proteins with antibody SMI-32. Co-treatment with a selective alpha2-adrenergic antagonist reduced neuronal NOS2 staining as well as SMI-32 staining. Neuronal damage was dependent on NOS2 expression since injection of Abeta1-42 into DSP4-treated NOS2-deficient mice did not result in neuronal damage. These results demonstrate that decrease of NA levels in vivo can exacerbate inflammatory responses and neuronal damage due to inflammatory stimuli such as Abeta. These findings suggest that alpha2-adrenergic antagonists could provide therapeutic benefit in neurological diseases such as AD or PD where LC loss is known to occur.
Collapse
Affiliation(s)
- Sergey Kalinin
- Department of Anesthesiology, University of Illinois, Chicago, 60612, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
The immune system has a complex and dynamic relationship with the nervous system, both in health and disease. The immune system surveys the central and peripheral nervous systems, becoming activated in response to foreign substances, infectious particles or neoplasms. Conversely, the nervous system modulates immune system function both through the neuroendocrine axis and through vagus nerve efferents. In disease states, this dynamic relationship is perturbed, resulting in neuropsychiatric diseases. In this manuscript, we will summarize fundamental principles of the immune system and its interaction with the nervous system. We will describe the critical components of the adaptive and innate branches of the immune system and will describe important effectors and signalling pathways in each. By understanding the principles of the immune system and how these principles relate to nervous system function, the reader will be prepared to interpret subsequent manuscripts in this issue.
Collapse
Affiliation(s)
- Douglas Kerr
- Department of Neurology, Johns Hopkins Hospital, 600 N. Wolfe St, Pathology 627C, Baltimore MD 21287, USA.
| | | | | | | |
Collapse
|
10
|
Palmer CL, Cotton L, Henley JM. The molecular pharmacology and cell biology of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. Pharmacol Rev 2005; 57:253-77. [PMID: 15914469 PMCID: PMC3314513 DOI: 10.1124/pr.57.2.7] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors (AMPARs) are of fundamental importance in the brain. They are responsible for the majority of fast excitatory synaptic transmission, and their overactivation is potently excitotoxic. Recent findings have implicated AMPARs in synapse formation and stabilization, and regulation of functional AMPARs is the principal mechanism underlying synaptic plasticity. Changes in AMPAR activity have been described in the pathology of numerous diseases, such as Alzheimer's disease, stroke, and epilepsy. Unsurprisingly, the developmental and activity-dependent changes in the functional synaptic expression of these receptors are under tight cellular regulation. The molecular and cellular mechanisms that control the postsynaptic insertion, arrangement, and lifetime of surface-expressed AMPARs are the subject of intense and widespread investigation. For example, there has been an explosion of information about proteins that interact with AMPAR subunits, and these interactors are beginning to provide real insight into the molecular and cellular mechanisms underlying the cell biology of AMPARs. As a result, there has been considerable progress in this field, and the aim of this review is to provide an account of the current state of knowledge.
Collapse
Affiliation(s)
- Claire L Palmer
- Medical Research Council Centre for Synaptic Plasticity, Department of Anatomy, School of Medical Sciences, Bristol University, Bristol, UK
| | | | | |
Collapse
|
11
|
Sargsyan SA, Monk PN, Shaw PJ. Microglia as potential contributors to motor neuron injury in amyotrophic lateral sclerosis. Glia 2005; 51:241-53. [PMID: 15846792 DOI: 10.1002/glia.20210] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The central nervous system (CNS) is equipped with a variety of cell types, all of which are assigned particular roles during the development, maintenance, function and repair of neural tissue. One glial cell type, microglia, deserves particular attention, as its role in the healthy or injured CNS is incompletely understood. Evidence exists for both regenerative and degenerative functions of these glial cells during neuronal injury. This review integrates the current knowledge of the role of microglia in an adult-onset neurodegenerative disease, amyotrophic lateral sclerosis (ALS), and pays particular attention to the possible mechanisms of initiation and propagation of neuronal damage during disease onset and progression. Microglial cell properties, behavior and detected inflammatory reactions during the course of the disease are described. The neuroinflammatory changes that occur in a mouse model of ALS are summarized. The understanding of microglial function in the healthy and injured CNS could offer better diagnostic as well as therapeutic approaches for prevention, retardation, or repair of neural tissue degeneration.
