1
|
Busch L, Eggert S, Endres K, Bufe B. The Hidden Role of Non-Canonical Amyloid β Isoforms in Alzheimer's Disease. Cells 2022; 11:3421. [PMID: 36359817 PMCID: PMC9654995 DOI: 10.3390/cells11213421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 09/08/2024] Open
Abstract
Recent advances have placed the pro-inflammatory activity of amyloid β (Aβ) on microglia cells as the focus of research on Alzheimer's Disease (AD). Researchers are confronted with an astonishing spectrum of over 100 different Aβ variants with variable length and chemical modifications. With the exception of Aβ1-42 and Aβ1-40, the biological significance of most peptides for AD is as yet insufficiently understood. We therefore aim to provide a comprehensive overview of the contributions of these neglected Aβ variants to microglia activation. First, the impact of Aβ receptors, signaling cascades, scavenger mechanisms, and genetic variations on the physiological responses towards various Aβ species is described. Furthermore, we discuss the importance of different types of amyloid precursor protein processing for the generation of these Aβ variants in microglia, astrocytes, oligodendrocytes, and neurons, and highlight how alterations in secondary structures and oligomerization affect Aβ neurotoxicity. In sum, the data indicate that gene polymorphisms in Aβ-driven signaling pathways in combination with the production and activity of different Aβ variants might be crucial factors for the initiation and progression of different forms of AD. A deeper assessment of their interplay with glial cells may pave the way towards novel therapeutic strategies for individualized medicine.
Collapse
Affiliation(s)
- Lukas Busch
- Department of Informatics and Microsystems Technology, University of Applied Sciences Kaiserslautern, D-66482 Zweibruecken, Germany
| | - Simone Eggert
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, D-37075 Goettingen, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Centre of the Johannes Gutenberg University, D-55131 Mainz, Germany
| | - Bernd Bufe
- Department of Informatics and Microsystems Technology, University of Applied Sciences Kaiserslautern, D-66482 Zweibruecken, Germany
| |
Collapse
|
2
|
Niranjan R. Molecular Basis of Etiological Implications in Alzheimer’s Disease: Focus on Neuroinflammation. Mol Neurobiol 2013; 48:412-28. [DOI: 10.1007/s12035-013-8428-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 02/06/2013] [Indexed: 12/31/2022]
|
3
|
Tharp WG, Lee YH, Greene SM, Vincellete E, Beach TG, Pratley RE. Measurement of altered AβPP isoform expression in frontal cortex of patients with Alzheimer's disease by absolute quantification real-time PCR. J Alzheimers Dis 2012; 29:449-57. [PMID: 22258516 DOI: 10.3233/jad-2011-111337] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Enzymatic cleavage of amyloid-β protein precursor (AβPP) produces amyloid-β (Aβ) peptides which form the insoluble cortical plaques characteristic of Alzheimer's disease (AD). AβPP is post-transcriptionally processed into three major isoforms with differential cellular and tissue expression patterns. Changes in AβPP isoform expression may be indicative of disease pathogenesis in AD, but accurately measuring AβPP gene isoforms has been difficult to standardize, reproduce, and interpret. In light of this, we developed a set of isoform specific absolute quantification real time PCR standards that allow for quantification of transcript copy numbers for total AβPP and all three major isoforms (AβPP695, AβPP751, and AβPP770) in addition to glyceraldehyde-3-dehydrogenase (GAPDH) and examined expression patterns in superior frontal gyrus (SFG) and cerebellar samples from patients with (n = 12) and without AD (n = 10). Both total AβPP and AβPP695 transcripts were significantly decreased in SFG of patients with AD compared to control (p = 0.037 and p = 0.034, respectively). AβPP751 and AβPP770 transcripts numbers were not significantly different between AD and control (p > 0.15). There was trend for decreased percentage AβPP695 (p = 0.051) and increased percentage AβPP770 (p = 0.013) expression in SFG of patients with AD. GAPDH transcripts levels were also decreased significantly in the SFG of patients with AD compared to control (p = 0.005). Decreasing total AβPP and AβPP695 copy number was associated with increased plaque burden and decreased cognitive function. In this study we describe a simple procedure for measuring AβPP isoform transcripts by real-time PCR and confirm previous studies showing altered AβPP isoform expression patterns in AD.
