1
|
Benzi A, Baratto S, Astigiano C, Sturla L, Panicucci C, Mamchaoui K, Raffaghello L, Bruzzone S, Gazzerro E, Bruno C. Aberrant Adenosine Triphosphate Release and Impairment of P2Y2-Mediated Signaling in Sarcoglycanopathies. J Transl Med 2023; 103:100037. [PMID: 36925196 DOI: 10.1016/j.labinv.2022.100037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/28/2022] [Accepted: 11/20/2022] [Indexed: 01/11/2023] Open
Abstract
Sarcoglycanopathies, limb-girdle muscular dystrophies (LGMD) caused by genetic loss-of-function of the membrane proteins sarcoglycans (SGs), are characterized by progressive degeneration of skeletal muscle. In these disorders, muscle necrosis is associated with immune-mediated damage, whose triggering and perpetuating molecular mechanisms are not fully elucidated yet. Extracellular adenosine triphosphate (eATP) seems to represent a crucial factor, with eATP activating purinergic receptors. Indeed, in vivo blockade of the eATP/P2X7 purinergic pathway ameliorated muscle disease progression. P2X7 inhibition improved the dystrophic process by restraining the activity of P2X7 receptors on immune cells. Whether P2X7 blockade can display a direct action on muscle cells is not known yet. In this study, we investigated eATP effects in primary cultures of myoblasts isolated from patients with LGMDR3 (α-sarcoglycanopathy) and in immortalized cells isolated from a patient with LGMDR5 (γ-sarcoglycanopathy). Our results demonstrated that, owing to a reduced ecto-ATPase activity and/or an enhanced release of ATP, patient cells are exposed to increased juxtamembrane concentrations of eATP and display a higher susceptivity to eATP signals. The purinoceptor P2Y2, which proved to be overexpressed in patient cells, was identified as a pivotal receptor responsible for the enhanced ATP-induced or UTP-induced Ca2+ increase in affected myoblasts. Moreover, P2Y2 stimulation in LDMDR3 muscle cells induced chemotaxis of immune cells and release of interleukin-8. In conclusion, a higher eATP concentration and sensitivity in primary human muscle cells carrying different α-SG or γ-SG loss-of-function mutations indicate that eATP/P2Y2 is an enhanced signaling axis in cells from patients with α-/γ-sarcoglycanopathy. Understanding the basis of the innate immune-mediated damage associated with the dystrophic process may be critical in overcoming the immunologic hurdles associated with emerging gene therapies for these disorders.
Collapse
Affiliation(s)
- Andrea Benzi
- Department of Experimental Medicine-DIMES, University of Genova, Genova, Italy
| | - Serena Baratto
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Cecilia Astigiano
- Department of Experimental Medicine-DIMES, University of Genova, Genova, Italy
| | - Laura Sturla
- Department of Experimental Medicine-DIMES, University of Genova, Genova, Italy
| | - Chiara Panicucci
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Kamel Mamchaoui
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Lizzia Raffaghello
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Santina Bruzzone
- Department of Experimental Medicine-DIMES, University of Genova, Genova, Italy.
| | - Elisabetta Gazzerro
- Unit of Muscle Research Experimental and Clinical Research Center, a Cooperation Between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin, Berlin, Germany.
| | - Claudio Bruno
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genova, Italy; Department of Neuroscience, Rehabilitation, Ophtalmology, Genetics, Maternal and ChildHealth-DINOGMI, University of Genova, Genova, Italy
| |
Collapse
|
2
|
P2X7 Receptor Antagonist Reduces Fibrosis and Inflammation in a Mouse Model of Alpha-Sarcoglycan Muscular Dystrophy. Pharmaceuticals (Basel) 2022; 15:ph15010089. [PMID: 35056146 PMCID: PMC8777980 DOI: 10.3390/ph15010089] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 02/08/2023] Open
Abstract
Limb-girdle muscular dystrophy R3, a rare genetic disorder affecting the limb proximal muscles, is caused by mutations in the α-sarcoglycan gene (Sgca) and aggravated by an immune-mediated damage, finely modulated by the extracellular (e)ATP/purinoceptors axis. Currently, no specific drugs are available. The aim of this study was to evaluate the therapeutic effectiveness of a selective P2X7 purinoreceptor antagonist, A438079. Sgca knockout mice were treated with A438079 every two days at 3 mg/Kg for 24 weeks. The P2X7 antagonist improved clinical parameters by ameliorating mice motor function and decreasing serum creatine kinase levels. Histological analysis of muscle morphology indicated a significant reduction of the percentage of central nuclei, of fiber size variability and of the extent of local fibrosis and inflammation. A cytometric characterization of the muscle inflammatory infiltrates showed that A438079 significantly decreased innate immune cells and upregulated the immunosuppressive regulatory T cell subpopulation. In α-sarcoglycan null mice, the selective P2X7 antagonist A438079 has been shown to be effective to counteract the progression of the dystrophic phenotype and to reduce the inflammatory response. P2X7 antagonism via selective inhibitors could be included in the immunosuppressant strategies aimed to dampen the basal immune-mediated damage and to favor a better engraftment of gene-cell therapies.
