1
|
Sidky AM, Melo ARV, Kay TT, Raposo M, Lima M, Monckton DG. Age-dependent somatic expansion of the ATXN3 CAG repeat in the blood and buccal swab DNA of individuals with spinocerebellar ataxia type 3/Machado-Joseph disease. Hum Genet 2024; 143:1363-1378. [PMID: 39375222 PMCID: PMC11522074 DOI: 10.1007/s00439-024-02698-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/12/2024] [Indexed: 10/09/2024]
Abstract
Spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD) is caused by the expansion of a genetically unstable polyglutamine-encoding CAG repeat in ATXN3. Longer alleles are generally associated with earlier onset and frequent intergenerational expansions mediate the anticipation observed in this disorder. Somatic expansion of the repeat has also been implicated in disease onset and slowing the rate of somatic expansion has been proposed as a therapeutic strategy. Here, we utilised high-throughput ultra-deep MiSeq amplicon sequencing to precisely define the number and sequence of the ATXN3 repeat, the genotype of an adjacent single nucleotide variant and quantify somatic expansion in blood and buccal swab DNA of a cohort of individuals with SCA3 from the Azores islands (Portugal). We revealed systematic mis-sizing of the ATXN3 repeat and high levels of inaccuracy of the traditional fragment length analysis that have important implications for attempts to identify modifiers of clinical and molecular phenotypes. Quantification of somatic expansion in blood DNA and multivariate regression revealed the expected effects of age at sampling and CAG repeat length, although the effect of repeat length was surprisingly modest with much stronger associations with age. We also observed an association of the downstream rs12895357 single nucleotide variant with the rate of somatic expansion, and a higher level of somatic expansion in buccal swab DNA compared to blood. These data suggest that the ATXN3 locus in SCA3 patients in blood or buccal swab DNA might serve as a good biomarker for clinical trials testing suppressors of somatic expansion with peripheral exposure.
Collapse
Affiliation(s)
- Ahmed M Sidky
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
- Biochemistry Division, Chemistry Department, Faculty of Science, Minia University, Minia, 61519, Egypt
- Department of Neurology, University of Chicago, Chicago, IL, 60637, USA
- Present address: Surgery Brain Research Institute, J219, 5841 S. Maryland Avenue, Chicago, IL, 60637, USA
| | - Ana Rosa Vieira Melo
- Faculdade de Ciências e Tecnologia, Universidade dos Açores, Ponta Delgada, 9500-321, Portugal
- Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Teresa T Kay
- Serviço de Genética Clínica, Hospital de D. Estefânia, Lisboa, Portugal
| | - Mafalda Raposo
- Instituto de Biologia Molecular e Celular, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, 4200-135, Portugal
| | - Manuela Lima
- Faculdade de Ciências e Tecnologia, Universidade dos Açores, Ponta Delgada, 9500-321, Portugal
- Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Darren G Monckton
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
2
|
Marinina KS, Bezprozvanny IB, Egorova PA. A combination of chlorzoxazone and folic acid improves recognition memory, anxiety and depression in SCA3-84Q mice. Hum Mol Genet 2024; 33:1406-1419. [PMID: 38727562 PMCID: PMC11305683 DOI: 10.1093/hmg/ddae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/30/2024] [Indexed: 08/09/2024] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease, is reported to be the most common type of autosomal dominant cerebellar ataxia (ADCA). SCA3 patients suffer from a progressive decline in motor coordination and other disease-associated symptoms. Moreover, recent studies have reported that SCA3 patients also exhibit symptoms of cerebellar cognitive affective syndrome (CCAS). We previously observed signs of CCAS in mouse model of SCA3. Particularly, SCA3-84Q mice suffer from anxiety, recognition memory decline, and also exhibit signs of low mood and aversion to activity. Here we studied the effect of long-term injections of SK channels activator chlorzoxazone (CHZ) together and separately with the folic acid (FA) on the cerebellar Purkinje cell (PC) firing and histology, and also on the motor and cognitive functions as well as mood alterations in SCA3-84Q hemizygous transgenic mice. We realized that both CHZ and CHZ-FA combination had similar positive effect on pure cerebellum impairments including PC firing precision, PC histology, and motor performance in SCA3-84Q mice. However, only the CHZ-FA combination, but not CHZ, had significantly ameliorated the signs of anxiety and depression, and also noticeably improved recognition memory in SCA3-84Q mice. Our results suggest that the combination therapy for both ataxia and non-motor symptoms is required for the complex treatment of ADCA.
Collapse
Affiliation(s)
- Ksenia S Marinina
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, 29 Polytechnicheskaya str., St. Petersburg 195251, Russia
| | - Ilya B Bezprozvanny
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9040, United States
| | - Polina A Egorova
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, 29 Polytechnicheskaya str., St. Petersburg 195251, Russia
| |
Collapse
|
3
|
Marinina KS, Bezprozvanny IB, Egorova PA. Memory decline, anxiety and depression in the mouse model of spinocerebellar ataxia type 3. Hum Mol Genet 2024; 33:299-317. [PMID: 37862125 PMCID: PMC10840381 DOI: 10.1093/hmg/ddad179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/27/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3) is an autosomal dominant hereditary disorder, caused by an expansion of polyglutamine in the ataxin-3 protein. SCA3 symptoms include progressive motor decline caused by an atrophy of the cerebellum and brainstem. However, it was recently reported that SCA3 patients also suffer from the cerebellar cognitive affective syndrome. The majority of SCA3 patients exhibit cognitive decline and approximately half of them suffer from depression and anxiety. The necessity to find a combined therapy for both motor and cognitive deficits in a SCA3 mouse model is required for the development of SCA3 treatment. Here, we demonstrated that the SCA3-84Q transgenic mice exhibited anxiety over the novel brightly illuminated environment in the open field, novelty suppressed feeding, and light-dark place preference tests. Moreover, SCA3-84Q mice also suffered from a decline in recognition memory during the novel object recognition test. SCA3-84Q mice also demonstrated floating behavior during the Morris water maze that can be interpreted as a sign of low mood and aversion to activity, i.e. depressive-like state. SCA3-84Q mice also spent more time immobile during the forced swimming and tail suspension tests which is also evidence for depressive-like behavior. Therefore, the SCA3-84Q mouse model may be used as a model system to test the possible treatments for both ataxia and non-motor symptoms including depression, anxiety, and memory loss.