Collapse
Affiliation(s)
- William G Tharp
- Department of Medicine, University of Vermont, Burlington, VT, USA
| | | | | | | | | | | |
Collapse
|
4
|
Relationships between expression of apolipoprotein E and beta-amyloid precursor protein are altered in proximity to Alzheimer beta-amyloid plaques: potential explanations from cell culture studies. J Neuropathol Exp Neurol 2008; 67:773-83. [PMID: 18648325 DOI: 10.1097/nen.0b013e318180ec47] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Theories regarding the initiation and progression of Alzheimer disease (AD) often consider potential roles played by elevations of beta-amyloid precursor protein (betaAPP). Because it is the source of amyloid beta-peptide, betaAPP may simply contribute more pathogenic stimulus when elevated; some analyses have, however, reported a decline in betaAPP in AD. We found a progressive increase in neuronal betaAPP expression with increasing age in the brains of nondemented individuals, whereas in AD patient samples, betaAPP antigenicity decreased in neuronal somata in a manner that correlated with accumulation of mature amyloid beta-peptide plaques. In contrast, apolipoprotein E (ApoE) expression correlated with accumulation of plaques, and even greater amounts of ApoE were detected in plaques. Induction of betaAPP by glutamate in neuronal cell cultures was found to depend upon ApoE levels or activity. Thus, elevations in expression of ApoE and betaAPP by cellular stresses are likely normally linked in vivo, and uncoupling of this link, or other pathologic events in AD initiation, may leave neurons with diminished betaAPP expression, which might in turn reduce their resistance to stressors.
Collapse
|
5
|
Gao S, Krogdahl A, Sørensen JA, Kousted TM, Dabelsteen E, Andreasen PA. Overexpression of protease nexin-1 mRNA and protein in oral squamous cell carcinomas. Oral Oncol 2008; 44:309-13. [DOI: 10.1016/j.oraloncology.2007.02.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Revised: 02/28/2007] [Accepted: 02/28/2007] [Indexed: 01/08/2023]
|
6
|
Sjöbeck M, Haglund M, Englund E. White matter mapping in Alzheimer's disease: A neuropathological study. Neurobiol Aging 2006; 27:673-80. [PMID: 15894407 DOI: 10.1016/j.neurobiolaging.2005.03.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2004] [Revised: 02/22/2005] [Accepted: 03/11/2005] [Indexed: 11/22/2022]
Abstract
White matter disease (WMD) with pervasive non-focal subtotal tissue loss is frequently seen in Alzheimer's disease (AD) upon neuropathological examination. Although WMD has varying effects on AD symptoms, accurate clinical detection is difficult due partly to scarcity of correlative structural imaging and histopathological studies. Neuropathological studies of WMD severity and distribution have been conducted earlier using semi-quantitative methods. A technique for quantifying WMD objectively in large white matter areas, based on optical density (OD) measurements on images of scanned whole-brain sections, was developed and was validated using conventional microscopic assessment. Altogether, 16 AD cases with concomitant WMD (AD-WMD) and 9 cases of AD without WMD (AD-only) were analysed. The OD values correlated significantly with the neuropathological severity of WMD and were significantly lower in AD-WMD than in AD-only in frontal, frontoparietal, temporal and parietal white matter but not in the occipital white matter, the frontal OD difference being greatest. Useful baseline information on WMD distribution in AD to relate to in vivo imaging results was obtained.
Collapse
Affiliation(s)
- Martin Sjöbeck
- Department of Pathology, Division of Neuropathology, Lund University Hospital, S-221 85 Lund, Sweden.