Collapse
|
3
|
Valera IC, Wacker AL, Hwang HS, Holmes C, Laitano O, Landstrom AP, Parvatiyar MS. Essential roles of the dystrophin-glycoprotein complex in different cardiac pathologies. Adv Med Sci 2021; 66:52-71. [PMID: 33387942 DOI: 10.1016/j.advms.2020.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/12/2020] [Accepted: 12/17/2020] [Indexed: 12/20/2022]
Abstract
The dystrophin-glycoprotein complex (DGC), situated at the sarcolemma dynamically remodels during cardiac disease. This review examines DGC remodeling as a common denominator in diseases affecting heart function and health. Dystrophin and the DGC serve as broad cytoskeletal integrators that are critical for maintaining stability of muscle membranes. The presence of pathogenic variants in genes encoding proteins of the DGC can cause absence of the protein and/or alterations in other complex members leading to muscular dystrophies. Targeted studies have allowed the individual functions of affected proteins to be defined. The DGC has demonstrated its dynamic function, remodeling under a number of conditions that stress the heart. Beyond genetic causes, pathogenic processes also impinge on the DGC, causing alterations in the abundance of dystrophin and associated proteins during cardiac insult such as ischemia-reperfusion injury, mechanical unloading, and myocarditis. When considering new therapeutic strategies, it is important to assess DGC remodeling as a common factor in various heart diseases. The DGC connects the internal F-actin-based cytoskeleton to laminin-211 of the extracellular space, playing an important role in the transmission of mechanical force to the extracellular matrix. The essential functions of dystrophin and the DGC have been long recognized. DGC based therapeutic approaches have been primarily focused on muscular dystrophies, however it may be a beneficial target in a number of disorders that affect the heart. This review provides an account of what we now know, and discusses how this knowledge can benefit persistent health conditions in the clinic.
Collapse
Affiliation(s)
- Isela C Valera
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA
| | - Amanda L Wacker
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA
| | - Hyun Seok Hwang
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA
| | - Christina Holmes
- Department of Chemical and Biomedical Engineering, Florida A&M University-Florida State University College of Engineering, Tallahassee, FL, USA
| | - Orlando Laitano
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA
| | - Andrew P Landstrom
- Department of Pediatrics, Division of Cardiology, Duke University School of Medicine, Durham, NC, USA; Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Michelle S Parvatiyar
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
4
|
Schröder NWJ, Grieben U, Prokop S, Dekomien G, Epplen JT, Heppner FL, Goebel HH, Stenzel W. Novel γ-sarcoglycan-mutation affects cardiac function and N-terminal dystrophin expression. Muscle Nerve 2013; 49:144-5. [PMID: 23929688 DOI: 10.1002/mus.23981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 07/22/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Nicolas W J Schröder
- Department of Pathology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
Sarcoglycanopathies are a group of autosomal recessive muscle-wasting disorders caused by genetic defects in one of four cell membrane glycoproteins, alpha-, beta-, gamma- or delta-sarcoglycan. These four sarcoglycans form a subcomplex that is closely linked to the major dystrophin-associated protein complex, which is essential for membrane integrity during muscle contraction and provides a scaffold for important signalling molecules. Proper assembly, trafficking and targeting of the sarcoglycan complex is of vital importance, and mutations that severely perturb tetramer formation and localisation result in sarcoglycanopathy. Gene defects in one sarcoglycan cause the absence or reduced concentration of the other subunits. Most genetic defects generate mutated proteins that are degraded through the cell's quality control system; however, in many cases, conformational modifications do not affect the function of the protein, yet it is recognised as misfolded and prematurely degraded. Recent evidence shows that misfolded sarcoglycans could be rescued to the cell membrane by assisting their maturation along the ER secretory pathway. This review summarises the etiopathogenesis of sarcoglycanopathies and highlights the quality control machinery as a potential pharmacological target for therapy of these genetic disorders.