Collapse
Affiliation(s)
- Ksenia S Marinina
- Laboratory of Molecular Neurodegeneration, Insitute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 29 Polytechnicheskaya str., St. Petersburg 195251, Russia
| | - Ilya B Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Insitute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 29 Polytechnicheskaya str., St. Petersburg 195251, Russia
- Department of Physiology, ND 12.200AA, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9040, United States
| | - Polina A Egorova
- Laboratory of Molecular Neurodegeneration, Insitute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 29 Polytechnicheskaya str., St. Petersburg 195251, Russia
| |
Collapse
|
4
|
Establishment and characterization of human pluripotent stem cells-derived brain organoids to model cerebellar diseases. Sci Rep 2022; 12:12513. [PMID: 35869235 PMCID: PMC9307606 DOI: 10.1038/s41598-022-16369-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 07/08/2022] [Indexed: 11/09/2022] Open
Abstract
The establishment of robust human brain organoids to model cerebellar diseases is essential to study new therapeutic strategies for cerebellum-associated disorders. Machado-Joseph disease (MJD) is a cerebellar hereditary neurodegenerative disease, without therapeutic options able to prevent the disease progression. In the present work, control and MJD induced-pluripotent stem cells were used to establish human brain organoids. These organoids were characterized regarding brain development, cell type composition, and MJD-associated neuropathology markers, to evaluate their value for cerebellar diseases modeling. Our data indicate that the organoids recapitulated, to some extent, aspects of brain development, such as astroglia emerging after neurons and the presence of ventricular-like zones surrounded by glia and neurons that are found only in primate brains. Moreover, the brain organoids presented markers of neural progenitors proliferation, neuronal differentiation, inhibitory and excitatory synapses, and firing neurons. The established brain organoids also exhibited markers of cerebellar neurons progenitors and mature cerebellar neurons. Finally, MJD brain organoids showed higher ventricular-like zone numbers, an indication of lower maturation, and an increased number of ataxin-3-positive aggregates, compared with control organoids. Altogether, our data indicate that the established organoids recapitulate important characteristics of human brain development and exhibit cerebellar features, constituting a resourceful tool for testing therapeutic approaches for cerebellar diseases.
Collapse
|
5
|
Vasconcelos-Ferreira A, Carmo-Silva S, Codêsso JM, Silva P, Martinez ARM, França MC, Nóbrega C, Pereira de Almeida L. The autophagy-enhancing drug carbamazepine improves neuropathology and motor impairment in mouse models of Machado-Joseph disease. Neuropathol Appl Neurobiol 2021; 48:e12763. [PMID: 34432315 DOI: 10.1111/nan.12763] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 08/04/2021] [Indexed: 11/28/2022]
Abstract
AIMS Machado-Joseph disease (MJD), or spinocerebellar ataxia type 3 (SCA3), is the most common autosomal dominantly-inherited ataxia worldwide and is characterised by the accumulation of mutant ataxin-3 (mutATXN3) in different brain regions, leading to neurodegeneration. Currently, there are no available treatments able to block disease progression. In this study, we investigated whether carbamazepine (CBZ) would activate autophagy and mitigate MJD pathology. METHODS The autophagy-enhancing activity of CBZ and its effects on clearance of mutATXN3 were evaluated using in vitro and in vivo models of MJD. To investigate the optimal treatment regimen, a daily or intermittent CBZ administration was applied to MJD transgenic mice expressing a truncated human ATXN3 with 69 glutamine repeats. Motor behaviour tests and immunohistology was performed to access the alleviation of MJD-associated motor deficits and neuropathology. A retrospective study was conducted to evaluate the CBZ effect in MJD patients. RESULTS We found that CBZ promoted the activation of autophagy and the degradation of mutATXN3 in MJD models upon short or intermittent, but not daily prolonged, treatment regimens. CBZ up-regulated autophagy through activation of AMPK, which was dependent on the myo-inositol levels. In addition, intermittent CBZ treatment improved motor performance, as well as prevented neuropathology in MJD transgenic mice. However, in patients, no evident differences in SARA scale were found, which was not unexpected given the small number of patients included in the study. CONCLUSIONS Our data support the autophagy-enhancing activity of CBZ in the brain and suggest this pharmacological approach as a promising therapy for MJD and other polyglutamine disorders.
Collapse
Affiliation(s)
- Ana Vasconcelos-Ferreira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Sara Carmo-Silva
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - José Miguel Codêsso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Patrick Silva
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | | | | | - Clévio Nóbrega
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Luís Pereira de Almeida
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
6
|
Gonsior K, Kaucher GA, Pelz P, Schumann D, Gansel M, Kuhs S, Klockgether T, Forlani S, Durr A, Hauser S, Rattay TW, Synofzik M, Hengel H, Schöls L, Rieß OH, Hübener-Schmid J. PolyQ-expanded ataxin-3 protein levels in peripheral blood mononuclear cells correlate with clinical parameters in SCA3: a pilot study. J Neurol 2020; 268:1304-1315. [PMID: 33106888 PMCID: PMC7990753 DOI: 10.1007/s00415-020-10274-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022]
Abstract
In view of upcoming clinical trials, quantitative molecular markers accessible in peripheral blood are of critical importance as prognostic or pharmacodynamic markers in genetic neurodegenerative diseases such as Spinocerebellar Ataxia Type 3 (SCA3), in particular for signaling target engagement. In this pilot study, we focused on the quantification of ataxin-3, the protein altered in SCA3, in human peripheral blood mononuclear cells (PBMCs) acquired from preataxic and ataxic SCA3 mutation carriers as well as healthy controls, as a molecular marker directly related to SCA3 pathophysiology. We established two different highly sensitive TR-FRET-based immunoassays to measure the protein levels of either total full-length, non-expanded and expanded, ataxin-3 or specifically polyQ-expanded ataxin-3. In PBMCs, a clear discrimination between SCA3 mutation carrier and controls were seen measuring polyQ-expanded ataxin-3 protein level. Additionally, polyQ-expanded ataxin-3 protein levels correlated with disease progression and clinical severity as assessed by the Scale for the Assessment and Rating of Ataxia. Total full-length ataxin-3 protein levels were directly influenced by the expression levels of the polyQ-expanded ataxin-3 protein, but were not correlated with clinical parameters. Assessment of ataxin-3 levels in fibroblasts or induced pluripotent stem cells allowed to distinguish mutation carriers from controls, thus providing proof-of-principle validation of our PBMC findings across cell lines. Total full-length or polyQ-expanded ataxin-3 protein was not detectable by TR-FRET assays in other biofluids like plasma or cerebrospinal fluid, indicating the need for ultra-sensitive assays for these biofluids. Standardization studies revealed that tube systems, blood sampling, and PBMC preparation may influence ataxin-3 protein levels indicating a high demand for standardized protocols in biomarker studies. In conclusion, the polyQ-expanded ataxin-3 protein is a promising candidate as a molecular target engagement marker in SCA3 in future clinical trials, determinable even in—easily accessible—peripheral blood biomaterials. These results, however, require validation in a larger cohort and further standardization of modifying conditions.
