1
|
Doul J, Minaříková M, Charvátová Z, Maxová H. Nitric oxide is involved in the cardioprotection of neonatal rat hearts, but not in neonatal ischemic postconditioning. Physiol Rep 2024; 12:e16147. [PMID: 39097984 PMCID: PMC11298247 DOI: 10.14814/phy2.16147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024] Open
Abstract
The cardioprotective effect of ischemic preconditioning (IPC) and ischemic postconditioning (IPoC) in adult hearts is mediated by nitric oxide (NO). During the early developmental period, rat hearts exhibit higher resistance to ischemia-reperfusion (I/R) injury, contain higher levels of serum nitrates, and their resistance cannot be further increased by IPC or IPoC. NOS blocker (L-NAME) lowers their high resistance. Wistar rat hearts (postnatal Days 1 and 10) were perfused according to Langendorff and exposed to 40 min of global ischemia followed by reperfusion with or without IPoC. NO and reactive oxygen species donors (DEA-NONO, SIN-1) and L-NAME were administered. Tolerance to ischemia decreased between Days 1 and 10. DEA-NONO (low concentrations) significantly increased tolerance to I/R injury on both Days 1 and 10. SIN-1 increased tolerance to I/R injury on Day 10, but not on Day 1. L-NAME significantly reduced resistance to I/R injury on Day 1, but actually increased resistance to I/R injury on Day 10. Cardioprotection by IPoC on Day 10 was not affected by either NO donors or L-NAME. It can be concluded that resistance of the neonatal heart to I/R injury is NO dependent, but unlike in adult hearts, cardioprotective interventions, such as IPoC, are most likely NO independent.
Collapse
Affiliation(s)
- Jan Doul
- Department of Pathophysiology, Second Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Marcela Minaříková
- Department of Physiology, Second Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Zuzana Charvátová
- Department of Pathophysiology, Second Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Hana Maxová
- Department of Pathophysiology, Second Faculty of MedicineCharles UniversityPragueCzech Republic
- Center for Experimental MedicineInstitute for Clinical and Experimental MedicinePragueCzech Republic
| |
Collapse
|
2
|
Chiari P, Fellahi JL. Myocardial protection in cardiac surgery: a comprehensive review of current therapies and future cardioprotective strategies. Front Med (Lausanne) 2024; 11:1424188. [PMID: 38962735 PMCID: PMC11220133 DOI: 10.3389/fmed.2024.1424188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 05/23/2024] [Indexed: 07/05/2024] Open
Abstract
Cardiac surgery with cardiopulmonary bypass results in global myocardial ischemia-reperfusion injury, leading to significant postoperative morbidity and mortality. Although cardioplegia is the cornerstone of intraoperative cardioprotection, a number of additional strategies have been identified. The concept of preconditioning and postconditioning, despite its limited direct clinical application, provided an essential contribution to the understanding of myocardial injury and organ protection. Therefore, physicians can use different tools to limit perioperative myocardial injury. These include the choice of anesthetic agents, remote ischemic preconditioning, tight glycemic control, optimization of respiratory parameters during the aortic unclamping phase to limit reperfusion injury, appropriate choice of monitoring to optimize hemodynamic parameters and limit perioperative use of catecholamines, and early reintroduction of cardioprotective agents in the postoperative period. Appropriate management before, during, and after cardiopulmonary bypass will help to decrease myocardial damage. This review aimed to highlight the current advancements in cardioprotection and their potential applications during cardiac surgery.
Collapse
Affiliation(s)
- Pascal Chiari
- Service d’Anesthésie Réanimation, Hôpital Universitaire Louis Pradel, Hospices Civils de Lyon, Lyon, France
- Laboratoire CarMeN, Inserm UMR 1060, Université Claude Bernard Lyon 1, Lyon, France
| | - Jean-Luc Fellahi
- Service d’Anesthésie Réanimation, Hôpital Universitaire Louis Pradel, Hospices Civils de Lyon, Lyon, France
- Laboratoire CarMeN, Inserm UMR 1060, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
3
|
Trummer G, Benk C, Pooth JS, Wengenmayer T, Supady A, Staudacher DL, Damjanovic D, Lunz D, Wiest C, Aubin H, Lichtenberg A, Dünser MW, Szasz J, Dos Reis Miranda D, van Thiel RJ, Gummert J, Kirschning T, Tigges E, Willems S, Beyersdorf F. Treatment of Refractory Cardiac Arrest by Controlled Reperfusion of the Whole Body: A Multicenter, Prospective Observational Study. J Clin Med 2023; 13:56. [PMID: 38202063 PMCID: PMC10780178 DOI: 10.3390/jcm13010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Background: Survival following cardiac arrest (CA) remains poor after conventional cardiopulmonary resuscitation (CCPR) (6-26%), and the outcomes after extracorporeal cardiopulmonary resuscitation (ECPR) are often inconsistent. Poor survival is a consequence of CA, low-flow states during CCPR, multi-organ injury, insufficient monitoring, and delayed treatment of the causative condition. We developed a new strategy to address these issues. Methods: This all-comers, multicenter, prospective observational study (69 patients with in- and out-of-hospital CA (IHCA and OHCA) after prolonged refractory CCPR) focused on extracorporeal cardiopulmonary support, comprehensive monitoring, multi-organ repair, and the potential for out-of-hospital cannulation and treatment. Result: The overall survival rate at hospital discharge was 42.0%, and a favorable neurological outcome (CPC 1+2) at 90 days was achieved for 79.3% of survivors (CPC 1+2 survival 33%). IHCA survival was very favorable (51.7%), as was CPC 1+2 survival at 90 days (41%). Survival of OHCA patients was 35% and CPC 1+2 survival at 90 days was 28%. The subgroup of OHCA patients with pre-hospital cannulation showed a superior survival rate of 57.1%. Conclusions: This new strategy focusing on repairing damage to multiple organs appears to improve outcomes after CA, and these findings should provide a sound basis for further research in this area.
Collapse
Affiliation(s)
- Georg Trummer
- Department of Cardiovascular Surgery, University Medical Center Freiburg, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany; (G.T.)
- Faculty of Medicine, Albert-Ludwigs-University Freiburg, Breisacherstr. 153, 79110 Freiburg, Germany
| | - Christoph Benk
- Department of Cardiovascular Surgery, University Medical Center Freiburg, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany; (G.T.)
- Faculty of Medicine, Albert-Ludwigs-University Freiburg, Breisacherstr. 153, 79110 Freiburg, Germany
| | - Jan-Steffen Pooth
- Faculty of Medicine, Albert-Ludwigs-University Freiburg, Breisacherstr. 153, 79110 Freiburg, Germany
- Department of Emergency Medicine, Medical Center—University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
| | - Tobias Wengenmayer
- Faculty of Medicine, Albert-Ludwigs-University Freiburg, Breisacherstr. 153, 79110 Freiburg, Germany
- Interdisciplinary Medical Intensive Care, Medical Center—University of Freiburg, 79106 Freiburg, Germany
| | - Alexander Supady
- Faculty of Medicine, Albert-Ludwigs-University Freiburg, Breisacherstr. 153, 79110 Freiburg, Germany
- Interdisciplinary Medical Intensive Care, Medical Center—University of Freiburg, 79106 Freiburg, Germany
| | - Dawid L. Staudacher
- Faculty of Medicine, Albert-Ludwigs-University Freiburg, Breisacherstr. 153, 79110 Freiburg, Germany
- Interdisciplinary Medical Intensive Care, Medical Center—University of Freiburg, 79106 Freiburg, Germany
| | - Domagoj Damjanovic
- Department of Cardiovascular Surgery, University Medical Center Freiburg, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany; (G.T.)
- Faculty of Medicine, Albert-Ludwigs-University Freiburg, Breisacherstr. 153, 79110 Freiburg, Germany
| | - Dirk Lunz
- Department of Anesthesiology, University Medical Center, 93042 Regensburg, Germany;
| | - Clemens Wiest
- Department of Internal Medicine II, University Medical Center, 93042 Regensburg, Germany
| | - Hug Aubin
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany (A.L.)
| | - Artur Lichtenberg
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany (A.L.)
| | - Martin W. Dünser
- Department of Anesthesiology and Intensive Care Medicine, Kepler University Hospital and Johannes Kepler University, 4020 Linz, Austria
| | - Johannes Szasz
- Department of Anesthesiology and Intensive Care Medicine, Kepler University Hospital and Johannes Kepler University, 4020 Linz, Austria
| | - Dinis Dos Reis Miranda
- Department of Adult Intensive Care, Erasmus MC University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Robert J. van Thiel
- Department of Adult Intensive Care, Erasmus MC University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Jan Gummert
- Clinic for Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, University Hospital of the Ruhr University Bochum, 44791 Bad Oeynhausen, Germany
| | - Thomas Kirschning
- Clinic for Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, University Hospital of the Ruhr University Bochum, 44791 Bad Oeynhausen, Germany
| | - Eike Tigges
- Asklepios Klinik St. Georg, Heart and Vascular Center, Department of Cardiology and Intensive Care Medicine, 20099 Hamburg, Germany
| | - Stephan Willems
- Asklepios Klinik St. Georg, Heart and Vascular Center, Department of Cardiology and Intensive Care Medicine, 20099 Hamburg, Germany
| | - Friedhelm Beyersdorf
- Department of Cardiovascular Surgery, University Medical Center Freiburg, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany; (G.T.)
