1
|
Banerjee A, Pandurangan K, Joe A, Sachidanandam R, Sen P. Comparison of broadband and monochromatic photopic negative response in eyes of patients with diabetes with no diabetic retinopathy and different stages of diabetic retinopathy. Indian J Ophthalmol 2021; 69:3241-3248. [PMID: 34708780 PMCID: PMC8725145 DOI: 10.4103/ijo.ijo_988_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Purpose: To evaluate the change in broadband (W/W), red on blue (R/B), and blue on yellow (B/Y) photopic negative response (PhNR) in patients with diabetes mellitus with no diabetic retinopathy (no DR) and different stages of DR and compare it with age-matched controls. This study was performed to provide a single PhNR protocol that can be used for early diagnosis of DR. Methods: It was a cross-sectional case-control study done in a hospital setup. Patients with diabetes with no DR and different stages of DR with no other associated ocular pathologies were included. Age-matched controls with no retinal pathologies were also included for comparison. All subjects underwent detailed ophthalmic examination and W/W, R/B, and B/Y electroretinography. Fifty control eyes and 52 treatment naïve eyes of 52 patients with diabetes [no DR = 11, mild nonproliferative diabetic retinopathy (NPDR) =11, moderate NPDR = 10, severe NPDR = 9, and proliferative DR = 11] were included in the study. Results: On comparing the ERG responses in patients with diabetes and age-matched controls, a significant reduction (P < 0.05) was noted in the amplitudes of a-wave (39.78 ± 11.34 μV vs. 67.28 ± 12.88 μV), b-wave (116.25 ± 45.25 vs. 134.39 ± 28.78 μV), W/W PhNR (33.86 ± 17.33 vs. 67.18 ± 15.99 μV), R/B PhNR (28.77 ± 15.85 vs. 53.48 ± 14.15 μV), and B/Y PhNR (55.04 ± 32.63 vs. 104.79 ± 24.37 μV). Posthoc analysis revealed that all the eyes in the diabetic group, including those with no DR, had a significantly reduced PhNR amplitude (P < 0.05) when compared with controls. PhNR was found to reduce in amplitude with increasing severity of DR (P < 0.05), with more significance in B/Y. Receiver operating characteristic showed highest area under the curve in B/Y PhNR (94%, P < 0.001), with maximum sensitivity and specificity of 88% and 87%, respectively. Conclusion: Changes in the amplitude and implicit time of ERG can reflect the severity of DR. PhNR amplitudes, especially B/Y PhNR, appear to be significantly reduced even in eyes with no DR.
Collapse
Affiliation(s)
- Aniruddha Banerjee
- Department of Optometry; Department of Vitreo-Retinal Services, Medical Research Foundation, Chennai, Tamil Nadu, India
| | - Karthika Pandurangan
- Department of Optometry, Medical Research Foundation, Chennai, Tamil Nadu, India
| | - Amose Joe
- Department of Optometry; Department of Vitreo-Retinal Services, Medical Research Foundation, Chennai, Tamil Nadu, India
| | - Ramya Sachidanandam
- Department of Optometry; Department of Vitreo-Retinal Services, Medical Research Foundation, Chennai, Tamil Nadu, India
| | - Parveen Sen
- Department of Vitreo-Retinal Services, Medical Research Foundation, Chennai, Tamil Nadu, India
| |
Collapse
|
2
|
Pierozan P, Pessoa-Pureur R. Cytoskeleton as a Target of Quinolinic Acid Neurotoxicity: Insight from Animal Models. Mol Neurobiol 2017. [PMID: 28647871 DOI: 10.1007/s12035-017-0654-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cytoskeletal proteins are increasingly recognized as having important roles as a target of the action of different neurotoxins. In the last years, several works of our group have shown that quinolinic acid (QUIN) was able to disrupt the homeostasis of the cytoskeleton of neural cells and this was associated with cell dysfunction and neurodegeneration. QUIN is an excitotoxic metabolite of tryptophan metabolism and its accumulation is associated with several neurodegenerative diseases. In the present review, we provide a comprehensive view of the actions of QUIN upstream of glutamate receptors, eliciting kinase/phosphatase signaling cascades that disrupt the homeostasis of the phosphorylation system associated with intermediate filament proteins of astrocytes and neurons. We emphasize the critical role of calcium in these actions and the evidence that misregulated cytoskeleton takes part of the cell response to the injury resulting in neurodegeneration in different brain regions, disrupted cell signaling in acute tissue slices, and disorganized cytoskeleton with altered cell morphology in primary cultures. We also discuss the interplay among misregulated cytoskeleton, oxidative stress, and cell-cell contact through gap junctions mediating the quinolinic acid injury in rat brain. The increasing amount of cross talks identified between cytoskeletal proteins and cellular signaling cascades reinforces the exciting possibility that cytoskeleton could be a new target in the neurotoxicity of QUIN and further studies will be necessary to develop strategies to protect the cytoskeleton and counteracts the cytotoxicity of this metabolite.
