Berman E, Sharon I, Atlan H. An early transient increase of intracellular Na+ may be one of the first components of the mitogenic signal. Direct detection by 23Na-NMR spectroscopy in quiescent 3T3 mouse fibroblasts stimulated by growth factors.
BIOCHIMICA ET BIOPHYSICA ACTA 1995;
1239:177-85. [PMID:
7488622 DOI:
10.1016/0005-2736(95)00144-r]
[Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
23Na-NMR spectroscopy was designed to allow for continuous recording of intracellular Na+ in 3T3 fibroblasts stimulated by serum growth-factors in the presence of ion transport inhibitors. The metabolic state of cells at rest and following stimulation was monitored by 31P-NMR spectra of ATP and related high-energy phosphates. The study demonstrates that early activation of ion transporters by addition of serum is marked by the appearance of transient increase of the intracellular Na+, beginning 3 min after addition of serum to quiescent culture and lasting approx. 20 min. The initial rise in cellular Na+ results from an increased activity of the bumetanide-sensitive Na+/K+/Cl- cotransport and of the amiloride-sensitive Na+/H+ antiport. It is suppressed by any one of these inhibitors. Subsequent activation of the ouabain-sensitive Na+/K(+)-ATPase results in an increased Na+ efflux, leading to a return of intracellular Na+ to its initial baseline. Previous work had shown that the early activation of bumetanide-sensitive and amiloride sensitive ion-transporters by growth-factors was essential for induction of cell division, at least in some cell types. Preventing ion activation by adding ion-transport inhibitors lead to the inhibition of DNA synthesis 18 h later. This process was reversible upon elimination of these inhibitors. Even though alternative non-specific effects of these inhibitors cannot be ruled out, the observed transient peak in intracellular Na+ may be one of the earliest components of the mitogenic signal. On the basis of previous works, its effect seems to be related to the activation of Ca(2+)-dependent and cyclic AMP second messenger pathways. The different mechanisms whereby the activated Na+/K+/Cl- cotransport and the Na+/H+ antiport contribute to this signal need to be further investigated.
Collapse