- Faculty of Medicine, Albert-Ludwigs-University Freiburg, Breisacherstr. 153, 79110 Freiburg, Germany
| | | |
Collapse
|
4
|
Chiari P, Desebbe O, Durand M, Fischer MO, Lena-Quintard D, Palao JC, Samson G, Varillon Y, Vaz B, Joseph P, Ferraris A, Jacquet-Lagreze M, Pozzi M, Maucort-Boulch D, Ovize M, Bidaux G, Mewton N, Fellahi JL. A Multimodal Cardioprotection Strategy During Cardiac Surgery: The ProCCard Study. J Cardiothorac Vasc Anesth 2023; 37:1368-1376. [PMID: 37202231 DOI: 10.1053/j.jvca.2023.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 05/20/2023]
Abstract
OBJECTIVE The ProCCard study tested whether combining several cardioprotective interventions would reduce the myocardial and other biological and clinical damage in patients undergoing cardiac surgery. DESIGN Prospective, randomized, controlled trial. SETTING Multicenter tertiary care hospitals. PARTICIPANTS 210 patients scheduled to undergo aortic valve surgery. INTERVENTIONS A control group (standard of care) was compared to a treated group combining five perioperative cardioprotective techniques: anesthesia with sevoflurane, remote ischemic preconditioning, close intraoperative blood glucose control, moderate respiratory acidosis (pH 7.30) just before aortic unclamping (concept of the "pH paradox"), and gentle reperfusion just after aortic unclamping. MEASUREMENTS AND MAIN RESULTS The primary outcome was the postoperative 72-h area under the curve (AUC) for high-sensitivity cardiac troponin I (hsTnI). Secondary endpoints were biological markers and clinical events occurring during the 30 postoperative days and the prespecified subgroup analyses. The linear relationship between the 72-h AUC for hsTnI and aortic clamping time, significant in both groups (p < 0.0001), was not modified by the treatment (p = 0.57). The rate of adverse events at 30 days was identical. A non-significant reduction of the 72-h AUC for hsTnI (-24%, p = 0.15) was observed when sevoflurane was administered during cardiopulmonary bypass (46% of patients in the treated group). The incidence of postoperative renal failure was not reduced (p = 0.104). CONCLUSION This multimodal cardioprotection has not demonstrated any biological or clinical benefit during cardiac surgery. The cardio- and reno-protective effects of sevoflurane and remote ischemic preconditioning therefore remain to be demonstrated in this context.
Collapse
Affiliation(s)
- Pascal Chiari
- Service d'Anesthésie-Réanimation, Hôpital Louis Pradel, Hospices Civils de Lyon, Lyon, France; Inserm U1060, Laboratoire CarMeN, IHU OPeRa, Lyon, France..
| | - Olivier Desebbe
- Service d'Anesthésie-Réanimation, Clinique de la Sauvegarde, Ramsay Générale de Santé, Lyon, France
| | - Michel Durand
- Pole d'Anesthésie-Réanimation, Hôpital Albert Michallon, Centre Hospitalier Universitaire de Grenoble-Alpes, Grenoble, France
| | - Marc-Olivier Fischer
- Service d'Anesthésie-Réanimation, Centre Hospitalier Universitaire de Caen, Université de Normandie, UNICAEN, Caen, France
| | - Diane Lena-Quintard
- Service d'Anesthésie-Réanimation, Institut Arnault Tzanck, Saint Laurent du Var, France
| | - Jean-Charles Palao
- Service d'Anesthésie-Réanimation, Hôpital Nord, Centre Hospitalier Universitaire de Saint Etienne, Saint Etienne, France
| | - Géraldine Samson
- Centre d'Investigation Clinique de Lyon (CIC 1407 Inserm), Hospices Civils de Lyon, Lyon, France
| | - Yvonne Varillon
- Centre d'Investigation Clinique de Lyon (CIC 1407 Inserm), Hospices Civils de Lyon, Lyon, France
| | - Bernadette Vaz
- Centre d'Investigation Clinique de Lyon (CIC 1407 Inserm), Hospices Civils de Lyon, Lyon, France
| | - Pierre Joseph
- Service d'Anesthésie-Réanimation, Hôpital Louis Pradel, Hospices Civils de Lyon, Lyon, France
| | - Arnaud Ferraris
- Service d'Anesthésie-Réanimation, Hôpital Louis Pradel, Hospices Civils de Lyon, Lyon, France
| | - Matthias Jacquet-Lagreze
- Service d'Anesthésie-Réanimation, Hôpital Louis Pradel, Hospices Civils de Lyon, Lyon, France; Inserm U1060, Laboratoire CarMeN, IHU OPeRa, Lyon, France
| | - Matteo Pozzi
- Service de Chirurgie Cardiaque, Hôpital Louis Pradel, Hospices Civils de Lyon, Lyon, France
| | - Delphine Maucort-Boulch
- Service de Biostatistique-Bioinformatique, Pôle Santé Publique, Hospices Civils de Lyon, Lyon, France; Université de Lyon, Lyon, France; Université Lyon 1, Villeurbanne, France; CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, Équipe Biostatistique-Santé, Villeurbanne France
| | - Michel Ovize
- Inserm U1060, Laboratoire CarMeN, IHU OPeRa, Lyon, France.; Centre d'Investigation Clinique de Lyon (CIC 1407 Inserm), Hospices Civils de Lyon, Lyon, France
| | - Gabriel Bidaux
- Inserm U1060, Laboratoire CarMeN, IHU OPeRa, Lyon, France
| | - Nathan Mewton
- Inserm U1060, Laboratoire CarMeN, IHU OPeRa, Lyon, France.; Centre d'Investigation Clinique de Lyon (CIC 1407 Inserm), Hospices Civils de Lyon, Lyon, France; Service d'Insuffisance Cardiaque, Hôpital Louis Pradel, Hospices Civils de Lyon, Lyon, France
| | - Jean-Luc Fellahi
- Service d'Anesthésie-Réanimation, Hôpital Louis Pradel, Hospices Civils de Lyon, Lyon, France; Inserm U1060, Laboratoire CarMeN, IHU OPeRa, Lyon, France
| |
Collapse
|
5
|
A Novel Reperfusion Strategy for Primary Percutaneous Coronary Intervention in Patients with Acute ST-Segment Elevation Myocardial Infarction: A Prospective Case Series. J Clin Med 2023; 12:jcm12020433. [PMID: 36675362 PMCID: PMC9864309 DOI: 10.3390/jcm12020433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/17/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Ischemia reperfusion injury (IRI) remains a major problem in patients with acute ST-segment elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention (PCI). We have developed a novel reperfusion strategy for PCI and named it "volume-controlled reperfusion (VCR)". The aim of the current study was to assess the safety and feasibility of VCR in patients with STEMI. METHODS Consecutive patients admitted to Beijing Chaoyang Hospital with STEMI were prospectively enrolled. The feasibility endpoint was procedural success. The safety endpoints included death from all causes, major vascular complications, and major adverse cardiac event (MACE), i.e., a composite of cardiac death, myocardial reinfarction, target vessel revascularization (TVR), and heart failure. RESULTS A total of 30 patients were finally included. Procedural success was achieved in 28 (93.3%) patients. No patients died during the study and no major vascular complications or MACE occurred during hospitalization. With the exception of one patient (3.3%) who underwent TVR three months after discharge, no patient encountered death (0.0%), major vascular complications (0.0%), or and other MACEs (0.0%) during the median follow-up of 16 months. CONCLUSION The findings of the pilot study suggest that VCR has favorable feasibility and safety in patients with STEMI. Further larger randomized trials are required to evaluate the effectiveness of VCR in STEMI patients.