Collapse
Affiliation(s)
- Kathrin Gonsior
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Calwerstraße 7, 72076, Tübingen, Germany.,Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Gabriele Anna Kaucher
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Calwerstraße 7, 72076, Tübingen, Germany.,Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Patrik Pelz
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Calwerstraße 7, 72076, Tübingen, Germany.,Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Dorothea Schumann
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Calwerstraße 7, 72076, Tübingen, Germany.,Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Melanie Gansel
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Calwerstraße 7, 72076, Tübingen, Germany.,Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Sandra Kuhs
- Department of Neurology, University of Bonn, Sigmund-Freud-Straße 25, 53127, Bonn, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Thomas Klockgether
- Department of Neurology, University of Bonn, Sigmund-Freud-Straße 25, 53127, Bonn, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Sylvie Forlani
- Institut du Cerveau-Paris Brain Institute (ICM), Sorbonne Université, AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, Paris, France
| | - Alexandra Durr
- Institut du Cerveau-Paris Brain Institute (ICM), Sorbonne Université, AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, Paris, France
| | - Stefan Hauser
- Center for Neurology, and Hertie-Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany.,German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Tim W Rattay
- Center for Neurology, and Hertie-Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany.,German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Matthis Synofzik
- Center for Neurology, and Hertie-Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany.,German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Holger Hengel
- Center for Neurology, and Hertie-Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany.,German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Ludger Schöls
- Center for Neurology, and Hertie-Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany.,German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Olaf H Rieß
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Calwerstraße 7, 72076, Tübingen, Germany.,Centre for Rare Diseases, University of Tübingen, Tübingen, Germany.,DFG NGS Competence Center Tübingen, Tübingen, Germany
| | - Jeannette Hübener-Schmid
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Calwerstraße 7, 72076, Tübingen, Germany. .,Centre for Rare Diseases, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
7
|
Proukakis C. Somatic mutations in neurodegeneration: An update. Neurobiol Dis 2020; 144:105021. [PMID: 32712267 DOI: 10.1016/j.nbd.2020.105021] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/12/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022] Open
Abstract
Mosaicism, the presence of genomic differences between cells due to post-zygotic somatic mutations, is widespread in the human body, including within the brain. A role for this in neurodegenerative diseases has long been hypothesised, and technical developments are now allowing the question to be addressed in detail. The rapidly accumulating evidence is discussed in this review, with a focus on recent developments. Somatic mutations of numerous types may occur, including single nucleotide variants (SNVs), copy number variants (CNVs), and retrotransposon insertions. They could act as initiators or risk factors, especially if they arise in development, although they could also result from the disease process, potentially contributing to progression. In common sporadic neurodegenerative disorders, relevant mutations have been reported in synucleinopathies, comprising somatic gains of SNCA in Parkinson's disease and multiple system atrophy, and in Alzheimer's disease, where a novel recombination mechanism leading to somatic variants of APP, as well as an excess of somatic SNVs affecting tau phosphorylation, have been reported. In Mendelian repeat expansion disorders, mosaicism due to somatic instability, first detected 25 years ago, has come to the forefront. Brain somatic SNVs occur in DNA repair disorders, and there is evidence for a role of several ALS genes in DNA repair. While numerous challenges, and need for further validation, remain, this new, or perhaps rediscovered, area of research has the potential to transform our understanding of neurodegeneration.
Collapse
Affiliation(s)
- Christos Proukakis
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK.
| |
Collapse
|
8
|
Martier R, Sogorb-Gonzalez M, Stricker-Shaver J, Hübener-Schmid J, Keskin S, Klima J, Toonen LJ, Juhas S, Juhasova J, Ellederova Z, Motlik J, Haas E, van Deventer S, Konstantinova P, Nguyen HP, Evers MM. Development of an AAV-Based MicroRNA Gene Therapy to Treat Machado-Joseph Disease. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 15:343-358. [PMID: 31828177 PMCID: PMC6889651 DOI: 10.1016/j.omtm.2019.10.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/22/2019] [Indexed: 01/06/2023]
Abstract
Spinocerebellar ataxia type 3 (SCA3), or Machado-Joseph disease (MJD), is a progressive neurodegenerative disorder caused by a CAG expansion in the ATXN3 gene. The expanded CAG repeat is translated into a prolonged polyglutamine repeat in the ataxin-3 protein and accumulates within inclusions, acquiring toxic properties, which results in degeneration of the cerebellum and brain stem. In the current study, a non-allele-specific ATXN3 silencing approach was investigated using artificial microRNAs engineered to target various regions of the ATXN3 gene (miATXN3). The miATXN3 candidates were screened in vitro based on their silencing efficacy on a luciferase (Luc) reporter co-expressing ATXN3. The three best miATXN3 candidates were further tested for target engagement and potential off-target activity in induced pluripotent stem cells (iPSCs) differentiated into frontal brain-like neurons and in a SCA3 knockin mouse model. Besides a strong reduction of ATXN3 mRNA and protein, small RNA sequencing revealed efficient guide strand processing without passenger strands being produced. We used different methods to predict alteration of off-target genes upon AAV5-miATXN3 treatment and found no evidence for unwanted effects. Furthermore, we demonstrated in a large animal model, the minipig, that intrathecal delivery of AAV5 can transduce the main areas affected in SCA3 patients. These results proved a strong basis to move forward to investigate distribution, efficacy, and safety of AAV5-miATXN3 in large animals.