Collapse
Affiliation(s)
- Dorianna Sandonà
- Department of Biomedical Sciences, University of Padova, 35121
Padova, Italy
| | - Romeo Betto
- C.N.R. Institute of Neuroscience, Neuromuscular Biology and
Physiopathology, 35121 Padova, Italy
| |
Collapse
|
6
|
Sarcolemmal neuronal nitric oxide synthase defect in limb-girdle muscular dystrophy: an adverse modulating factor in the disease course? J Neuropathol Exp Neurol 2009; 68:383-90. [PMID: 19287313 DOI: 10.1097/nen.0b013e31819cd612] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Reduction of neuronal nitric oxide synthase (nNOS) has been associated with the pathogenesis and clinical expression of inherited myopathies. To determine whether a defect in nNOS might be an adverse modulating factor in the course of limb-girdle muscular dystrophy, we investigated cytosolic and sarcolemmal nNOS expression in muscle biopsies from 32 patients with 7 forms of limb-girdle muscular dystrophy. Primary calpainopathy, dysferlinopathy, and caveolinopathy biopsies showed normal levels of cytosolic nNOS and preserved sarcolemmal nNOS immunoreactivity. By contrast, the cytosolic nNOS levels in sarcoglycanopathy muscles were variably reduced. Sarcolemmal nNOS immunoreactivity varied from absent to reduced, depending on the integrity of the sarcoglycan complex. In muscles with loss of the entire sarcoglycan complex, sarcolemmal nNOS was absent; it otherwise depended on the specific sarcoglycan gene and type of mutation. The integrity of the entire sarcoglycan complex is, therefore, essential for the stabilization of nNOS to the sarcolemma. Absence of sarcolemmal nNOS in sarcoglycanopathy muscle was always associated with severe muscular dystrophy and sometimes with dilated cardiomyopathy, supporting the hypothesis that nNOS defect might contribute to skeletal and cardiac muscle disease progression. These results emphasize the value of nNOS immunohistochemical analysis in limb-girdle muscular dystrophy and provide additional insights for future therapeutic interventions in these disorders.
Collapse
|
7
|
Fanin M, Nardetto L, Nascimbeni AC, Tasca E, Spinazzi M, Padoan R, Angelini C. Correlations between clinical severity, genotype and muscle pathology in limb girdle muscular dystrophy type 2A. J Med Genet 2007; 44:609-14. [PMID: 17526799 PMCID: PMC2597960 DOI: 10.1136/jmg.2007.050328] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Limb girdle muscular dystrophy type 2A (LGMD2A) is characterised by wide variability in clinical features and rate of progression. Patients with two null mutations usually have a rapid course, but in the remaining cases (two missense mutations or compound heterozygote mutations) prognosis is uncertain. METHODS We conducted what is to our knowledge the first systematic histopathological, biochemical and molecular investigation of 24 LGMD2A patients, subdivided according to rapid or slow disease progression, to determine if some parameters could correlate with disease progression. RESULTS We found that muscle histopathology score and the extent of regenerating and degenerating fibres could be correlated with the rate of disease course when the biochemical and molecular data do not offer sufficient information. Comparison of clinical and muscle histopathological data between LGMD2A and four other types of LGMD (LGMD2B-E) also gave another important and novel result. We found that LGMD2A has significantly lower levels of dystrophic features (ie degenerating and regenerating fibres) and higher levels of chronic changes (ie lobulated fibres) compared with other LGMDs, particularly LGMD2B. These results might explain the observation that atrophic muscle involvement seems to be a clinical feature peculiar to LGMD2A patients. CONCLUSIONS Distinguishing patterns of muscle histopathological changes in LGMD2A might reflect the effects of a disease-specific pathogenetic mechanism and provide clues complementary to genetic data.
Collapse
Affiliation(s)
- M Fanin
- Venetian Institute of Molecular Medicine, via G. Orus 2, 35129 Padova, Italy.