Collapse
Affiliation(s)
- Siranush A Sargsyan
- Academic Neurology Unit, Medical School, University of Sheffield, Sheffield, United Kingdom
| | | | | |
Collapse
|
12
|
Zhao W, Xie W, Le W, Beers DR, He Y, Henkel JS, Simpson EP, Yen AA, Xiao Q, Appel SH. Activated Microglia Initiate Motor Neuron Injury by a Nitric Oxide and Glutamate-Mediated Mechanism. J Neuropathol Exp Neurol 2004; 63:964-77. [PMID: 15453095 DOI: 10.1093/jnen/63.9.964] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recent studies suggest that motor neuron (MN) death may be non-cell autonomous, with cell injury mediated by interactions involving non-neuronal cells, such as microglia and astrocytes. To help define these interactions, we used primary MN cultures to investigate the effects of microglia activated by lipopolysaccharide or IgG immune complexes from patients with amyotrophic lateral sclerosis. Following activation, microglia induced MN injury, which was prevented by a microglial iNOS inhibitor as well as by catalase or glutathione. Glutamate was also required since inhibition of the MN AMPA/kainate receptor by CNQX prevented the toxic effects of activated microglia. Peroxynitrite and glutamate were synergistic in producing MN injury. Their toxic effects were also blocked by CNQX and prevented by calcium removal from the media. The addition of astrocytes to cocultures of MN and activated microglia prevented MN injury by removing glutamate from the media. The protective effects could be reversed by inhibiting astrocytic glutamate transport with dihydrokainic acid or pretreating astrocytes with H2O2. Astrocytic glutamate uptake was also decreased by activated microglia or by added peroxynitrite. These data suggest that free radicals released from activated microglia may initiate MN injury by increasing the susceptibility of the MN AMPA/kainate receptor to the toxic effects of glutamate.
Collapse
Affiliation(s)
- Weihua Zhao
- Department of Neurology, Baylor College of Medicine, One Baylor Plaza, NB 302, Houston, TX, 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Maekawa S, Al-Sarraj S, Kibble M, Landau S, Parnavelas J, Cotter D, Everall I, Leigh PN. Cortical selective vulnerability in motor neuron disease: a morphometric study. ACTA ACUST UNITED AC 2004; 127:1237-51. [PMID: 15130949 DOI: 10.1093/brain/awh132] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Neuroimaging and neuropsychological studies have revealed that the primary motor cortex (PMC) and the extramotor cortical areas are functionally abnormal in motor neuron disease (MND, amyotrophic lateral sclerosis), but the nature of the cortical lesions that underlie these changes is poorly understood. In particular, there have been few attempts to quantify neuronal loss in the PMC and in other cortical areas in MND. We used SMI-32, an antibody against an epitope on non-phosphorylated neurofilament heavy chain, to analyse the size and density of SMI-32-positive cortical pyramidal neurons in layer V of the PMC, the dorsolateral prefrontal cortex (DLPFC) and the supragenual anterior cingulate cortex (ACC) in 13 MND and eight control subjects. There was a statistically significant reduction in the density of SMI-32-immunoreactive (IR) pyramidal neurons within cortical layer V in the PMC, the DLPFC and the ACC in MND subjects compared with controls [t (19) = 2.91, P = 0.009; estimated reduction 25%; 95% CI = 8%, 40%]. In addition, we studied the density and size of interneurons immunoreactive for the calcium-binding proteins calbindin-D(28K) (CB), parvalbumin (PV) and calretinin (CR) in the same areas (PMC, DLPFC and ACC). Statistically significant differences in the densities of CB-IR neurons were observed within cortical layers V (P = 0.003) and VI (P = 0.001) in MND cases compared with controls. The densities of CR- and PV-IR neurons were not significantly different between MND and control cases, although there were trends towards reductions of CR-IR neuronal density within the same layers and of PV-IR neuronal density within cortical layer VI. Loss of pyramidal neurons and of GABAergic interneurons is more widespread than has been appreciated and is present in areas associated with neuroimaging and cognitive abnormalities in MND. These findings support the notion that MND should be considered a multisystem disorder.