Collapse
Affiliation(s)
- Raygene Martier
- Department of Research & Development, uniQure Biopharma B.V., Amsterdam, the Netherlands.,Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Marina Sogorb-Gonzalez
- Department of Research & Development, uniQure Biopharma B.V., Amsterdam, the Netherlands.,Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Janice Stricker-Shaver
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | | | - Sonay Keskin
- Department of Research & Development, uniQure Biopharma B.V., Amsterdam, the Netherlands
| | - Jiri Klima
- Institute of Animal Physiology and Genetics, Libechov, Czech Republic
| | - Lodewijk J Toonen
- Department of Research & Development, uniQure Biopharma B.V., Amsterdam, the Netherlands
| | - Stefan Juhas
- Institute of Animal Physiology and Genetics, Libechov, Czech Republic
| | - Jana Juhasova
- Institute of Animal Physiology and Genetics, Libechov, Czech Republic
| | - Zdenka Ellederova
- Institute of Animal Physiology and Genetics, Libechov, Czech Republic
| | - Jan Motlik
- Institute of Animal Physiology and Genetics, Libechov, Czech Republic
| | - Eva Haas
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Sander van Deventer
- Department of Research & Development, uniQure Biopharma B.V., Amsterdam, the Netherlands.,Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Pavlina Konstantinova
- Department of Research & Development, uniQure Biopharma B.V., Amsterdam, the Netherlands
| | - Huu Phuc Nguyen
- Department of Human Genetics, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | - Melvin M Evers
- Department of Research & Development, uniQure Biopharma B.V., Amsterdam, the Netherlands
| |
Collapse
|
9
|
Da Silva JD, Teixeira-Castro A, Maciel P. From Pathogenesis to Novel Therapeutics for Spinocerebellar Ataxia Type 3: Evading Potholes on the Way to Translation. Neurotherapeutics 2019; 16:1009-1031. [PMID: 31691128 PMCID: PMC6985322 DOI: 10.1007/s13311-019-00798-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease (MJD), is a neurodegenerative disorder caused by a polyglutamine expansion in the ATXN3 gene. In spite of the identification of a clear monogenic cause 25 years ago, the pathological process still puzzles researchers, impairing prospects for an effective therapy. Here, we propose the disruption of protein homeostasis as the hub of SCA3 pathogenesis, being the molecular mechanisms and cellular pathways that are deregulated in SCA3 downstream consequences of the misfolding and aggregation of ATXN3. Moreover, we attempt to provide a realistic perspective on how the translational/clinical research in SCA3 should evolve. This was based on molecular findings, clinical and epidemiological characteristics, studies of proposed treatments in other conditions, and how that information is essential for their (re-)application in SCA3. This review thus aims i) to critically evaluate the current state of research on SCA3, from fundamental to translational and clinical perspectives; ii) to bring up the current key questions that remain unanswered in this disorder; and iii) to provide a frame on how those answers should be pursued.
Collapse
Affiliation(s)
- Jorge Diogo Da Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Andreia Teixeira-Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Patrícia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
10
|
Banez-Coronel M, Ranum LPW. Repeat-associated non-AUG (RAN) translation: insights from pathology. J Transl Med 2019; 99:929-942. [PMID: 30918326 PMCID: PMC7219275 DOI: 10.1038/s41374-019-0241-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 01/29/2019] [Indexed: 12/14/2022] Open
Abstract
More than 40 different neurological diseases are caused by microsatellite repeat expansions. Since the discovery of repeat-associated non-AUG (RAN) translation by Zu et al. in 2011, nine expansion disorders have been identified as RAN-positive diseases. RAN proteins are translated from different types of nucleotide repeat expansions and can be produced from both sense and antisense transcripts. In some diseases, RAN proteins have been shown to accumulate in affected brain regions. Here we review the pathological and molecular aspects associated with RAN protein accumulation for each particular disorder, the correlation between disease pathology and the available in vivo models and the common aspects shared by some of the newly discovered RAN proteins.
Collapse
Affiliation(s)
- Monica Banez-Coronel
- Center for NeuroGenetics, University of Florida, Gainesville, FL, 32610, USA
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, 32610, USA
| | - Laura P W Ranum
- Center for NeuroGenetics, University of Florida, Gainesville, FL, 32610, USA.
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, 32610, USA.
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
- Genetics Institute, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
11
|
Matos CA, de Almeida LP, Nóbrega C. Machado-Joseph disease/spinocerebellar ataxia type 3: lessons from disease pathogenesis and clues into therapy. J Neurochem 2018; 148:8-28. [PMID: 29959858 DOI: 10.1111/jnc.14541] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/05/2018] [Accepted: 06/27/2018] [Indexed: 12/25/2022]
Abstract
Machado-Joseph disease (MJD), also known as spinocerebellar ataxia type 3 (SCA3), is an incurable disorder, widely regarded as the most common form of spinocerebellar ataxia in the world. MJD/SCA3 arises from mutation of the ATXN3 gene, but this simple monogenic cause contrasts with the complexity of the pathogenic mechanisms that are currently admitted to underlie neuronal dysfunction and death. The aberrantly expanded protein product - ataxin-3 - is known to aggregate and generate toxic species that disrupt several cell systems, including autophagy, proteostasis, transcription, mitochondrial function and signalling. Over the years, research into putative therapeutic approaches has often been devoted to the development of strategies that counteract disease at different stages of cellular pathogenesis. Silencing the pathogenic protein, blocking aggregation, inhibiting toxic proteolytic processing and counteracting dysfunctions of the cellular systems affected have yielded promising ameliorating results in studies with cellular and animal models. The current review analyses the available studies dedicated to the investigation of MJD/SCA3 pathogenesis and the exploration of possible therapeutic strategies, focusing primarily on gene therapy and pharmacological approaches rooted on the molecular and cellular mechanisms of disease.
Collapse
Affiliation(s)
- Carlos A Matos
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Luís Pereira de Almeida
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Clévio Nóbrega
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Department of Biomedical Sciences and Medicine, University of Algarve, Coimbra, Portugal.,Centre for Biomedical Research (CBMR), University of Algarve, Coimbra, Portugal.,Algarve Biomedical Center (ABC), University of Algarve, Faro, Portugal
| |
Collapse
|
12
|
Mendonça LS, Nóbrega C, Hirai H, Kaspar BK, Pereira de Almeida L. Transplantation of cerebellar neural stem cells improves motor coordination and neuropathology in Machado-Joseph disease mice. Brain 2014; 138:320-35. [DOI: 10.1093/brain/awu352] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
13
|
Overexpression of mutant ataxin-3 in mouse cerebellum induces ataxia and cerebellar neuropathology. THE CEREBELLUM 2014; 12:441-55. [PMID: 23242710 DOI: 10.1007/s12311-012-0432-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Machado-Joseph disease (MJD), also known as spinocerebellar ataxia type 3 (SCA3), is a fatal, dominant neurodegenerative disorder caused by the polyglutamine-expanded protein ataxin-3. Clinical manifestations include cerebellar ataxia and pyramidal signs culminating in severe neuronal degeneration. Currently, there is no therapy able to modify disease progression. In the present study, we aimed at investigating one of the most severely affected brain regions in the disorder--the cerebellum--and the behavioral defects associated with the neuropathology in this region. For this purpose, we injected lentiviral vectors encoding full-length human mutant ataxin-3 in the mouse cerebellum of 3-week-old C57/BL6 mice. We show that circumscribed expression of human mutant ataxin-3 in the cerebellum mediates within a short time frame--6 weeks, the development of a behavioral phenotype including reduced motor coordination, wide-based ataxic gait, and hyperactivity. Furthermore, the expression of mutant ataxin-3 resulted in the accumulation of intranuclear inclusions, neuropathological abnormalities, and neuronal death. These data show that lentiviral-based expression of mutant ataxin-3 in the mouse cerebellum induces localized neuropathology, which is sufficient to generate a behavioral ataxic phenotype. Moreover, this approach provides a physiologically relevant, cost-effective and time-effective animal model to gain further insights into the pathogenesis of MJD and for the evaluation of experimental therapeutics of MJD.