Collapse
|
6
|
Prevention of Ischemic Injury in Cardiac Surgery. Perioper Med (Lond) 2022. [DOI: 10.1016/b978-0-323-56724-4.00011-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
7
|
Korei C, Szabo B, Varga A, Barath B, Deak A, Vanyolos E, Hargitai Z, Kovacs I, Nemeth N, Peto K. Hematological, Micro-Rheological, and Metabolic Changes Modulated by Local Ischemic Pre- and Post-Conditioning in Rat Limb Ischemia-Reperfusion. Metabolites 2021; 11:metabo11110776. [PMID: 34822434 PMCID: PMC8625580 DOI: 10.3390/metabo11110776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 12/19/2022] Open
Abstract
In trauma and orthopedic surgery, limb ischemia-reperfusion (I/R) remains a great challenge. The effect of preventive protocols, including surgical conditioning approaches, is still controversial. We aimed to examine the effects of local ischemic pre-conditioning (PreC) and post-conditioning (PostC) on limb I/R. Anesthetized rats were randomized into sham-operated (control), I/R (120-min limb ischemia with tourniquet), PreC, or PostC groups (3 × 10-min tourniquet ischemia, 10-min reperfusion intervals). Blood samples were taken before and just after the ischemia, and on the first postoperative week for testing hematological, micro-rheological (erythrocyte deformability and aggregation), and metabolic parameters. Histological samples were also taken. Erythrocyte count, hemoglobin, and hematocrit values decreased, while after a temporary decrease, platelet count increased in I/R groups. Erythrocyte deformability impairment and aggregation enhancement were seen after ischemia, more obviously in the PreC group, and less in PostC. Blood pH decreased in all I/R groups. The elevation of creatinine and lactate concentration was the largest in PostC group. Histology did not reveal important differences. In conclusion, limb I/R caused micro-rheological impairment with hematological and metabolic changes. Ischemic pre- and post-conditioning had additive changes in various manners. Post-conditioning showed better micro-rheological effects. However, by these parameters it cannot be decided which protocol is better.
Collapse
Affiliation(s)
- Csaba Korei
- Department of Traumatology and Hand Surgery, Faculty of Medicine, University of Debrecen, Bartok Bela ut 2-26, H-4031 Debrecen, Hungary;
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4002 Debrecen, Hungary; (B.S.); (A.V.); (B.B.); (A.D.); (E.V.); (K.P.)
- Doctoral School of Clinical Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
| | - Balazs Szabo
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4002 Debrecen, Hungary; (B.S.); (A.V.); (B.B.); (A.D.); (E.V.); (K.P.)
- Doctoral School of Clinical Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
| | - Adam Varga
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4002 Debrecen, Hungary; (B.S.); (A.V.); (B.B.); (A.D.); (E.V.); (K.P.)
- Doctoral School of Clinical Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
| | - Barbara Barath
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4002 Debrecen, Hungary; (B.S.); (A.V.); (B.B.); (A.D.); (E.V.); (K.P.)
- Doctoral School of Clinical Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
| | - Adam Deak
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4002 Debrecen, Hungary; (B.S.); (A.V.); (B.B.); (A.D.); (E.V.); (K.P.)
| | - Erzsebet Vanyolos
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4002 Debrecen, Hungary; (B.S.); (A.V.); (B.B.); (A.D.); (E.V.); (K.P.)
| | - Zoltan Hargitai
- Clinical Center, Pathology Unit, Kenezy Campus, University of Debrecen, Bartok Bela ut 2-26, H-4031 Debrecen, Hungary; (Z.H.); (I.K.)
| | - Ilona Kovacs
- Clinical Center, Pathology Unit, Kenezy Campus, University of Debrecen, Bartok Bela ut 2-26, H-4031 Debrecen, Hungary; (Z.H.); (I.K.)
| | - Norbert Nemeth
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4002 Debrecen, Hungary; (B.S.); (A.V.); (B.B.); (A.D.); (E.V.); (K.P.)
- Correspondence: ; Tel./Fax: +36-52-416-915
| | - Katalin Peto
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4002 Debrecen, Hungary; (B.S.); (A.V.); (B.B.); (A.D.); (E.V.); (K.P.)
| |
Collapse
|
8
|
Fischesser DM, Bo B, Benton RP, Su H, Jahanpanah N, Haworth KJ. Controlling Reperfusion Injury With Controlled Reperfusion: Historical Perspectives and New Paradigms. J Cardiovasc Pharmacol Ther 2021; 26:504-523. [PMID: 34534022 DOI: 10.1177/10742484211046674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cardiac reperfusion injury is a well-established outcome following treatment of acute myocardial infarction and other types of ischemic heart conditions. Numerous cardioprotection protocols and therapies have been pursued with success in pre-clinical models. Unfortunately, there has been lack of successful large-scale clinical translation, perhaps in part due to the multiple pathways that reperfusion can contribute to cell death. The search continues for new cardioprotection protocols based on what has been learned from past results. One class of cardioprotection protocols that remain under active investigation is that of controlled reperfusion. This class consists of those approaches that modify, in a controlled manner, the content of the reperfusate or the mechanical properties of the reperfusate (e.g., pressure and flow). This review article first provides a basic overview of the primary pathways to cell death that have the potential to be addressed by various forms of controlled reperfusion, including no-reflow phenomenon, ion imbalances (particularly calcium overload), and oxidative stress. Descriptions of various controlled reperfusion approaches are described, along with summaries of both mechanistic and outcome-oriented studies at the pre-clinical and clinical phases. This review will constrain itself to approaches that modify endogenously-occurring blood components. These approaches include ischemic postconditioning, gentle reperfusion, controlled hypoxic reperfusion, controlled hyperoxic reperfusion, controlled acidotic reperfusion, and controlled ionic reperfusion. This review concludes with a discussion of the limitations of past approaches and how they point to potential directions of investigation for the future.
Collapse
Affiliation(s)
- Demetria M Fischesser
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, 2514University of Cincinnati, Cincinnati, OH, USA
| | - Bin Bo
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, 2514University of Cincinnati, Cincinnati, OH, USA
| | - Rachel P Benton
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, 2514University of Cincinnati, Cincinnati, OH, USA
| | - Haili Su
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, 2514University of Cincinnati, Cincinnati, OH, USA
| | - Newsha Jahanpanah
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, 2514University of Cincinnati, Cincinnati, OH, USA
| | - Kevin J Haworth
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, 2514University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
9
|
van der Weg K, Prinzen FW, Gorgels AP. Editor's Choice- Reperfusion cardiac arrhythmias and their relation to reperfusion-induced cell death. EUROPEAN HEART JOURNAL-ACUTE CARDIOVASCULAR CARE 2018; 8:142-152. [PMID: 30421619 DOI: 10.1177/2048872618812148] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Reperfusion does not only salvage ischaemic myocardium but can also cause additional cell death which is called lethal reperfusion injury. The time of reperfusion is often accompanied by ventricular arrhythmias, i.e. reperfusion arrhythmias. While both conditions are seen as separate processes, recent research has shown that reperfusion arrhythmias are related to larger infarct size. The pathophysiology of fatal reperfusion injury revolves around intracellular calcium overload and reactive oxidative species inducing apoptosis by opening of the mitochondrial protein transition pore. The pathophysiological basis for reperfusion arrhythmias is the same intracellular calcium overload as that causing fatal reperfusion injury. Therefore both conditions should not be seen as separate entities but as one and the same process resulting in two different visible effects. Reperfusion arrhythmias could therefore be seen as a potential marker for fatal reperfusion injury.
Collapse
Affiliation(s)
- Kirian van der Weg
- 1 Department of Cardiology, Maastricht University Medical Center, The Netherlands
| | - Frits W Prinzen
- 2 Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, The Netherlands
| | - Anton Pm Gorgels
- 1 Department of Cardiology, Maastricht University Medical Center, The Netherlands.,2 Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, The Netherlands
| |
Collapse
|
10
|
Lee JH, Kim K, Jo YH, Hwang JE, Chung HJ, Yang C. Reoxygenation speed and its implication for cellular injury responses in hypoxic RAW 264.7 cells. J Surg Res 2018; 227:88-94. [PMID: 29804868 DOI: 10.1016/j.jss.2017.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 09/12/2017] [Accepted: 11/03/2017] [Indexed: 01/02/2023]
Abstract
BACKGROUND Ischemia/reperfusion injury is characterized by excess generation of reactive oxygen species (ROS). The purpose of this study is to test the effect of reoxygenation speed on ROS production and the cellular injury responses in hypoxic macrophages RAW 264.7 cells and its potential mechanisms for the generation of ROS. MATERIALS AND METHODS After hypoxic exposure of RAW 264.7 cells for 20 h, reoxygenation was performed for 6 h by stepwise increase in oxygen concentration (0.8% increase of oxygen every 15 min) in the slow reoxygenation (SRox) group or by moving the culture flasks quickly to a normoxic incubator in the rapid reoxygenation (RRox) group. To identify the potential effect of reoxygenation speed on the generation of ROS, the cells were pretreated with apocynin, VAS2870, and MitoTEMPO before the induction of hypoxia. RESULTS SRox significantly decreased cell death and cytotoxicity compared with RRox (P < 0.05). RRox resulted in significantly more generation of ROS, interleukin-1β, interleukin-6, and nitric oxide than SRox (P < 0.05). SRox also increased the expression of prosurvival proteins and decreased apoptosis. In cells pretreated with VAS2870 or MitoTEMPO, the reduced ROS generation by SRox was maintained. However, pretreatment with apocynin abolished the effect of reoxygenation speed on ROS generation. CONCLUSIONS SRox compared with RRox decreased cellular injury in hypoxic RAW 264.7 cells by decreasing ROS and inflammatory cytokine production and decreasing apoptosis.