Collapse
Affiliation(s)
- S Maekawa
- Department of Neurology, Institute of Psychiatry, De Crespigny Park, London SE5 8AF, UK.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Mennini T, Bigini P, Cagnotto A, Carvelli L, Di Nunno P, Fumagalli E, Tortarolo M, Buurman WA, Ghezzi P, Bendotti C. Glial activation and TNFR-I upregulation precedes motor dysfunction in the spinal cord of mnd mice. Cytokine 2004; 25:127-35. [PMID: 14698139 DOI: 10.1016/j.cyto.2003.10.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mice homozygous for the spontaneous motor neuron degeneration mutation (mnd) show at the age of 8 months a marked impairment of the motor function and accumulation of lipofuscin granules in the cytoplasm of almost all neurons of the central nervous system. We previously reported a significant increase in GFAP protein levels in the lumbar spinal cord homogenates by western blot analysis and upregulation of TNF, a proinflammatory cytokine, in the motor neurons of lumbar spinal cord of mnd mice, already in a presymptomatic stage (4 months of age). In the present study, using immunohistochemical analysis, we performed a time course in mnd mice (1, 4 and 9 months of age) evaluating the expression and the distribution of astroglial and microglial cells and the expression of both TNF receptors, TNFR-I and TNFR-II. We observed a marked increase in astroglial and microglial cells and in TNFR-I immunoreactivity already at the 4th month. Since motor neuron dysfunction occurs in mnd mice in the absence of evident loss of spinal motor neurons, the present results indicate that the activation of microglial cells and astrocytes is independent from neuronal degeneration. The role of TNF and TNFR-I on motor neurons is still to be demonstrated.
Collapse
MESH Headings
- Age Factors
- Animals
- Antigens, CD/analysis
- Antigens, CD/metabolism
- Astrocytes/chemistry
- Astrocytes/cytology
- Astrocytes/metabolism
- CD11b Antigen/analysis
- Gene Expression/genetics
- Glial Fibrillary Acidic Protein/analysis
- Glial Fibrillary Acidic Protein/genetics
- Immunohistochemistry
- In Situ Hybridization
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Neurologic Mutants
- Microglia/chemistry
- Microglia/cytology
- Motor Neuron Disease/etiology
- Motor Neuron Disease/physiopathology
- Motor Neurons/chemistry
- Neuroglia/chemistry
- Neuroglia/cytology
- Neuroglia/metabolism
- Plant Lectins/analysis
- Receptors, Tumor Necrosis Factor/analysis
- Receptors, Tumor Necrosis Factor/metabolism
- Receptors, Tumor Necrosis Factor, Type I
- Receptors, Tumor Necrosis Factor, Type II
- Spinal Cord/metabolism
- Spinal Cord/pathology
- Spinal Cord/physiopathology
- Up-Regulation/genetics
Collapse
Affiliation(s)
- Tiziana Mennini
- Department Molecular Biochemistry and Pharmacology, Mario Negri Institute for Pharmacological Research, Via Eritrea, 62, 20157, Milan, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Bigini P, Larini S, Pasquali C, Muzio V, Mennini T. Acetyl-L-carnitine shows neuroprotective and neurotrophic activity in primary culture of rat embryo motoneurons. Neurosci Lett 2002; 329:334-8. [PMID: 12183043 DOI: 10.1016/s0304-3940(02)00667-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We evaluated the role of acetyl-L-carnitine (ALCAR) in protecting primary motoneuron cultures exposed to excitotoxic agents or serum-brain derived neurotrophic factor (BDNF) deprived. To exclude that ALCAR works as a metabolic source, we compared its effects with those of L-carnitine (L-CAR), that seems to have no neurotrophic effect. A concentration of 10 mM ALCAR, but not L-CAR, significantly reduced the toxic effect of 50 microM N-methyl-D-aspartate (NMDA, % viability: NMDA 45.4+/-2.80, NMDA+ALCAR 90.8+/-11.8; P<0.01) and of 5 microM kainate in cultured motoneurons (% viability: kainate 40.66+/-10.73; kainate+ALCAR 63.80+/-13.88; P<0.05). The effect was due to a shift to the right of the dose-response curve for kainate (EC50 for kainate 5.99+/-1.012 microM; kainate+ALCAR 8.62+/-1.13 microM; P<0.05). ALCAR, but not L-CAR, significantly protected against BDNF and serum-deprivation reducing the apoptotic cell death (% viability respect to control: without BDNF/serum 61.8+/-13.3: without BDNF/serum+ALCAR 111.8+/-13.9; P<0.01). Immunocytochemistry showed an increase in choline acethyltransferase and tyrosine kinaseB receptors in motoneurons treated with ALCAR but not with L-CAR. These results suggest that ALCAR treatment improves the motoneurons activity, acting as a neurotrophic factor.
Collapse
Affiliation(s)
- P Bigini
- Laboratory for Receptor Pharmacology, Mario Negri Institute for Pharmacological Research, Via Eritrea, 62, 20157 Milan, Italy.
| | | | | | | | | |
Collapse
|