Collapse
|
14
|
Nóbrega C, Nascimento-Ferreira I, Onofre I, Albuquerque D, Hirai H, Déglon N, de Almeida LP. Silencing mutant ataxin-3 rescues motor deficits and neuropathology in Machado-Joseph disease transgenic mice. PLoS One 2013; 8:e52396. [PMID: 23349684 PMCID: PMC3551966 DOI: 10.1371/journal.pone.0052396] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 11/15/2012] [Indexed: 11/18/2022] Open
Abstract
Machado-Joseph disease (MJD) or spinocerebellar ataxia type 3 (SCA3) is an autosomal dominantly-inherited neurodegenerative disorder caused by the over-repetition of a CAG codon in the MJD1 gene. This expansion translates into a polyglutamine tract that confers a toxic gain-of-function to the mutant protein – ataxin-3, leading to neurodegeneration in specific brain regions, with particular severity in the cerebellum. No treatment able to modify the disease progression is available. However, gene silencing by RNA interference has shown promising results. Therefore, in this study we investigated whether lentiviral-mediated allele-specific silencing of the mutant ataxin-3 gene, after disease onset, would rescue the motor behavior deficits and neuropathological features in a severely impaired transgenic mouse model of MJD. For this purpose, we injected lentiviral vectors encoding allele-specific silencing-sequences (shAtx3) into the cerebellum of diseased transgenic mice expressing the targeted C-variant of mutant ataxin-3 present in 70% of MJD patients. This variation permits to discriminate between the wild-type and mutant forms, maintaining the normal function of the wild-type allele and silencing only the mutant form. Quantitative analysis of rotarod performance, footprint and activity patterns revealed significant and robust alleviation of gait, balance (average 3-fold increase of rotarod test time), locomotor and exploratory activity impairments in shAtx3-injected mice, as compared to control ones injected with shGFP. An important improvement of neuropathology was also observed, regarding the number of intranuclear inclusions, calbindin and DARPP-32 immunoreactivity, fluorojade B and Golgi staining and molecular and granular layers thickness. These data demonstrate for the first time the efficacy of gene silencing in blocking the MJD-associated motor-behavior and neuropathological abnormalities after the onset of the disease, supporting the use of this strategy for therapy of MJD.
Collapse
Affiliation(s)
- Clévio Nóbrega
- CNC - Center for Neurosciences & Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Isabel Nascimento-Ferreira
- CNC - Center for Neurosciences & Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Isabel Onofre
- CNC - Center for Neurosciences & Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - David Albuquerque
- Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Hirokazu Hirai
- Department of Neurophysiology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Nicole Déglon
- Lausanne University Hospital, Department of Clinical Neurosciences, Laboratory of Cellular and Molecular Neurotherapies, Lausanne, Switzerland
| | - Luís Pereira de Almeida
- CNC - Center for Neurosciences & Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- * E-mail:
| |
Collapse
|
15
|
Scherzed W, Brunt ER, Heinsen H, de Vos RA, Seidel K, Bürk K, Schöls L, Auburger G, Del Turco D, Deller T, Korf HW, den Dunnen WF, Rüb U. Pathoanatomy of cerebellar degeneration in spinocerebellar ataxia type 2 (SCA2) and type 3 (SCA3). THE CEREBELLUM 2012; 11:749-60. [PMID: 22198871 DOI: 10.1007/s12311-011-0340-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The cerebellum is one of the well-known targets of the pathological processes underlying spinocerebellar ataxia type 2 (SCA2) and type 3 (SCA3). Despite its pivotal role for the clinical pictures of these polyglutamine ataxias, no pathoanatomical studies of serial tissue sections through the cerebellum have been performed in SCA2 and SCA3 so far. Detailed pathoanatomical data are an important prerequisite for the identification of the initial events of the underlying disease processes of SCA2 and SCA3 and the reconstruction of its spread through the brain. In the present study, we performed a pathoanatomical investigation of serial thick tissue sections through the cerebellum of clinically diagnosed and genetically confirmed SCA2 and SCA3 patients. This study demonstrates that the cerebellar Purkinje cell layer and all four deep cerebellar nuclei consistently undergo considerable neuronal loss in SCA2 and SCA3. These cerebellar findings contribute substantially to the pathogenesis of clinical symptoms (i.e., dysarthria, intention tremor, oculomotor dysfunctions) of SCA2 and SCA3 patients and may facilitate the identification of the initial pathological alterations of the pathological processes of SCA2 and SCA3 and reconstruction of its spread through the brain.
Collapse
Affiliation(s)
- W Scherzed
- Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Goethe-University, Theodor-Stern-Kai 7, Frankfurt/Main, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Pikkarainen M, Hartikainen P, Soininen H, Alafuzoff I. Distribution and pattern of pathology in subjects with familial or sporadic late-onset cerebellar ataxia as assessed by p62/sequestosome immunohistochemistry. THE CEREBELLUM 2012; 10:720-31. [PMID: 21544590 DOI: 10.1007/s12311-011-0281-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We investigated whether ubiquitin-binding protein p62/sequestosome-1 could be utilized to evaluate the pathology seen in patients with a clinical diagnosis of progressive late-onset cerebellar ataxia (LOCA). p62-immunoreactive (IR) lesions were assessed by means of immunohistochemistry in the brains of six LOCA cases, one with the spinocerebellar ataxia type 1 mutation (SCA1), ages at death ranging from 46 to 56 years. All cases fulfilled the criteria of olivopontocerebellar atrophy (OPCA), i.e., displaying cell loss in the predilection brain areas. One case, genetics unknown, exhibited p62-IR neuronal intranuclear inclusions (NIs). Similar NIs were labeled with the 1C2 antibody that recognizes proteins containing large polyglutamine stretches. In this case, also fused in sarcoma-IR NIs were seen. In the remaining LOCA cases, including the case with the SCA1 mutation, different kinds of nuclear and cytoplasmic p62 and 1C2 labeling but no NIs were seen. The immunoreactivity and distribution of lesions while applying p62 and 1C2 immunohistochemistry varied in our six LOCA cases fulfilling the criteria of OPCA. In all cases except in the SCA1, diffuse nuclear p62 labeling was seen, not previously reported in SCA or other neurodegenerative disorders. Due to the variability noted here as well as the limited number of cases, no assessment of progression and distributional pattern of pathology could be conducted. Based on a literature search, it is apparent that there is a need for clinico-pathologic-genetical studies of LOCA, especially to obtain a deeper understanding of the regional distribution and progression of pathology.