Collapse
Affiliation(s)
- Jae Hyuk Lee
- Department of Emergency Medicine, Seoul National University Bundang Hospital, Gyeonggi-do, Republic of Korea
| | - Kyuseok Kim
- Department of Emergency Medicine, Seoul National University Bundang Hospital, Gyeonggi-do, Republic of Korea.
| | - You Hwan Jo
- Department of Emergency Medicine, Seoul National University Bundang Hospital, Gyeonggi-do, Republic of Korea
| | - Ji Eun Hwang
- Department of Emergency Medicine, Seoul National University Bundang Hospital, Gyeonggi-do, Republic of Korea
| | - Hea Jin Chung
- Department of Emergency Medicine, Emergency Care Center, Soonchunhyang University Hospital, Seoul, Republic of Korea
| | - Chungmi Yang
- Department of Emergency Medicine, Seoul National University Bundang Hospital, Gyeonggi-do, Republic of Korea
| |
Collapse
|
11
|
Jung H. Kidney transplantation and ischemic conditioning: past, present and future perspectives. Anesth Pain Med (Seoul) 2018. [DOI: 10.17085/apm.2018.13.1.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Hoon Jung
- Department of Anesthesiology and Pain Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| |
Collapse
|
12
|
Sunagawa G, Koprivanac M, Karimov JH, Moazami N, Fukamachi K. Current status of mechanical circulatory support for treatment of advanced end-stage heart failure: successes, shortcomings and needs. Expert Rev Cardiovasc Ther 2017; 15:377-387. [PMID: 28351172 DOI: 10.1080/14779072.2017.1313114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Heart failure (HF) remains a major global burden in terms of morbidity and mortality. Despite advances in pharmacological and resynchronization device therapy, many patients worsen to end-stage HF. Although the gold-standard treatment for such patients is heart transplantation, there will always be a shortage of donor hearts. Areas covered: A left ventricular assist device (LVAD) is a valuable option for these patients as a bridge measure (to recovery, to candidacy for transplant, or to transplant itself) or as destination therapy. This review describes the current indications for and complications of the most commonly implanted LVADs. In addition, we review the potential and promising new LVADs, including the HeartMate 3, MVAD, and other LVADs. Studies investigating each were identified through a combination of online database and direct extraction of studies cited in previously identified articles. Expert commentary: The goal of LVADs has been to fill the gap between patients with end-stage HF who would likely not benefit from heart transplantation and those who could benefit from a donor heart. As of now, the use of LVADs has been limited to patients with end-stage HF, but next-generation LVAD therapy may improve both survival and quality of life in less sick patients.
Collapse
Affiliation(s)
- Gengo Sunagawa
- a Department of Biomedical Engineering , Lerner Research Institute, Cleveland Clinic , Cleveland , OH , USA
| | - Marijan Koprivanac
- b Department of Thoracic and Cardiovascular Surgery, Kaufman Center for Heart Failure , Cardiac Transplantation and Mechanical Circulatory Support, Miller Family Heart and Vascular Institute, Cleveland Clinic , Cleveland , OH , USA
| | - Jamshid H Karimov
- a Department of Biomedical Engineering , Lerner Research Institute, Cleveland Clinic , Cleveland , OH , USA
| | - Nader Moazami
- a Department of Biomedical Engineering , Lerner Research Institute, Cleveland Clinic , Cleveland , OH , USA.,b Department of Thoracic and Cardiovascular Surgery, Kaufman Center for Heart Failure , Cardiac Transplantation and Mechanical Circulatory Support, Miller Family Heart and Vascular Institute, Cleveland Clinic , Cleveland , OH , USA
| | - Kiyotaka Fukamachi
- a Department of Biomedical Engineering , Lerner Research Institute, Cleveland Clinic , Cleveland , OH , USA
| |
Collapse
|
13
|
Trankle C, Thurber CJ, Toldo S, Abbate A. Mitochondrial Membrane Permeability Inhibitors in Acute Myocardial Infarction: Still Awaiting Translation. ACTA ACUST UNITED AC 2016; 1:524-535. [PMID: 30167535 PMCID: PMC6113419 DOI: 10.1016/j.jacbts.2016.06.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/27/2016] [Accepted: 06/27/2016] [Indexed: 12/22/2022]
Abstract
Despite therapeutic advances, acute myocardial infarction (AMI) remains a leading cause of morbidity and mortality worldwide. One potential limitation of the current treatment paradigm is the lack of effective therapies to optimize reperfusion after ischemia and prevent reperfusion-mediated injury. Experimental studies indicate that this process accounts for up to 50% of the final infarct size, lending it importance as a potential target for cardioprotection. However, multiple therapeutic approaches have shown potential in pre-clinical and early phase trials but a paucity of clear clinical benefit when expanded to larger studies. Here we explore this history of trials and errors of the studies of cyclosporine A and other mitochondrial membrane permeability inhibitors, agents that appeared to have a promising pre-clinical record yet provided disappointing results in phase III clinical trials.
Collapse
Affiliation(s)
- Cory Trankle
- Division of Cardiology, VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia
| | - Clinton J Thurber
- Division of Cardiology, VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia
| | - Stefano Toldo
- Division of Cardiology, VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia.,Division of Cardiac Surgery, VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia
| | - Antonio Abbate
- Division of Cardiology, VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia.,Johnson Research Center for Critical Care, Virginia Commonwealth University, Richmond, Virginia.,Department of Medical and Surgical Sciences and Biotechnologies, University of Rome "Sapienza", Rome, Italy
| |
Collapse
|
14
|
Hwang JE, Kim K, Lee JH, Jo YH, Kim J, Lee MJ, Park CJ. Blood pressure–targeted stepwise resuscitation of hemorrhagic shock in a swine model. J Surg Res 2016; 204:192-9. [DOI: 10.1016/j.jss.2016.04.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 02/01/2016] [Accepted: 04/14/2016] [Indexed: 11/29/2022]
|
15
|
Hedegaard ER, Johnsen J, Povlsen JA, Jespersen NR, Shanmuganathan JA, Laursen MR, Kristiansen SB, Simonsen U, Botker HE. Inhibition of KV7 Channels Protects the Rat Heart against Myocardial Ischemia and Reperfusion Injury. ACTA ACUST UNITED AC 2016; 357:94-102. [DOI: 10.1124/jpet.115.230409] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/05/2016] [Indexed: 02/06/2023]
|
16
|
|
17
|
Vinten-Johansen J. Controlled reperfusion is a rose by any other name. J Thorac Cardiovasc Surg 2015; 150:1649-50. [PMID: 26454521 DOI: 10.1016/j.jtcvs.2015.09.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 11/25/2022]
Affiliation(s)
- Jakob Vinten-Johansen
- Division of Cardiothoracic Surgery, Department of Surgery, Emory University, Atlanta, Ga.
| |
Collapse
|
18
|
Koprivanac M, Kelava M, Soltesz E, Smedira N, Kapadia S, Brzezinski A, Alansari S, Moazami N. Advances in temporary mechanical support for treatment of cardiogenic shock. Expert Rev Med Devices 2015; 12:689-702. [DOI: 10.1586/17434440.2015.1086265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Wong CK. PCI in STEMI reperfusion: Are we getting closer to tackling the STEMI pathophysiology? Int J Cardiol 2015; 190:347-8. [PMID: 25935626 DOI: 10.1016/j.ijcard.2015.04.197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 04/23/2015] [Indexed: 11/26/2022]
Affiliation(s)
- Cheuk-Kit Wong
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong.