| | | | | | | | | | | | | |
Collapse
|
8
|
Aronica E, van Kempen AAMW, van der Heide M, Poll-The BT, van Slooten HJ, Troost D, Rozemuller-Kwakkel JM. Congenital disorder of glycosylation type Ia: a clinicopathological report of a newborn infant with cerebellar pathology. Acta Neuropathol 2005; 109:433-42. [PMID: 15714316 DOI: 10.1007/s00401-004-0975-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Revised: 12/06/2004] [Accepted: 12/06/2004] [Indexed: 12/11/2022]
Abstract
Congenital disorders of glycosylation (CDG) represent a newly delineated group of inherited multisystem disorders characterized by defective glycoprotein biosynthesis. In the present study we report and discuss the clinical and neuropathological findings in a newborn with CDG type Ia (CDG-Ia). The patient presented mild dysmorphic facial features, inverted nipples, progressive generalized edema, hypertrophic cardiomyopathy, hepatosplenomegaly, muscular hypotonia and had severe hypoalbuminemia. Deficiency of phosphomannomutase (PMM)-2 activity was detected. Molecular analysis showed V231M/T237R mutations of the PMM2 gene. Muscular biopsy, disclosed myopathic alterations with myofibrillar disarray by electron microscopy. The patient died at 1 month of age of circulatory and respiratory failure. Autopsy showed liver fibrosis and renal abnormalities. Neuropathological abnormalities were mainly confined to the cerebellum. Histological and immunocytochemical examination of cerebellar tissue showed partial atrophy of cerebellar folia with severe loss of Purkinje cells, granular cell depletion and various morphological changes in the remaining Purkinje cells and their dendritic arborization. Autopsy findings confirm the complexity of the CDG-Ia syndrome, and indicate that CDG-Ia is a distinct disease entity, which can be differentiated from other neurological disorders and other types of CDG, not only clinically, but also based on unique pathological findings. The data proved useful in determining the underlying disease process associated with a defective N-glycosylation pathway.
Collapse
Affiliation(s)
- E Aronica
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ , Amsterdam, The Netherlands,
| | | | | | | | | | | | | |
Collapse
|
9
|
Wilding JR, Schneider JE, Sang AE, Davies KE, Neubauer S, Clarke K. Dystrophin- and MLP-deficient mouse hearts: marked differences in morphology and function, but similar accumulation of cytoskeletal proteins. FASEB J 2004; 19:79-81. [PMID: 15494447 DOI: 10.1096/fj.04-1731fje] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In humans, cytoskeletal dystrophin and muscle LIM protein (MLP) gene mutations can cause dilated cardiomyopathy, yet these mutations may have different effects in mice, owing to increased accumulation of other, compensatory cytoskeletal proteins. Consequently, we characterized left-ventricular (LV) morphology and function in vivo using high-resolution cine-magnetic resonance imaging (MRI) in 2- to 3-month old dystrophin-deficient (mdx) and MLP-null mice, and their respective controls. LV passive stiffness was assessed in isolated, perfused hearts, and cytoskeletal protein levels were determined using Western blot analyses. In mdx mouse hearts, LV-to-body weight ratio, cavity volume, ejection fraction, stroke volume, and cardiac output were normal. However, MLP-null mouse hearts had 1.2-fold higher LV-to-body weight ratios (P<0.01), 1.5-fold higher end-diastolic volumes (P<0.01), and decreased ejection fraction compared with controls (25% vs. 66%, respectively, P<0.01), indicating dilated cardiomyopathy and heart failure. In both models, isolated, perfused heart end-diastolic pressure-volume relationships and passive left-ventricular stiffness were normal. Hearts from both models accumulated desmin and beta-tubulin, mdx mouse hearts accumulated utrophin and MLP, and MLP-null mouse hearts accumulated dystrophin and syncoilin. Although the increase in MLP and utrophin in the mdx mouse heart was able to compensate for the loss of dystrophin, accumulation of desmin, syncoilin and dystrophin were unable to compensate for the loss of MLP, resulting in heart failure.
Collapse
Affiliation(s)
- James R Wilding
- Department of Physiology, University of Oxford, Oxford, England, UK
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
Dysferlin deficiency is being increasingly recognized in limb-girdle dystrophy and distal myopathy but its role in the development of muscle pathology is still poorly understood. For this purpose, 26 muscle biopsies from 25 dysferlinopathy patients were analysed by routine histochemistry and by immunohistochemistry with eight different antibodies, and scored for inflammatory response and type of cell infiltrate, fibre degeneration and regeneration, fibre type composition and severity of histopathological changes. In cases with an advanced-stage dystrophic pattern we observed type 1 fibre predominance exceeding 80%, suggesting a selective loss of type 2 fibres or a conversion process. The extent of muscle fibre regeneration and degeneration in dysferlinopathy was intermediate between sarcoglycanopathy and Duchenne dystrophy or myositis, suggesting a rather aggressive course of the disease. An increased inflammatory response was observed in the majority of our patients (16/26), who also showed an active dystrophic pattern. Type and localization of cellular infiltrates suggest that inflammatory reaction is secondary to necrosis. Major histocompatibility complex (MHC) class I molecules were overexpressed in dysferlinopathy, mainly in association with fibre phagocytosis and regeneration; their occasional expression in non-necrotic fibres might represent a marker of ongoing necrosis. Muscle inflammation might be triggered by the structurally altered membrane consequent to dysferlin defect.
Collapse
Affiliation(s)
- M Fanin
- Department of Neurological and Psychiatric Sciences, University of Padova, Italy.
| | | |
Collapse
|