Collapse
Affiliation(s)
- Maria Pikkarainen
- Department of Clinical Medicine, Unit of Neurology, University of Eastern Finland, Kuopio, Finland
| | | | | | | |
Collapse
|
17
|
Abstract
Machado-Joseph disease, also called spinocerebellar ataxia type 3 (MJD/SCA3), is a hereditary and neurodegenerative movement disorder caused by ataxin-3 with a pathological polyglutamine stretch (mutant ataxin-3). Seven transgenic mouse models expressing full-length human mutant ataxin-3 throughout the brain have been generated and are compared in this review. They vary in the corresponding transgenic DNA constructs with differences that include the encoded human ataxin-3 isoform(s), number of polyglutamine(s), and the promoter driving transgene expression. The behaviors/signs evaluated in most models are body weight, balance/coordination, locomotor activity, gait, limb position, and age at death. The pathology analyzed includes presence of neuronal intranuclear inclusions, and qualitative evidence of neurodegeneration. On the basis of striking similarities in age-range of detection and number of behavior/sign abnormalities and pathology, all but 1 mouse model could be readily sorted into groups with high, intermediate, and low severity of phenotype. Stereological analysis of neurodegeneration was performed in the same brain regions in 2 mouse models; the corresponding results are consistent with the classification of the mouse models.
Collapse
Affiliation(s)
- Veronica F Colomer Gould
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Departamento de Fisiología, Biofísica y Neurociencias, 07360 México DF, México.
| |
Collapse
|
18
|
Abstract
Machado-Joseph disease (MJD), also known as spinocerebellar ataxia type 3 (SCA3), may be the most common dominantly inherited ataxia in the world. Here I will review historical, clinical, neuropathological, genetic, and pathogenic features of MJD, and finish with a brief discussion of present, and possible future, treatment for this currently incurable disorder. Like many other dominantly inherited ataxias, MJD/SCA3 shows remarkable clinical heterogeneity, reflecting the underlying genetic defect: an unstable CAG trinucleotide repeat that varies in size among affected persons. This pathogenic repeat in MJD/SCA3 encodes an expanded tract of the amino acid glutamine in the disease protein, which is known as ataxin-3. MJD/SCA3 is one of nine identified polyglutamine neurodegenerative diseases which share features of pathogenesis centered on protein misfolding and accumulation. The specific properties of MJD/SCA3 and its disease protein are discussed in light of what is known about the entire class of polyglutamine diseases.
Collapse
Affiliation(s)
- Henry Paulson
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA.
| |
Collapse
|
19
|
Early changes in cerebellar physiology accompany motor dysfunction in the polyglutamine disease spinocerebellar ataxia type 3. J Neurosci 2011; 31:13002-14. [PMID: 21900579 DOI: 10.1523/jneurosci.2789-11.2011] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The relationship between cerebellar dysfunction, motor symptoms, and neuronal loss in the inherited ataxias, including the polyglutamine disease spinocerebellar ataxia type 3 (SCA3), remains poorly understood. We demonstrate that before neurodegeneration, Purkinje neurons in a mouse model of SCA3 exhibit increased intrinsic excitability resulting in depolarization block and the loss of the ability to sustain spontaneous repetitive firing. These alterations in intrinsic firing are associated with increased inactivation of voltage-activated potassium currents. Administration of an activator of calcium-activated potassium channels, SKA-31, partially corrects abnormal Purkinje cell firing and improves motor function in SCA3 mice. Finally, expression of the disease protein, ataxin-3, in transfected cells increases the inactivation of Kv3.1 channels and shifts the activation of Kv1.2 channels to more depolarized potentials. Our results suggest that in SCA3, early Purkinje neuron dysfunction is associated with altered physiology of voltage-activated potassium channels. We further suggest that the observed changes in Purkinje neuron physiology contribute to disease pathogenesis, underlie at least some motor symptoms, and represent a promising therapeutic target in SCA3.
Collapse
|
20
|
Gispert S, Kurz A, Waibel S, Bauer P, Liepelt I, Geisen C, Gitler AD, Becker T, Weber M, Berg D, Andersen PM, Krüger R, Riess O, Ludolph AC, Auburger G. The modulation of Amyotrophic Lateral Sclerosis risk by ataxin-2 intermediate polyglutamine expansions is a specific effect. Neurobiol Dis 2011; 45:356-61. [PMID: 21889984 DOI: 10.1016/j.nbd.2011.08.021] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 08/10/2011] [Accepted: 08/18/2011] [Indexed: 12/13/2022] Open
Abstract
Full expansions of the polyglutamine domain (polyQ≥34) within the polysome-associated protein ataxin-2 (ATXN2) are the cause of a multi-system neurodegenerative disorder, which usually presents as a Spino-Cerebellar Ataxia and is therefore known as SCA2, but may rarely manifest as Levodopa-responsive Parkinson syndrome or as motor neuron disease. Intermediate expansions (27≤polyQ≤33) were reported to modify the risk of Amyotrophic Lateral Sclerosis (ALS). We have now tested the reproducibility and the specificity of this observation. In 559 independent ALS patients from Central Europe, the association of ATXN2 expansions (30≤polyQ≤35) with ALS was highly significant. The study of 1490 patients with Parkinson's disease (PD) showed an enrichment of ATXN2 alleles 27/28 in a subgroup with familial cases, but the overall risk of sporadic PD was unchanged. No association was found between polyQ expansions in Ataxin-3 (ATXN3) and ALS risk. These data indicate a specific interaction between ATXN2 expansions and the causes of ALS, possibly through altered RNA-processing as a common pathogenic factor.