| |
Collapse
|
20
|
Bulluck H, Hausenloy DJ. Ischaemic conditioning: are we there yet? Heart 2015; 101:1067-77. [DOI: 10.1136/heartjnl-2014-306531] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 03/08/2015] [Indexed: 11/04/2022] Open
|
21
|
Ibáñez B, Heusch G, Ovize M, Van de Werf F. Evolving Therapies for Myocardial Ischemia/Reperfusion Injury. J Am Coll Cardiol 2015; 65:1454-71. [DOI: 10.1016/j.jacc.2015.02.032] [Citation(s) in RCA: 527] [Impact Index Per Article: 58.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 02/22/2015] [Indexed: 12/28/2022]
|
22
|
Przyklenk K. Ischaemic conditioning: pitfalls on the path to clinical translation. Br J Pharmacol 2015; 172:1961-73. [PMID: 25560903 DOI: 10.1111/bph.13064] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 12/02/2014] [Accepted: 12/19/2014] [Indexed: 12/21/2022] Open
Abstract
The development of novel adjuvant strategies capable of attenuating myocardial ischaemia-reperfusion injury and reducing infarct size remains a major, unmet clinical need. A wealth of preclinical evidence has established that ischaemic 'conditioning' is profoundly cardioprotective, and has positioned the phenomenon (in particular, the paradigms of postconditioning and remote conditioning) as the most promising and potent candidate for clinical translation identified to date. However, despite this preclinical consensus, current phase II trials have been plagued by heterogeneity, and the outcomes of recent meta-analyses have largely failed to confirm significant benefit. As a result, the path to clinical application has been perceived as 'disappointing' and 'frustrating'. The goal of the current review is to discuss the pitfalls that may be stalling the successful clinical translation of ischaemic conditioning, with an emphasis on concerns regarding: (i) appropriate clinical study design and (ii) the choice of the 'right' preclinical models to facilitate clinical translation.
Collapse
Affiliation(s)
- Karin Przyklenk
- Cardiovascular Research Institute and Departments of Physiology and Emergency Medicine, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
23
|
Moscarelli M, Angelini GD, Suleiman S, Fiorentino F, Punjabi PP. Remote ischaemic preconditioning: is it a flag on the field? Perfusion 2015; 30:438-47. [DOI: 10.1177/0267659115570720] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Ischaemic preconditioning is one of several different techniques that have been proposed to render the heart more resistant to ischaemia/reperfusion injuries. A significant reduction of troponin release is ‘proof of concept’, however, whether ischaemic preconditioning leads to improved clinical outcomes is still to be proven. Moreover, the exact mechanism of action still remains unknown since very few studies have investigated the signal transmission in humans.
Collapse
Affiliation(s)
- M Moscarelli
- NHLI, Hammersmith Hospital, Imperial College London, UK
| | - GD Angelini
- NHLI, Hammersmith Hospital, Imperial College London, UK
- Bristol Heart Institute, University of Bristol, UK
| | - S Suleiman
- Bristol Heart Institute, University of Bristol, UK
| | - F Fiorentino
- NHLI, Hammersmith Hospital, Imperial College London, UK
| | - PP Punjabi
- NHLI, Hammersmith Hospital, Imperial College London, UK
| |
Collapse
|
24
|
Iliodromitis EK, Cohen MV, Dagres N, Andreadou I, Kremastinos DT, Downey JM. What is Wrong With Cardiac Conditioning? We May be Shooting at Moving Targets. J Cardiovasc Pharmacol Ther 2015; 20:357-69. [DOI: 10.1177/1074248414566459] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 12/02/2014] [Indexed: 12/29/2022]
Abstract
Early recanalization of the occluded culprit coronary artery clearly reduces infarct size in both animal models and patients and improves clinical outcomes. Unfortunately, reperfusion can seldom be accomplished before some myocardium infarcts. As a result there has been an intensive search for interventions that will make the heart resistant to infarction so that reperfusion could salvage more myocardium. A number of interventions have been identified in animal models, foremost being ischemic preconditioning. It protects by activating signaling pathways that prevent lethal permeability transition pores from forming in the heart’s mitochondria at reperfusion. Such conditioning can be accomplished in a clinically relevant manner either by staccato reperfusion (ischemic postconditioning) or by pharmacological activation of the conditioning signaling pathways prior to reperfusion. Unfortunately, clinical trials of ischemic postconditioning and pharmacologic conditioning have been largely disappointing. We suggest that this may be caused by inappropriate use as models intended to mimic the clinical scenario of young healthy animals that receive none of the many drugs currently given to our patients. Patients may be resistant to some forms of conditioning because of comorbidities, for example, diabetes, or they may already be conditioned by adjunct medications, for example, P2Y12 inhibitors or opioids. Incremental technological improvements in patient care may render some approaches to cardioprotection redundant, and thus the clinical target may be continually changing, while our animal models have not kept pace. In remote conditioning, a limb is subjected to ischemia/reperfusion prior to or during coronary reperfusion. Its mechanism is not as well understood as that of ischemic preconditioning, but the results have been very encouraging. In the present article, we will review ischemic, remote, and pharmacologic conditioning and possible confounders that could interfere with their efficacy in clinical trials in 2 settings of myocardial ischemia: (1) primary angioplasty in acute myocardial infarction and (2) elective angioplasty.
Collapse
Affiliation(s)
- Efstathios K. Iliodromitis
- Second University Department of Cardiology, Medical School, Attikon General Hospital, University of Athens, Athens, Greece
| | - Michael V. Cohen
- Department of Physiology, University of South Alabama College of Medicine, Mobile, AL, USA
- Department of Medicine, University of South Alabama College of Medicine, Mobile, AL, USA
| | - Nikolaos Dagres
- Second University Department of Cardiology, Medical School, Attikon General Hospital, University of Athens, Athens, Greece
| | - Ioanna Andreadou
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Athens, Athens, Greece
| | - Dimitrios Th. Kremastinos
- Second University Department of Cardiology, Medical School, Attikon General Hospital, University of Athens, Athens, Greece
| | - James M. Downey
- Second University Department of Cardiology, Medical School, Attikon General Hospital, University of Athens, Athens, Greece
| |
Collapse
|
25
|
Williams TM, Waksman R, De Silva K, Jacques A, Mahmoudi M. Ischemic preconditioning-an unfulfilled promise. CARDIOVASCULAR REVASCULARIZATION MEDICINE 2014; 16:101-8. [PMID: 25681256 DOI: 10.1016/j.carrev.2014.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 12/18/2014] [Indexed: 01/16/2023]
Abstract
Myocardial reperfusion injury has been identified as a key determinant of myocardial infarct size in patients undergoing percutaneous or surgical interventions. Although the molecular mechanisms underpinning reperfusion injury have been elucidated, attempts at translating this understanding into clinical benefit for patients undergoing cardiac interventions have produced mixed results. Ischemic conditioning has been applied before, during, or after an ischemic insult to the myocardium and has taken the form of local induction of ischemia or ischemia of distant tissues. Clinical studies have confirmed the safety of differing conditioning techniques, but the benefit of such techniques in reducing hard clinical event rates has produced mixed results. The aim of this article is to review the role of ischemic conditioning in patients undergoing percutaneous and surgical coronary revascularization.
Collapse
Affiliation(s)
- Timothy M Williams
- Ashford & St. Peter's Hospitals NHS Foundation Trust, Guildford Road, Surrey, KT16 0PZ, United Kingdom
| | - Ron Waksman
- Washington Hospital Centre, 110 Irving Street, Washington, DC 20010, USA
| | - Kalpa De Silva
- Ashford & St. Peter's Hospitals NHS Foundation Trust, Guildford Road, Surrey, KT16 0PZ, United Kingdom
| | - Adam Jacques
- Ashford & St. Peter's Hospitals NHS Foundation Trust, Guildford Road, Surrey, KT16 0PZ, United Kingdom
| | - Michael Mahmoudi
- Ashford & St. Peter's Hospitals NHS Foundation Trust, Guildford Road, Surrey, KT16 0PZ, United Kingdom; University of Surrey, 13AY04, Surrey, GU2 7XH, United Kingdom.