Collapse
Affiliation(s)
- Paula Pierozan
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600 Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Regina Pessoa-Pureur
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600 Anexo, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
3
|
Ding SH, Bao YH, Shen JH, Gao GY, Pan YH, Luo QZ, Jiang JY. Improved neurite outgrowth on central nervous system myelin substrate by siRNA-mediated knockdown of Nogo receptor. Chin J Traumatol 2016; 19:16-24. [PMID: 27033267 PMCID: PMC4897850 DOI: 10.1016/j.cjtee.2015.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
PURPOSE To investigate the in vitro effect of short interfering RNAs (siRNAs) against Nogo receptor (NgR) on neurite outgrowth under an inhibitory substrate of central nervous system (CNS) myelin. METHODS Three siRNA sequences against NgR were designed and transfected into cerebellar granule cells (CGCs) to screen for the most effcient sequence of NgR siRNA by using reverse transcription polymerase chain reaction (RT-PCR) and immunofluorescence staining. NgR siRNA sequence 1 was found the most efficient which was then transfected into the CGCs grown on CNS myelin substrate to observe its disinhibition for neurite outgrowth. RESULTS Compared with the scrambled control sequence of siRNA, the NgR siRNA sequence 1 significantly decreased NgR mRNA level at 24 h and 48 h (p <0.05), which was recovered by 96 h after transfection. NgR immunoreactivity was also markedly reduced at 24 and 48 h after the transfection of siRNA sequence 1 compared with that before transfection (p<0.05). The NgR immunoreactivity was recovered after 72 h post-transfection. Moreover, the neurite outgrowth on the myelin substrate was greatly improved within 72 h after the transfection with siRNA sequence 1 compared with the scrambled sequence-transfected group or non-transfected group (p<0.05). CONCLUSION siRNA-mediated knockdown of NgR expression contributes to neurite outgrowth in vitro.
Collapse
Affiliation(s)
- Sheng-Hao Ding
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ying-Hui Bao
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China,Corresponding author. Tel.: +86 21 6838 3707.
| | - Jian-Hong Shen
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Guo-Yi Gao
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yao-Hua Pan
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qi-Zhong Luo
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ji-Yao Jiang
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China,Corresponding author. Tel.: +86 21 6838 3747; fax: +86 21 5839 4262.
| |
Collapse
|
4
|
|
5
|
Gallego BI, Salazar JJ, de Hoz R, Rojas B, Ramírez AI, Salinas-Navarro M, Ortín-Martínez A, Valiente-Soriano FJ, Avilés-Trigueros M, Villegas-Perez MP, Vidal-Sanz M, Triviño A, Ramírez JM. IOP induces upregulation of GFAP and MHC-II and microglia reactivity in mice retina contralateral to experimental glaucoma. J Neuroinflammation 2012; 9:92. [PMID: 22583833 PMCID: PMC3410794 DOI: 10.1186/1742-2094-9-92] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 05/14/2012] [Indexed: 02/06/2023] Open
Abstract
Background Ocular hypertension is a major risk factor for glaucoma, a neurodegenerative disease characterized by an irreversible decrease in ganglion cells and their axons. Macroglial and microglial cells appear to play an important role in the pathogenic mechanisms of the disease. Here, we study the effects of laser-induced ocular hypertension (OHT) in the macroglia, microglia and retinal ganglion cells (RGCs) of eyes with OHT (OHT-eyes) and contralateral eyes two weeks after lasering. Methods Two groups of adult Swiss mice were used: age-matched control (naïve, n = 9); and lasered (n = 9). In the lasered animals, both OHT-eyes and contralateral eyes were analyzed. Retinal whole-mounts were immunostained with antibodies against glial fibrillary acid protein (GFAP), neurofilament of 200kD (NF-200), ionized calcium binding adaptor molecule (Iba-1) and major histocompatibility complex class II molecule (MHC-II). The GFAP-labeled retinal area (GFAP-RA), the intensity of GFAP immunoreaction (GFAP-IR), and the number of astrocytes and NF-200 + RGCs were quantified. Results In comparison with naïve: i) astrocytes were more robust in contralateral eyes. In OHT-eyes, the astrocyte population was not homogeneous, given that astrocytes displaying only primary processes coexisted with astrocytes in which primary and secondary processes could be recognized, the former having less intense GFAP-IR (P < 0.001); ii) GFAP-RA was increased in contralateral (P <0.05) and decreased in OHT-eyes (P <0.001); iii) the mean intensity of GFAP-IR was higher in OHT-eyes (P < 0.01), and the percentage of the retinal area occupied by GFAP+ cells with higher intensity levels was increased in contralateral (P = 0.05) and in OHT-eyes (P < 0.01); iv) both in contralateral and in OHT-eyes, GFAP was upregulated in Müller cells and microglia was activated; v) MHC-II was upregulated on macroglia and microglia. In microglia, it was similarly expressed in contralateral and OHT-eyes. By contrast, in macroglia, MHC-II upregulation was observed mainly in astrocytes in contralateral eyes and in Müller cells in OHT-eyes; vi) NF-200+RGCs (degenerated cells) appeared in OHT-eyes with a trend for the GFAP-RA to decrease and for the NF-200+RGC number to increase from the center to the periphery (r = −0.45). Conclusion The use of the contralateral eye as an internal control in experimental induction of unilateral IOP should be reconsidered. The gliotic behavior in contralateral eyes could be related to the immune response. The absence of NF-200+RGCs (sign of RGC degeneration) leads us to postulate that the MHC-II upregulation in contralateral eyes could favor neuroprotection.
Collapse
Affiliation(s)
- Beatriz I Gallego
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Hyder CL, Isoniemi KO, Torvaldson ES, Eriksson JE. Insights into intermediate filament regulation from development to ageing. J Cell Sci 2011; 124:1363-72. [PMID: 21502133 DOI: 10.1242/jcs.041244] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Intermediate filament (IF) proteins comprise a large family with more than 70 members. Initially, IFs were assumed to provide only structural reinforcement for the cell. However, IFs are now known to be dynamic structures that are involved in a wide range of cellular processes during all stages of life, from development to ageing, and during homeostasis and stress. This Commentary discusses some lesser-known functional and regulatory aspects of IFs. We specifically address the emerging roles of nestin in myogenesis and cancer cell migration, and examine exciting evidence on the regulation of nestin and lamin A by the notch signalling pathway, which could have repercussions for our understanding of the roles of IF proteins in development and ageing. In addition, we discuss the modulation of the post-translational modifications of neuronally expressed IFs and their protein-protein interactions, as well as IF glycosylation, which not only has a role in stress and ageing, but might also regulate IFs during development. Although many of these recent findings are still preliminary, they nevertheless open new doors to explore the functionality of the IF family of proteins.
Collapse
Affiliation(s)
- Claire L Hyder
- Turku Centre for Biotechnology, University of Turku, Turku, Finland
| | | | | | | |
Collapse
|
7
|
Borsello T, Centeno C, Riederer IM, Haefliger JA, Riederer BM. Phosphorylation-dependent dimerization and subcellular localization of islet-brain 1/c-Jun N-terminal kinase-interacting protein 1. J Neurosci Res 2007; 85:3632-41. [PMID: 17663463 DOI: 10.1002/jnr.21435] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Islet-brain 1 [IB1; also termed c-Jun N-terminal kinase (JNK)-interacting protein 1 (JIP-1] is involved in the apoptotic signaling cascade of JNK and functions as a scaffold protein. It organizes several MAP kinases and the microtubule-transport motor protein kinesin and relates to other signal-transducing molecules such as the amyloid precursor protein. Here we have identified IB1/JIP-1 using different antibodies that reacted with either a monomeric or a dimeric form of IB1/JIP-1. By immunoelectron microscopy, differences in the subcellular localization were observed. The monomeric form was found in the cytoplasmic compartment and is associated with the cytoskeleton and with membranes, whereas the dimeric form was found in addition in nuclei. After treatment of mouse brain homogenates with alkaline phosphatase, the dimeric form disappeared and the monomeric form decreased its molecular weight, suggesting that an IB1/JIP-1 dimerization is phosphorylation dependent and that IB1 exists in several phospho- forms. N-methyl-D-aspartate receptor activation induced a dephosphorylation of IB1/JIP-1 in primary cultures of cortical neurons and reduced homodimerization. In conclusion, these data suggest that IB1/JIP-1 monomers and dimers may differ in compartmental localization and thus function as a scaffold protein of the JNK signaling cascade in the cytoplasm or as a transcription factor in nuclei.