Collapse
Affiliation(s)
- Suzana Gispert
- Experimental Neurology, Goethe University Medical School, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
p53 activation mediates polyglutamine-expanded ataxin-3 upregulation of Bax expression in cerebellar and pontine nuclei neurons. Neurochem Int 2011; 58:145-52. [DOI: 10.1016/j.neuint.2010.11.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 10/18/2010] [Accepted: 11/08/2010] [Indexed: 12/30/2022]
|
22
|
Schneider-Gold C, Timchenko LT. CCUG repeats reduce the rate of global protein synthesis in myotonic dystrophy type 2. Rev Neurosci 2010; 21:19-28. [PMID: 20458885 DOI: 10.1515/revneuro.2010.21.1.19] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Expansion of non-coding CTG and CCTG repeats in the 3' UTR of the myotonin protein kinase (DMPK) gene in Myotonic Dystrophy type 1 (DM1) and in the intron 1 of Zinc Finger Protein 9 (ZNF9) in Myotonic Dystrophy type 2 (DM2) represent typical non-coding mutations that cause the diseases mainly through transdominant effect on the RNA metabolism (splicing, translation and RNA stability). The commonly recognized RNA gain-of-function mechanism of DM1 and DM2 suggests that the mutant CUG and CCUG RNAs play a critical role in myotonic dystrophies (DMs) without a significant role of DMPK and ZNF9. Recent studies have shown that the molecular pathogenesis of DM2 also involves the protein product of the ZNF9 gene. CCUG repeats reduce ZNF9 protein, a translational regulator of the terminal oligo-pyrimidine tract (TOP) mRNAs encoding proteins of translational apparatus. Thus, in DM2 cells, expansion of CCUG repeats affects not only multiple RNAs, but also down-regulates ZNF9 which in turn reduces translation of the TOP-containing mRNAs and diminishes the rate of global protein synthesis. In this review, we discuss the role of expansion of CCUG repeats in the reduction of ZNF9-mediated regulation of the rate of protein synthesis in DM2 and the consequences of this reduction in the multi-systemic phenotype of DM2.
Collapse
Affiliation(s)
- Christiane Schneider-Gold
- Department of Neurology, St. Josef Hospital, Ruhr-University of Bochum, Gudrunstr. 56, 44791 Bochum, Germany
| | | |
Collapse
|
23
|
Boy J, Schmidt T, Schumann U, Grasshoff U, Unser S, Holzmann C, Schmitt I, Karl T, Laccone F, Wolburg H, Ibrahim S, Riess O. A transgenic mouse model of spinocerebellar ataxia type 3 resembling late disease onset and gender-specific instability of CAG repeats. Neurobiol Dis 2009; 37:284-93. [PMID: 19699305 DOI: 10.1016/j.nbd.2009.08.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 07/31/2009] [Accepted: 08/10/2009] [Indexed: 10/20/2022] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3), or Machado-Joseph disease (MJD), is caused by the expansion of a polyglutamine repeat in the ataxin-3 protein. We generated a mouse model of SCA3 expressing ataxin-3 with 148 CAG repeats under the control of the huntingtin promoter, resulting in ubiquitous expression throughout the whole brain. The model resembles many features of the disease in humans, including a late onset of symptoms and CAG repeat instability in transmission to offspring. We observed a biphasic progression of the disease, with hyperactivity during the first months and decline of motor coordination after about 1 year of age; however, intranuclear aggregates were not visible at this age. Few and small intranuclear aggregates appeared first at the age of 18 months, further supporting the claim that neuronal dysfunction precedes the formation of intranuclear aggregates.
Collapse
Affiliation(s)
- Jana Boy
- Medical Genetics, University of Tuebingen, Tuebingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Boy J, Schmidt T, Wolburg H, Mack A, Nuber S, Böttcher M, Schmitt I, Holzmann C, Zimmermann F, Servadio A, Riess O. Reversibility of symptoms in a conditional mouse model of spinocerebellar ataxia type 3. Hum Mol Genet 2009; 18:4282-95. [PMID: 19666958 DOI: 10.1093/hmg/ddp381] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3) is caused by the expansion of a CAG repeat tract that affects the MJD1 gene which encodes the ataxin-3 protein. In order to analyze whether symptoms caused by ataxin-3 with an expanded repeat are reversible in vivo, we generated a conditional mouse model of SCA3 using the Tet-Off system. We used a full-length human ataxin-3 cDNA with 77 repeats in order to generate the responder mouse line. After crossbreeding with a PrP promoter mouse line, double transgenic mice developed a progressive neurological phenotype characterized by neuronal dysfunction in the cerebellum, reduced anxiety, hyperactivity, impaired Rotarod performance and lower body weight gain. When ataxin-3 expression was turned off in symptomatic mice in an early disease state, the transgenic mice were indistinguishable from negative controls after 5 months of treatment. These results show that reducing the production of pathogenic ataxin-3 indeed may be a promising approach to treat SCA3, provided that such treatment is applied before irreversible damage has taken place and that it is continued for a sufficiently long time.
Collapse
Affiliation(s)
- Jana Boy
- Department of Medical Genetics, University of Tuebingen, Tuebingen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lukas C, Hahn HK, Bellenberg B, Hellwig K, Globas C, Schimrigk SK, Köster O, Schöls L. Spinal cord atrophy in spinocerebellar ataxia type 3 and 6. J Neurol 2008; 255:1244-9. [DOI: 10.1007/s00415-008-0907-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 01/16/2008] [Accepted: 02/13/2008] [Indexed: 11/30/2022]
|
26
|
de Pril R, Fischer DF, Roos RAC, van Leeuwen FW. Ubiquitin-conjugating enzyme E2-25K increases aggregate formation and cell death in polyglutamine diseases. Mol Cell Neurosci 2006; 34:10-9. [PMID: 17092742 DOI: 10.1016/j.mcn.2006.09.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2006] [Revised: 09/17/2006] [Accepted: 09/22/2006] [Indexed: 12/26/2022] Open
Abstract
Polyglutamine diseases are characterized by neuronal intranuclear inclusions of expanded polyglutamine proteins, which are also ubiquitinated, indicating impairment of the ubiquitin-proteasome system. E2-25K (Hip2), an ubiquitin-conjugating enzyme, interacts directly with huntingtin and may mediate ubiquitination of the neuronal intranuclear inclusions in Huntington disease. E2-25K could thus modulate aggregation and toxicity of expanded huntingtin. Here we show that E2-25K is involved in aggregate formation of expanded polyglutamine proteins and polyglutamine-induced cell death. Both a truncated mutant, lacking the catalytic tail domain, as well as a full antisense sequence, reduce aggregate formation. Strikingly, both E2-25K mutants also reduced polyglutamine-induced cell death. In postmortem brain material of both Huntington disease and SCA3, E2-25K staining of polyglutamine aggregates was observed in a subset of neurons bearing intranuclear neuronal inclusions. These results demonstrate that targeting by ubiquitination plays an important role in the pathology of polyglutamine diseases.