| |
Collapse
|
26
|
|
27
|
Oosterlinck W, Herijgers P. Cardiomyocyte changes in the metabolic syndrome and implications for endogeneous protective strategies. Expert Rev Cardiovasc Ther 2014; 12:331-43. [DOI: 10.1586/14779072.2014.893825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
28
|
Sadat U, Walsh SR, Varty K. Cardioprotection by ischemic postconditioning during surgical procedures. Expert Rev Cardiovasc Ther 2014; 6:999-1006. [DOI: 10.1586/14779072.6.7.999] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
29
|
Hausenloy DJ. Conditioning the heart to prevent myocardial reperfusion injury during PPCI. EUROPEAN HEART JOURNAL-ACUTE CARDIOVASCULAR CARE 2013; 1:13-32. [PMID: 24062884 DOI: 10.1177/2048872612438805] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 01/22/2012] [Indexed: 11/15/2022]
Abstract
For patients presenting with a ST-segment elevation myocardial infarction (STEMI), early myocardial reperfusion by primary percutaneous coronary intervention (PPCI) remains the most effective treatment strategy for limiting myocardial infarct size, preserving left ventricular systolic function, and preventing the onset of heart failure. Recent advances in PCI technology to improve myocardial reperfusion and the introduction of novel anti-platelet and anti-thrombotic agents to maintain the patency of the infarct-related coronary artery continue to optimize PPCI procedure. However, despite these improvements, STEMI patients still experience significant major adverse cardiovascular events. One major contributing factor has been the inability to protect the heart against the lethal myocardial reperfusion injury, which accompanies PPCI. Past attempts to translate cardioprotective strategies, discovered in experimental studies to prevent lethal myocardial reperfusion injury, into the clinical setting of PPCI have been disappointing. However, a number of recent proof-of-concept clinical studies suggest that the heart can be 'conditioned' to protect itself against lethal myocardial reperfusion injury, as evidenced by a reduction in myocardial infarct size. This can be achieved using either mechanical (such as ischaemic postconditioning, remote ischaemic preconditioning, therapeutic hypothermia, or hyperoxaemia) or pharmacological (such as cyclosporin-A, natriuretic peptide, exenatide) 'conditioning' strategies as adjuncts to PPCI. Furthermore, recent developments in cardiac magnetic resonance (CMR) imaging can provide a non-invasive imaging strategy for assessing the efficacy of these novel adjunctive therapies to PPCI in terms of key surrogate clinical endpoints such as myocardial infarct size, myocardial salvage, left ventricular ejection fraction, and the presence of microvascular obstruction or intramyocardial haemorrhage. In this article, we review the therapeutic potential of 'conditioning' to protect the heart against lethal myocardial reperfusion injury in STEMI patients undergoing PPCI.
Collapse
|
30
|
Fröhlich GM, Meier P, White SK, Yellon DM, Hausenloy DJ. Myocardial reperfusion injury: looking beyond primary PCI. Eur Heart J 2013; 34:1714-22. [PMID: 23536610 DOI: 10.1093/eurheartj/eht090] [Citation(s) in RCA: 293] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Coronary heart disease (CHD) is the leading cause of death and disability in Europe. For patients presenting with an acute ST-segment elevation myocardial infarction (STEMI), timely myocardial reperfusion using either thrombolytic therapy or primary percutaneous coronary intervention (PPCI) is the most effective therapy for limiting myocardial infarct (MI) size, preserving left-ventricular systolic function and reducing the onset of heart failure. Despite this, the morbidity and mortality of STEMI patients remain significant, and novel therapeutic interventions are required to improve clinical outcomes in this patient group. Paradoxically, the process of myocardial reperfusion can itself induce cardiomyocyte death-a phenomenon which has been termed 'myocardial reperfusion injury' (RI), the irreversible consequences of which include microvascular obstruction and myocardial infarction. Unfortunately, there is currently no effective therapy for preventing myocardial RI in STEMI patients making it an important residual target for cardioprotection. Previous attempts to translate cardioprotective therapies (antioxidants, calcium-channel blockers, and anti-inflammatory agents) for reducing RI into the clinic, have been unsuccessful. An improved understanding of the pathophysiological mechanisms underlying RI has resulted in the identification of several promising mechanical (ischaemic post-conditioning, remote ischaemic pre-conditioning, therapeutic hypothermia, and hyperoxaemia), and pharmacological (atrial natriuretic peptide, cyclosporin-A, and exenatide) therapeutic strategies, for preventing myocardial RI, many of which have shown promise in initial proof-of-principle clinical studies. In this article, we review the pathophysiology underlying myocardial RI, and highlight the potential therapeutic interventions which may be used in the future to prevent RI and improve clinical outcomes in patients with CHD.
Collapse
Affiliation(s)
- Georg M Fröhlich
- The Heart Hospital, University College London Hospitals, 16-18 Westmoreland Street, W1G 8PH, London, UK
| | | | | | | | | |
Collapse
|
31
|
Heusch G, Kleinbongard P, Skyschally A, Levkau B, Schulz R, Erbel R. The coronary circulation in cardioprotection: more than just one confounder. Cardiovasc Res 2012; 94:237-245. [DOI: 10.1093/cvr/cvr271] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
32
|
Abstract
Coronary heart disease (CHD) is the leading cause of morbidity and mortality worldwide. For a large number of patients with CHD, coronary artery bypass graft (CABG) surgery remains the preferred strategy for coronary revascularization. Over the last 10 years, the number of high-risk patients undergoing CABG surgery has increased significantly, resulting in worse clinical outcomes in this patient group. This appears to be related to the ageing population, increased co-morbidities (such as diabetes, obesity, hypertension, stroke), concomitant valve disease, and advances in percutaneous coronary intervention which have resulted in patients with more complex coronary artery disease undergoing surgery. These high-risk patients are more susceptible to peri-operative myocardial injury and infarction (PMI), a major cause of which is acute global ischaemia/reperfusion injury arising from inadequate myocardial protection during CABG surgery. Therefore, novel therapeutic strategies are required to protect the heart in this high-risk patient group. In this article, we review the aetiology of PMI during CABG surgery, its diagnosis and clinical significance, and the endogenous and pharmacological therapeutic strategies available for preventing it. By improving cardioprotection during CABG surgery, we may be able to reduce PMI, preserve left ventricular systolic function, and reduce morbidity and mortality in these high-risk patients with CHD.
Collapse
Affiliation(s)
- Derek J Hausenloy
- The Hatter Cardiovascular Institute, University College, London WC1E 6HX, UK
| | | | | |
Collapse
|
33
|
Allen BS, Ko Y, Buckberg GD, Tan Z. Studies of isolated global brain ischaemia: II. Controlled reperfusion provides complete neurologic recovery following 30 min of warm ischaemia - the importance of perfusion pressure. Eur J Cardiothorac Surg 2012; 41:1147-54. [PMID: 22436245 DOI: 10.1093/ejcts/ezr317] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVES Neurologic injury after sudden death is likely due to a reperfusion injury following prolonged brain ischaemia, and remains problematic, especially if the cardiac arrest is unwitnessed. This study applies a newly developed isolated model of global brain ischaemia (simulating unwitnessed sudden death) for 30 min to determine if controlled reperfusion permits neurologic recovery. METHODS Among the 17 pigs undergoing 30 min of normothermic global brain ischaemia, 6 received uncontrolled reperfusion with regular blood (n = 6), and 11 were reperfused for 20 min with a warm controlled blood reperfusate containing hypocalcaemia, hyper-magnesemia, alkalosis, hyperosmolarty and other constituents that were passed through a white blood cell filter and delivered at flow rates of 350 cc/min (n = 3), 550 cc/min (n = 2) or 750 cc/min (n = 6). Neurologic deficit score (NDS) evaluated brain function (score 0 = normal, 500 = brain death) 24 h post-reperfusion and 2,3,5-triphenyltetrazolium chloride (TTC) staining determined brain infarction. RESULTS Regular blood (uncontrolled) reperfusion caused negligible brain O(2) uptake by IN Vivo Optical Spectroscopy (INVOS) (<10-15% O(2) extraction), oxidant damage demonstrated by raised conjugated diene (CD) levels (1.78 ± 0.13 A233 mn), multiple seizures, 1 early death from brain herniation, high NDS (249 ± 39) in survivors, brain oedema (84.4 ± 0.6%) and extensive cerebral infarctions. Conversely, controlled reperfusion restored surface brain oxygen saturation by INVOS to normal (55-70%), but the extent of neurologic recovery was determined by the brain reperfusion pressure. Low pressure reperfusion (independent of flow) produced the same adverse functional, metabolic and anatomic changes that followed uncontrolled reperfusion in seven pigs (three at 350 cc/min, two at 550 and two at 750 cc/min). Conversely, higher reperfusion pressure in four pigs (all at 750 cc/min) resulted in NDS of 0-70* indicating complete (n = 2) or near complete (n = 2) neurological recovery, negligible CDs production (1.29 ± 0.06 A233mn)*, minimal brain oedema (80.6 ± 0.2%)* and no infarction by TTC stain. CONCLUSIONS Brain injury can be avoided after 30 min of normothermic cerebral ischaemia if controlled reperfusion pressure is >50 mmHg, but the lower pressure (<50 mmHg) controlled reperfusion that is useful in other organs cannot be transferred to the brain. Moreover, INVOS is a poor guide to the adequacy of cerebral perfusion and the capacity of controlled brain reperfusion to restore neurological recovery. *P < 0.001 versus uncontrolled or low pressure controlled reperfusion.