| | | | | |
Collapse
|
7
|
Sjöbeck M, Haglund M, Englund E. Decreasing myelin density reflected increasing white matter pathology in Alzheimer's disease--a neuropathological study. Int J Geriatr Psychiatry 2005; 20:919-26. [PMID: 16163742 DOI: 10.1002/gps.1384] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND White matter disease (WMD) is frequently seen in Alzheimer's disease (AD) at neuropathological examination. It is defined as a subtotal tissue loss with a reduction of myelin, axons and oligodendrocytes as well as astrocytosis. Studies quantitatively defining the myelin loss in AD are scarce. The aim was to develop a method that could provide numerical values of myelin density in AD. The purpose was to compare the myelin contents in increasing grades of pathology of WMD, with age and cortical AD pathology as well as in different regions of the brain in AD. MATERIAL AND METHODS Sixteen cases with AD and concomitant WMD were investigated with an in-house developed image analysis technique to determine the myelin attenuation with optical density (OD) in frontoparietal, parietal, temporal and occipital white matter on whole brain coronal sections stained for myelin with Luxol Fast Blue (LFB). The OD values in LFB were compared grouped according to Haematoxylin/Eosin (HE) evaluated mild, moderate and severe WMD or normal tissue. The OD values were also correlated with age and cortical AD pathology and compared between the different studied white matter regions. RESULTS Increasing severity of WMD was associated with a statistically significant OD reduction. No correlation was seen between age and OD or overall cortical AD pathology. The OD values were significantly lower in frontoparietal-compared to occipital white matter. CONCLUSIONS Myelin loss in AD with WMD is a marked morphologic component of the disease and it is possible to determine the reduction objectively in neuropathological specimens with quantitative measures. This may be of use for clinical diagnostics including brain imaging.
Collapse
Affiliation(s)
- Martin Sjöbeck
- Department of Pathology, Division of Neuropathology, University Hospital, Lund, Sweden.
| | | | | |
Collapse
|
8
|
Abstract
Evolution of the prefrontal cortex was an essential precursor to civilization. During the past decade, it became increasingly obvious that human prefrontal function is under substantial genetic control. In particular, heritability studies of frontal lobe-related neuropsychological function, electrophysiology and neuroimaging have greatly improved our insight. Moreover, the first genes that are relevant for prefrontal function such as catechol-O-methyltransferase (COMT) are currently discovered. In this review, we summarize the present knowledge on the genetics of human prefrontal function. For historical reasons, we discuss the genetics of prefrontal function within the broader concept of general cognitive ability (intelligence). Special emphasis is also given to methodological concerns that need to be addressed when conducting research on the genetics of prefrontal function in humans.
Collapse
Affiliation(s)
- Georg Winterer
- Clinical Brain Disorders Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
9
|
Xie Y, Yao Z, Chai H, Wong WM, Wu W. Potential roles of Alzheimer precursor protein A4 and beta-amyloid in survival and function of aged spinal motor neurons after axonal injury. J Neurosci Res 2003; 73:557-64. [PMID: 12898540 DOI: 10.1002/jnr.10667] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
To study the potential role of Alzheimer precursor protein A4 (APP) and beta-amyloid (A/beta) on aging motor neuron survival, expression of APP, A/beta, and choline acetyltransferase (ChaT) were investigated in aged rats after either distal axotomy or root avulsion injury. Approximately 45% in number of total aged spinal motor neuron were normally APP-positive. A/beta-positive neurites were observed normally in the spinal ventral horn of aged rats. After distal axotomy, without apparent neurodegeneration such as cell loss and decreased ChaT-immunoreactivity, increased levels of APP expression were observed in the spinal cords of aged rats post-injury. In contrast, after avulsion, expression of APP and A/beta were downregulated in the spinal ventral horn of aged rats, and marked loss of spinal motor neurons and downregulated ChaT expression were observed. Our data indicate that APP and A/beta might play beneficial roles in neuronal survival of aged spinal motor neurons after axonal injury.
Collapse
Affiliation(s)
- Yuanyun Xie
- Department of Anatomy, Faculty of Medicine, University of Hong Kong, Hong Kong, People's Republic of China
| | | | | | | | | |
Collapse
|
10
|
Prasad KN, Cole WC, Prasad KC. Risk factors for Alzheimer's disease: role of multiple antioxidants, non-steroidal anti-inflammatory and cholinergic agents alone or in combination in prevention and treatment. J Am Coll Nutr 2002; 21:506-22. [PMID: 12480796 DOI: 10.1080/07315724.2002.10719249] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The etiology of Alzheimer's disease (AD) is not well understood. Etiologic factors, chronic inflammatory reactions, oxidative and nitrosylative stresses and high cholesterol levels are thought to be important for initiating and promoting neurodegenerative changes commonly found in AD brains. Even in familial AD, oxidative stress plays an important role in the early onset of the disease. Mitochondrial damage and proteasome inhibition represent early events in the pathogenesis of AD, whereas increased processing of amyloid precursor protein (APP) to beta-amyloid (Abeta) fragments (Abeta(40) and Abeta(42)) and formation of senile plaques and neurofibrillary tangles (NFTs) represent late events. We propose a hypothesis that in idiopathic AD, epigenetic components of neurons such as mitochondria, proteasomes and post-translation protein modifications (processing of amyloid precursor protein to beta-amyloid and hyperphosphorylation of tau), rather than nuclear genes, are the primary targets for the action of diverse groups of neurotoxins. Based on epidemiologic, laboratory and limited clinical studies, we propose that a combination of non steroidal anti-inflammatory drugs (NSAIDs) and appropriate levels and types of multiple micronutrients, including antioxidants, may be more effective than the individual agents in the prevention, and they, in combination with a cholinergic agent, may be more effective in the treatment of AD than the individual agents alone. In addition, agents, which can prevent formation of plaques or dissolve these plaques may further enhance the efficacy of our proposed treatment strategy.