Collapse
Affiliation(s)
- Remko de Pril
- Graduate School Neurosciences Amsterdam, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
27
|
Rüb U, De Vos RA, Brunt ER, Sebestény T, Schöls L, Auburger G, Bohl J, Ghebremedhin E, Gierga K, Seidel K, Den Dunnen W, Heinsen H, Paulson H, Deller T. Spinocerebellar ataxia type 3 (SCA3): thalamic neurodegeneration occurs independently from thalamic ataxin-3 immunopositive neuronal intranuclear inclusions. Brain Pathol 2006; 16:218-27. [PMID: 16911479 PMCID: PMC8095748 DOI: 10.1111/j.1750-3639.2006.00022.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
In the last years progress has been made regarding the involvement of the thalamus during the course of the currently known polyglutamine diseases. Although recent studies have shown that the thalamus consistently undergoes neurodegeneration in Huntington's disease (HD) and spinocerebellar ataxia type 2 (SCA2) it is still unclear whether it is also a consistent target of the pathological process of spinocerebellar ataxia type 3 (SCA3). Accordingly we studied the thalamic pathoanatomy and distribution pattern of ataxin-3 immunopositive neuronal intranuclear inclusions (NI) in nine clinically diagnosed and genetically confirmed SCA3 patients and carried out a detailed statistical analysis of our findings. During our pathoanatomical study we disclosed (i) a consistent degeneration of the ventral anterior, ventral lateral and reticular thalamic nuclei; (ii) a degeneration of the ventral posterior lateral nucleus and inferior and lateral subnuclei of the pulvinar in the majority of these SCA3 patients; and (iii) a degeneration of the ventral posterior medial and lateral posterior thalamic nuclei, the lateral geniculate body and some of the limbic thalamic nuclei in some of them. Upon immunocytochemical analysis we detected NI in all of the thalamic nuclei of all of our SCA3 patients. According to our statistical analysis (i) thalamic neurodegeneration and the occurrence of ataxin-3 immunopositive thalamic NI was not associated with the individual length of the CAG-repeats in the mutated SCA3 allele, the patients age at disease onset and the duration of SCA3 and (ii) thalamic neurodegeneration was not correlated with the occurrence of ataxin-3 immunopositive thalamic NI. This lack of correlation may suggest that ataxin-3 immunopositive NI are not immediately decisive for the fate of affected nerve cells but rather represent unspecific and pathognomonic morphological markers of SCA3.
Collapse
Affiliation(s)
- Udo Rüb
- Institute for Clinical Neuroanatomy
| | - Rob A.I. De Vos
- Laboratorium Pathologie Oost Nederland, Burg. Edo Bergsmalaan 1, Enschede, the Netherlands
| | | | | | - Ludger Schöls
- Center of Neurology and Hertie‐Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Georg Auburger
- Section Molecular Neurogenetics, Department of Neurology, Johann Wolfgang Goethe‐University, Frankfurt/Main, Germany
| | - Jürgen Bohl
- Neuropathology Division, University Clinic of Mainz, Mainz, Germany
| | | | | | | | - Wilfred Den Dunnen
- Department of Pathology and Laboratory Medicine, University Medical Center Groningen, Groningen, the Netherlands
| | - Helmut Heinsen
- Morphological Brain Research Unit, Julius Maximilians University, Würzburg, Germany
| | - Henry Paulson
- Department of Neurology, University of Iowa College of Medicine, Iowa City, Iowa, USA
| | | |
Collapse
|
28
|
Paviour DC, Revesz T, Holton JL, Evans A, Olsson JE, Lees AJ. Neuronal intranuclear inclusion disease: report on a case originally diagnosed as dopa-responsive dystonia with Lewy bodies. Mov Disord 2006; 20:1345-9. [PMID: 15966005 DOI: 10.1002/mds.20559] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Neuronal intranuclear inclusion disease (NIID) is a rare neurodegenerative disorder with a heterogeneous clinical picture characterized by the presence of eosinophilic intranuclear inclusions in neuronal and glial cells. We describe a case, reported 12 years ago as dopa-responsive dystonia (DRD) with Lewy body pathology. Pathological re-examination has led to a revised diagnosis of neuronal intranuclear inclusion disease. This rare condition, which may be diagnosed in life with a full thickness rectal biopsy, needs to be considered in the differential diagnosis of any case presenting as progressive juvenile parkinsonism (JP) or dystonia.
Collapse
Affiliation(s)
- Dominic C Paviour
- The Sara Koe Progressive Supranuclear Palsy Research Centre, Institute of Neurology, University College London, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
Juvenile parkinsonism (JP) describes patients in whom the clinical features of parkinsonism manifest before 21 years of age. Many reported cases that had a good response to levodopa have proved to have autosomal recessive juvenile parkinsonism (AR-JP) due to mutations in the parkin gene. With the exception of parkin mutations and dopa-responsive dystonia, most causes are associated with the presence of additional neurological signs, resulting from additional lesions outside of the basal ganglia. Lewy body pathology has only been reported in one case, suggesting that a juvenile form of idiopathic Parkinson's disease may be extremely rare.
Collapse
Affiliation(s)
- Dominic C Paviour
- National Hospital for Neurology and Neurosurgery, Queen Square, London, United Kingdom
| | | | | |
Collapse
|
30
|
Abstract
To date, nine polyglutamine disorders have been characterised, including Huntington's disease (HD), spinobulbar muscular atrophy (SBMA), dentatorubral-pallidoluysian atrophy (DRPLA), and spinocerebellar ataxias 1, 2, 3, 6, 7 and 17 (SCAs). Although knockout and transgenic mouse experiments suggest that a toxic gain of function is central to neuronal death in these diseases (with the probable exception of SCA6), the exact mechanisms of neurotoxicity remain contentious. A further conundrum is the characteristic distribution of neuronal damage in each disease, despite ubiquitous expression of the abnormal proteins. One mechanism that could possibly underlie the specific distribution of neuronal toxicity is proteolytic cleavage of the full-length expanded polyglutamine tract-containing proteins. There is evidence found in vitro or in vivo (or both) of proteolytic cleavage in HD, SBMA, DRPLA, and SCAs 2, 3, and 7. In HD, cleavage has been demonstrated to be regionally specific, occurring as a result of caspase activation. These diseases are also characterised by development of intraneuronal aggregates of the abnormal protein that co-localise with components of the ubiquitin-proteasome pathway. It remains unclear whether these aggregates are pathogenic or merely disease markers; however, at least in the case of ataxin-3, cleavage promotes aggregation. Inhibition of specific proteases constitutes a potential therapeutic approach in these diseases.
Collapse
Affiliation(s)
- V Tarlac
- Department of Medicine (Neuroscience), Monash University, Alfred Hospital Campus, Melbourne, Australia
| | | |
Collapse
|