Collapse
Affiliation(s)
- Bradley S Allen
- Department of Surgery, University of California, Los Angeles, CA, USA.
| | | | | | | |
Collapse
|
34
|
Allen BS, Buckberg GD. Studies of isolated global brain ischaemia: I. Overview of irreversible brain injury and evolution of a new concept - redefining the time of brain death. Eur J Cardiothorac Surg 2012; 41:1132-7. [PMID: 22398465 DOI: 10.1093/ejcts/ezr315] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Despite advanced cardiac life support (ACLS), the mortality from sudden death after cardiac arrest is 85-95%, and becomes nearly 100% if ischaemia is prolonged, as occurs following unwitnessed arrest. Moreover, 33-50% of survivors following ACLS after witnessed arrest develop significant neurological dysfunction, and this rises to nearly 100% in the rare survivors of unwitnessed arrest. Although, whole body (cardiac) survival improves to 30% following recent use of emergency cardiopulmonary bypass, sustained neurological dysfunction remains a devastating and unresolved problem. Our studies suggest that both brain and whole body damage reflect an ischaemic/reperfusion injury that follows the present reperfusion methods that use normal blood, which we term 'uncontrolled reperfusion'. In contrast, we have previously introduced the term 'controlled reperfusion', which denotes controlling both the conditions (pressure, flow and temperature) as well as the composition (solution) of the reperfusate. Following prolonged ischaemia of the heart, lung and lower extremity, controlled reperfusion resulted in tissue recovery after ischaemic intervals previously thought to produce irreversible cellular injury. These observations underlie the current hypothesis that controlled reperfusion will become an effective treatment of the otherwise lethal injury of prolonged brain ischaemia, such as with unwitnessed arrest, and we tested this after 30 min of normothermic global brain ischaemia. This review, and the subsequent three studies will describe the evolution of the concept that controlled reperfusion will restore neurological function to the brain following prolonged (30 min) ischaemia. To provide a familiarity and rationale for these studies, this overview reviews the background and current treatment of sudden death, the concepts of controlled reperfusion, recent studies in the brain during whole body ischaemia, and then summarizes the three papers in this series on a new brain ischaemia model that endorses our hypothesis that controlled reperfusion allows complete neurological recovery following 30 min of normothermic global brain ischaemia. These findings may introduce innovative management approaches for sudden death, and perhaps stroke, because the brain is completely salvageable following ischaemic times thought previously to produce infarction.
Collapse
Affiliation(s)
- Bradley S Allen
- Department of Surgery, University of California, Los Angeles, CA, USA.
| | | |
Collapse
|
35
|
Cardioprotective effects of inhalational and intravenous anesthetics. COR ET VASA 2011. [DOI: 10.33678/cor.2011.171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Hausenloy DJ, Lecour S, Yellon DM. Reperfusion injury salvage kinase and survivor activating factor enhancement prosurvival signaling pathways in ischemic postconditioning: two sides of the same coin. Antioxid Redox Signal 2011; 14:893-907. [PMID: 20615076 DOI: 10.1089/ars.2010.3360] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The discovery of ischemic postconditioning (IPost) has rejuvenated the field of cardioprotection. As an interventional strategy to be applied at the onset of myocardial reperfusion, the transition of IPost from a bench-side curiosity to potential clinical therapy has been impressively rapid. Its existence also confirms the existence of lethal myocardial reperfusion injury in man, suggesting that 40%-50% of the final reperfused myocardial infarct may actually be due to myocardial reperfusion injury. Intensive analysis of the signal transduction pathways underlying IPost has identified similarities with the signaling pathways underlying its preischemic counterpart, ischemic preconditioning. In this article, the reperfusion injury salvage kinase pathway and the more recently described survivor activating factor enhancement pathway, two apparently distinct signaling pathways that actually interact to convey the IPost stimulus from the cell surface to the mitochondria, where many of the prosurvival and death signals appear to converge. The elucidation of the reperfusion signaling pathways underlying IPost may result in the identification of novel pharmacological targets for cardioprotection.
Collapse
Affiliation(s)
- Derek J Hausenloy
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, United Kingdom.
| | | | | |
Collapse
|
37
|
Long-term Follow-up of Patients Undergoing Postconditioning During ST-Elevation Myocardial Infarction. J Cardiovasc Transl Res 2010; 4:92-8. [DOI: 10.1007/s12265-010-9252-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 11/18/2010] [Indexed: 10/18/2022]
|
38
|
Lethal myocardial reperfusion injury: a necessary evil? Int J Cardiol 2010; 151:3-11. [PMID: 21093938 DOI: 10.1016/j.ijcard.2010.10.056] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 10/23/2010] [Accepted: 10/27/2010] [Indexed: 12/11/2022]
Abstract
Despite being the most effective means of limiting infarct size, coronary reperfusion comes at a price and induces additional damage to the myocardium. Lethal reperfusion injury (death of myocytes that were viable at the time of reperfusion) is an increasingly acknowledged phenomenon. There are many interconnected mechanisms involved in this type of cell death. Calcium overload (generating myocyte hypercontracture), rapid recovery of physiological pH, neutrophil infiltration of the ischemic area, opening of the mitochondrial permeability-transition-pore (PTP), and apoptotic cell death are among the more important mechanisms involved in reperfusion injury. The activation of a group of proteins called reperfusion injury salvage kinases (RISK) pathway confers protection against reperfusion injury, mainly by inhibiting the opening of the mitochondrial PTP. Many interventions have been tested in human trials triggered by encouraging animal studies. In the present review we will explain in detail the main mechanism involved in reperfusion injury, as well as the various approaches (pre-clinical and human trials) performed targeting these mechanisms. Currently, no intervention has been consistently shown to reduce reperfusion injury in large randomized multicenter trials, but the research in this field is intense and the future is highly promising.
Collapse
|
39
|
Xue F, Yang X, Zhang B, Zhao C, Song J, Jiang T, Jiang W. Postconditioning the human heart in percutaneous coronary intervention. Clin Cardiol 2010; 33:439-44. [PMID: 20641122 DOI: 10.1002/clc.20796] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND It has been proved in animal models that postconditioning (PC) could attenuate reperfusion injury. But there are not many clinical studies on the application of PC. HYPOTHESIS Four cycles of 1-minute balloon inflation and deflation, following initial balloon reperfusion in ST-segment elevation myocardial infarction (MI) but before stenting, might improve clinical outcomes compared with primary percutaneous coronary intervention (PCI) alone. METHODS Forty-three patients diagnosed with acute MI were randomly assigned to 2 groups: the control group (n = 20) and the PC group (n = 23). Blood samples were obtained and assayed for creatine kinase MB (CK-MB) and high-sensitive C-reactive protein. Electrocardiogram, echocardiography, and rest technetium Tc 99m-sestamibi (99mTc-MIBI) myocardial perfusion single-photon emission computed tomography (SPECT) were performed. RESULTS The control group presented with higher peak CK-MB as compared with the PC group (351.9 +/- 153.6 vs 247.7 +/- 118.3 U/L, P = 0.028) as well as the area under the curve (AUC) of CK-MB (8040 +/- 3358 vs 5955 +/- 2509, P = 0.04). After PCI, PC was associated with a lower level of hs-CRP in comparison with the control group (5.5 +/- 4.5 vs 9.5 +/- 5.2 mg/L, P = 0.019). More patients in the PC group had complete ST-segment resolution than did patients in the control group (82.6% vs 45.0%, P = 0.049). Left ventricle ejection fraction was better in the PC group than in the control group (0.57 +/- 0.09 vs 0.47 +/- 0.11, P = 0.002). Compared with the control group, PC greatly reduced infarct size, by 46% as measured by SPECT (13 +/- 11.2% vs 24.2 +/- 10.6%, P = 0.002). CONCLUSIONS This study indicated that PC in emergent PCI was a valuable modification of primary PCI.
Collapse
Affiliation(s)
- Feng Xue
- Department of Cardiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | | | | | | | | | | | | |
Collapse
|
40
|
Monassier JP, Shayne J, Sommier JM, Schultz R, Ider O. [Postconditioning in acute myocardial infarction: Primary angioplasty revisited?]. Ann Cardiol Angeiol (Paris) 2010; 59:294-305. [PMID: 20889138 DOI: 10.1016/j.ancard.2010.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 08/24/2010] [Indexed: 11/18/2022]
Abstract
Early reperfusion of ischemic myocardium is the mean to improve prognosis of acute myocardial infarction. Nevertheless, reperfusion injury due to immediate acidosis correction and subsequent Ca(2+) overload results in formation of the mitochondrial permeability transition pore. The consequence is the death of viable myocardium due to onconecrosis and apoptosis. Mechanical (Stuttering reperfusion) or pharmacological postconditioning (cyclosporine A, adenosine…) is able to prevent reperfusion injury resulting in more myocardial salvage.