Collapse
Affiliation(s)
- Kedar N Prasad
- Center for Vitamins and Cancer Research, Department of Radiology, School of Medicine, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| | | | | |
Collapse
|
11
|
Maldonado TA, Jones RE, Norris DO. Intraneuronal amyloid precursor protein (APP) and appearance of extracellular beta-amyloid peptide (abeta) in the brain of aging kokanee salmon. JOURNAL OF NEUROBIOLOGY 2002; 53:11-20. [PMID: 12360579 DOI: 10.1002/neu.10086] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Antibodies to human amyloid precursor protein (APP(695)) and beta-amyloid peptide (A beta(1-42)) were used to determine timing of amyloidosis in the brain of kokanee salmon (Oncorhynchus nerka kennerlyi) in one of four reproductive stages: immature (IM), maturing (MA), sexually mature (SM), and spawning (SP), representing a range of aging from somatically mature but sexually immature to spawning and somatic senescence. In IM fish, immunoreactive (ir) intracellular APP occurred in 18 of 23 brain regions. During sexual maturation and aging, the number of neurons expressing APP increased in 11 of these APP-ir regions. A beta-ir was absent in IM fish, present in seven regions in MA fish, moderately abundant in 15 regions in SM fish, and was most abundant in all brain regions of SP fish exhibiting A beta-ir. Intracellular APP-ir was observed in brain regions involved in sensory integration, olfaction, vision, stress responses, reproduction, and coordination. Intra- and extracellular A beta(1-42) immunoreactivity (A beta-ir) was present in all APP-ir regions except the nucleus lateralis tuberis (hypothalamus) and Purkinje cells (cerebellum). APP-ir and A beta deposition increase during aging. APP-ir is present in IM fish; A beta-ir usually appears first in MA or SM fish and increases in SM fish as does APP-ir. Extracellular A beta deposition dramatically increases between SM and SP stages (1-2 weeks) in all fish, indicating an extremely rapid and synchronized process. Rapid senescence observed in pacific salmon could make them a useful model to investigate timing of amyloidosis and neurodegeneration during brain aging.
Collapse
Affiliation(s)
- Tammy A Maldonado
- Department of EPO Biology, University of Colorado, 334 UCB, Boulder, Colorado 80309-0334, USA
| | | | | |
Collapse
|
12
|
Abstract
The amyloid precursor protein (APP) gene and its protein products have multiple functions in the central nervous system and fulfil criteria as neuractive peptides: presence, release and identity of action. There is increased understanding of the role of secretases (proteases) in the metabolism of APP and the production of its peptide fragments. The APP gene and its products have physiological roles in synaptic action, development of the brain, and in the response to stress and injury. These functions reveal the strategic importance of APP in the workings of the brain and point to its evolutionary significance.
Collapse
Affiliation(s)
- P K Panegyres
- Department of Neuropathology, Royal Perth Hospital, Western Australia.
| |
Collapse
|
13
|
Rosenberg RN. The molecular and genetic basis of AD: the end of the beginning: the 2000 Wartenberg lecture. Neurology 2000; 54:2045-54. [PMID: 10851361 DOI: 10.1212/wnl.54.11.2045] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- R N Rosenberg
- Department of Neurology, University of Texas Southwestern Medical Center at Dallas 75390-9036, USA
| |
Collapse
|