Collapse
Affiliation(s)
- T Borsello
- Département de Biologie Cellulaire et de Morphologie (DBCM), Université de Lausanne, Rue du Bugnon 9, Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
8
|
Abstract
Diabetic retinopathy (DR) is a common complication of diabetes and a leading cause of legal blindness in working-age adults. The clinical hallmarks of DR include increased vascular permeability, leading to edema, and endothelial cell proliferation. Much of the research effort has been focused on vascular changes, but it is becoming apparent that other degenerative changes occur beyond the vascular cells of the retina. These include increased apoptosis, glial cell reactivity, microglial activation, and altered glutamate metabolism. When occurring together, these changes may be considered as neurodegenerative and could explain some of the functional deficits in vision that begin soon after the onset of diabetes. This review will present the current evidence that neurodegeneration of the retina is a critical component of DR. There are two basic hypotheses that account for loss of cells in the neural retina. First, the loss of blood-retinal barrier integrity, which initially manifests as an increase in vascular permeability, causes a failure to control the composition of the extracellular fluid in the retina, which in turn leads to edema and neuronal cell loss. Alternatively, diabetes has a direct effect on metabolism within the neural retina, leading to an increase in apoptosis, which in turn causes breakdown of the blood-retinal barrier. It is not clear which hypothesis will be found to be correct, and, in fact, it is likely that vascular permeability and neuronal apoptosis are closely linked components of DR. However, the gradual loss of neurons suggests that progress of the disease is ultimately irreversible, since these cells cannot usually be replaced. In light of this possibility, new treatments for DR should be preventive in nature, being implemented before overt clinical symptoms develop. While vascular permeability is the target that is primarily considered for new treatments of DR, evidence presented here suggests that apoptosis of neurons is also an essential target for pharmacological studies. The vision of people with diabetes will be protected only when we have discovered a means to prevent the gradual but constant loss of neurons within the inner retina.
Collapse
Affiliation(s)
- Alistair J Barber
- The Penn State Retina Research Group, The Ulerich Ophthalmology Research Center, Penn State College of Medicine, Hershey Medical Center, 500 University Drive, 17033, Hershey, PA, USA.
| |
Collapse
|
9
|
Ackerley S, Grierson AJ, Brownlees J, Thornhill P, Anderton BH, Leigh PN, Shaw CE, Miller CC. Glutamate slows axonal transport of neurofilaments in transfected neurons. J Cell Biol 2000; 150:165-76. [PMID: 10893265 PMCID: PMC2185569 DOI: 10.1083/jcb.150.1.165] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/1999] [Accepted: 06/05/2000] [Indexed: 02/06/2023] Open
Abstract
Neurofilaments are transported through axons by slow axonal transport. Abnormal accumulations of neurofilaments are seen in several neurodegenerative diseases, and this suggests that neurofilament transport is defective. Excitotoxic mechanisms involving glutamate are believed to be part of the pathogenic process in some neurodegenerative diseases, but there is currently little evidence to link glutamate with neurofilament transport. We have used a novel technique involving transfection of the green fluorescent protein-tagged neurofilament middle chain to measure neurofilament transport in cultured neurons. Treatment of the cells with glutamate induces a slowing of neurofilament transport. Phosphorylation of the side-arm domains of neurofilaments has been associated with a slowing of neurofilament transport, and we show that glutamate causes increased phosphorylation of these domains in cell bodies. We also show that glutamate activates members of the mitogen-activated protein kinase family, and that these kinases will phosphorylate neurofilament side-arm domains. These results provide a molecular framework to link glutamate excitotoxicity with neurofilament accumulation seen in some neurodegenerative diseases.
Collapse
Affiliation(s)
- S Ackerley
- Department of Neuroscience, The Institute of Psychiatry, Kings College London, London SE5 8AF United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|