Collapse
Affiliation(s)
- J-P Monassier
- Unité de cardiologie interventionnelle, fondation du Diaconat, 14, boulevard Roosevelt, 68067 Mulhouse cedex, France.
| | | | | | | | | |
Collapse
|
41
|
Lønborg J, Treiman M, Engstrøm T. Ischemic postconditioning: a clinical perspective. Interv Cardiol 2010. [DOI: 10.2217/ica.10.52] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
42
|
Buckberg GD. Controlled reperfusion after ischemia may be the unifying recovery denominator. J Thorac Cardiovasc Surg 2010; 140:12-8, 18.e1-2. [DOI: 10.1016/j.jtcvs.2010.02.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 02/08/2010] [Indexed: 11/27/2022]
|
43
|
Rentoukas I, Giannopoulos G, Kaoukis A, Kossyvakis C, Raisakis K, Driva M, Panagopoulou V, Tsarouchas K, Vavetsi S, Pyrgakis V, Deftereos S. Cardioprotective role of remote ischemic periconditioning in primary percutaneous coronary intervention: enhancement by opioid action. JACC Cardiovasc Interv 2010; 3:49-55. [PMID: 20129568 DOI: 10.1016/j.jcin.2009.10.015] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 09/28/2009] [Accepted: 10/15/2009] [Indexed: 10/19/2022]
Abstract
OBJECTIVES We sought to determine the potential of remote ischemic periconditioning (RIPC), and its combination with morphine, to reduce reperfusion injury in primary percutaneous coronary interventions. BACKGROUND Remote ischemic post-conditioning is implemented by applying cycles of ischemia and reperfusion on a remote organ, which result in release of circulating factors inducing the effects of post-conditioning on the myocardium. METHODS A total of 96 patients (59 men) were enrolled. The patients were randomized to groups as follows: 33 to each treatment group (Group A: RIPC; Group B: RIPC and morphine) and 30 to the control group (Group C). Measures of efficacy were achievement of full ST-segment resolution (primary), and reduction of ST-segment deviation score and peak troponin I during hospitalization. RESULTS A higher proportion of patients in Groups A (73%) and B (82%) achieved full ST-segment resolution after percutaneous coronary intervention, compared with control patients (53%) (p = 0.045). Peak troponin I was lowest in Group B, 103.3 +/- 13.3 ng/ml, in comparison to peak levels in Group A, 166.0 +/- 28.0 ng/ml, and the control group, 255.5 +/- 35.5 ng/ml (p = 0.0006). ST-segment deviation resolution was 87.3 +/- 2.7% in Group B, compared with 69.9 +/- 5.1% in Group A and 53.2 +/- 6.4% in the control group (p = 0.00002). In paired comparisons between groups, Group B did better than the control group in terms of both ST-segment reduction (p = 0.0001) and peak troponin I (p = 0.004), whereas Group A differences from the control group did not achieve statistical significance (p = 0.054 and p = 0.062, respectively). CONCLUSIONS These findings demonstrate a cardioprotective effect of RIPC and morphine during primary percutaneous coronary intervention for the prevention of reperfusion injury. This is in agreement with observations that the beneficial effect of RIPC is inhibited by the opioid receptor blocker naloxone.
Collapse
Affiliation(s)
- Ilias Rentoukas
- Cardiology Department, A Fleming General Hospital, Melissia, Greece
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
|
45
|
Manintveld OC, Hekkert MTL, van der Ploeg NT, Verdouw PD, Duncker DJ. Interaction between pre- and postconditioning in the in vivo rat heart. Exp Biol Med (Maywood) 2009; 234:1345-54. [PMID: 19657069 DOI: 10.3181/0903-rm-121] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Patients with an impending myocardial infarction may be preconditioned by pre-infarct angina. Hence, it is important to establish whether ischemic postconditioning is still effective in preconditioned hearts. We therefore studied in anesthetized rats the effect of postconditioning after coronary artery occlusions (CAO) of 60 min in control hearts, hearts preconditioned by a single 15-min CAO (1IPC15) or a triple 3-min CAO (3IPC3). Furthermore, we studied the effect of postconditioning in hearts that had been pharmacologically preconditioned with intravenous adenosine and in hearts that had become tolerant to 1IPC15. Postconditioning limited infarct size in control hearts, but did not afford additional protection in preconditioned hearts, irrespective of the IPC stimulus. NO synthase inhibition abolished the cardioprotection by postconditioning, both IPC stimuli, and the combination of postconditioning and either IPC stimulus. Postconditioning also failed to afford cardioprotection in hearts protected by adenosine, and in hearts that had become tolerant to cardioprotection by 1IPC15. In accordance with previous observations, postconditioning paradoxically increased infarct size following a 30-min CAO. This detrimental effect was prevented by either IPC stimulus, in a NO synthase-dependent manner. In conclusion, postconditioning does not afford additional protection in preconditioned hearts, irrespective of the preconditioning stimulus and the presence of tolerance to preconditioning. Lack of additional protection may be related to the observation that postconditioning and preconditioning are both mediated via NO synthase. In contrast, the increase in infarct size by postconditioning following a 30-min CAO is abolished by either IPC stimulus. These findings indicate that the interaction between preconditioning and postconditioning is highly dependent on the duration of index ischemia, but independent of the preconditioning stimulus.
Collapse
Affiliation(s)
- Olivier C Manintveld
- Experimental Cardiology, Thoraxcenter, Cardiovascular Research School COEUR, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
46
|
Musiolik J, van Caster P, Skyschally A, Boengler K, Gres P, Schulz R, Heusch G. Reduction of infarct size by gentle reperfusion without activation of reperfusion injury salvage kinases in pigs. Cardiovasc Res 2009; 85:110-7. [DOI: 10.1093/cvr/cvp271] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
47
|
Heusch G, Schulz R. Neglect of the coronary circulation: some critical remarks on problems in the translation of cardioprotection. Cardiovasc Res 2009; 84:11-4. [DOI: 10.1093/cvr/cvp210] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
48
|
Prolonged venoarterial extracorporeal membrane oxygenation after transplantation restores functional integrity of severely injured lung allografts and prevents the development of pulmonary graft failure in a pig model. J Thorac Cardiovasc Surg 2009; 137:1493-8. [DOI: 10.1016/j.jtcvs.2008.11.064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Revised: 10/22/2008] [Accepted: 11/15/2008] [Indexed: 11/18/2022]
|
49
|
Effects of nitrite on modulating ROS generation following ischemia and reperfusion. Adv Drug Deliv Rev 2009; 61:339-50. [PMID: 19385092 DOI: 10.1016/j.addr.2009.02.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
It has long been known that the generation of reactive oxygen species (ROS) is a major cause of injury after ischemia/reperfusion. More recently it has emerged that the predominant source of these ROS are the mitochondria, which are specifically damaged during prolonged ischemic episodes. Several strategies have been tested to attenuate mitochondrial damage and reperfusion ROS. Most successful has been ischemic preconditioning, a procedure in which repetitive short periods of ischemia and reperfusion reduce injury from a subsequent prolonged ischemia and reperfusion. Recently, ischemic postconditioning, whereby reperfusion after prolonged ischemia is repetitively interrupted for a short period, has also been shown to equally protect as ischemic preconditioning. Both procedures activate the same down-stream kinase pathways that minimize apoptosis and tissue damage. Endothelial nitric oxide synthase is a target of these kinase pathways and nitric oxide (NO) administration can mimic its protective effect. However, the optimal NO dose is difficult to determine and excess NO levels have been shown to be detrimental. A recently described physiological storage pool of NO, nitrite, has been shown to be a potent mediator of cytoprotection after ischemia/reperfusion that mechanistically reduces mitochondrial ROS generation at reperfusion. Here, we describe the sources, bioactivaton, and mechanisms of action of nitrite and discuss the potential of this simple anion as a therapeutic to protect against ischemia/reperfusion injury.
Collapse
|
50
|
Nemlin C, Benhabbouche S, Bopassa J, Sebbag L, Ovize M, Ferrera R. Optimal Pressure for Low Pressure Controlled Reperfusion to Efficiently Protect Ischemic Heart: An Experimental Study in Rats. Transplant Proc 2009; 41:703-4. [DOI: 10.1016/j.transproceed.2008.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|