1
|
Ide H, Miyamoto H. The Role of Steroid Hormone Receptors in Urothelial Tumorigenesis. Cancers (Basel) 2020; 12:cancers12082155. [PMID: 32759680 PMCID: PMC7465876 DOI: 10.3390/cancers12082155] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/28/2020] [Accepted: 08/01/2020] [Indexed: 12/18/2022] Open
Abstract
Preclinical and/or clinical evidence has indicated a potential role of steroid hormone-mediated signaling pathways in the development of various neoplastic diseases, while precise mechanisms for the functions of specific receptors remain poorly understood. Specifically, in urothelial cancer where sex-related differences particularly in its incidence are noted, activation of sex hormone receptors, such as androgen receptor and estrogen receptor-β, has been associated with the induction of tumor development. More recently, glucocorticoid receptor has been implied to function as a suppressor of urothelial tumorigenesis. This article summarizes and discusses available data suggesting that steroid hormone receptors, including androgen receptor, estrogen receptor-α, estrogen receptor-β, glucocorticoid receptor, progesterone receptor and vitamin D receptor, as well as their related signals, contribute to modulating urothelial tumorigenesis.
Collapse
Affiliation(s)
- Hiroki Ide
- Department of Urology, Keio University School of Medicine, Tokyo 160-8582, Japan;
| | - Hiroshi Miyamoto
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Urology, University of Rochester Medical Center, Rochester, NY 14642, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
- Correspondence:
| |
Collapse
|
2
|
The m 6A methyltransferase METTL3 promotes bladder cancer progression via AFF4/NF-κB/MYC signaling network. Oncogene 2019; 38:3667-3680. [PMID: 30659266 DOI: 10.1038/s41388-019-0683-z] [Citation(s) in RCA: 270] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/30/2018] [Accepted: 12/24/2018] [Indexed: 02/05/2023]
Abstract
N6-methyladenosine (m6A) is the most abundant modification in eukaryotic messenger RNAs (mRNAs), and plays important roles in many bioprocesses. However, its functions in bladder cancer (BCa) remain elusive. Here, we discovered that methyltransferase-like 3 (METTL3), a major RNA N6-adenosine methyltransferase, was significantly up-regulated in human BCa. Knockdown of METTL3 drastically reduced BCa cell proliferation, invasion, and survival in vitro and tumorigenicity in vivo. On the other hand, overexpression of METTL3 significantly promoted BCa cell growth and invasion. Through transcriptome sequencing, m6A sequencing and m6A methylated RNA immuno-precipitation quantitative reverse-transcription polymerase chain reaction, we revealed the profile of METTL3-mediated m6A modification in BCa cells for the first time. AF4/FMR2 family member 4 (AFF4), two key regulators of NF-κB pathway (IKBKB and RELA) and MYC were further identified as direct targets of METTL3-mediated m6A modification. In addition, we showed that besides NF-κB, AFF4 binds to the promoter of MYC and promotes its expression, implying a novel multilevel regulatory network downstream of METTL3. Our results uncovered an AFF4/NF-κB/MYC signaling network operated by METTL3-mediated m6A modification and provided insight into the mechanisms of BCa progression.
Collapse
|
3
|
MiR-182 promotes prostate cancer progression through activating Wnt/β-catenin signal pathway. Biomed Pharmacother 2018; 99:334-339. [DOI: 10.1016/j.biopha.2018.01.082] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/26/2017] [Accepted: 01/12/2018] [Indexed: 12/29/2022] Open
|
4
|
Chen W, Zhou J, Wu K, Huang J, Ding Y, Yun EJ, Wang B, Ding C, Hernandez E, Santoyo J, Chen H, Lin H, Sagalowsky A, He D, Zhou J, Hsieh JT. Targeting XBP1-mediated β-catenin expression associated with bladder cancer with newly synthetic Oridonin analogues. Oncotarget 2018; 7:56842-56854. [PMID: 27472396 PMCID: PMC5302956 DOI: 10.18632/oncotarget.10863] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/01/2016] [Indexed: 01/09/2023] Open
Abstract
Conventional chemotherapy is commonly used for advanced stages of transitional cell carcinoma (TCC) with modest success and high morbidity; however, TCC eventually develops resistance. Muscle invasive bladder cancer (MIBC) is recognized as a lethal disease due to its poor response to traditional chemotherapy. Numerous studies have implicated β-catenin, a critical effector in Wnt–mediated pathway associated with epithelial-mesenchymal transition and cancer stem cell, is involved in TCC progression, and furthermore closely associated with chemo-resistance. In this study, we discovered a novel natural product analogue CYD 6-17 that has a potent inhibitory effect on TCC cells exhibiting drug resistance to various chemotherapeutics, with an IC50 at nM range. Delivery of CYD 6-17 significantly inhibited the tumor growth using xenograft model but without detectable side effects. Mechanistically, it targeted β-catenin gene transcription by decreasing the binding of XBP1 to the promoter region, which appeared to be a new regulatory mechanism for β-catenin gene expression. Clinically, XBP1 expression correlated with the poor overall survival of patients. Overall, this study unveils unique mechanism of β-catenin gene regulation in advanced TCC and also offers a potential rational therapeutic regimen to MIBC.
Collapse
Affiliation(s)
- Wei Chen
- Department of Urology, The First Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an 710049, China.,Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jiancheng Zhou
- Department of Urology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Kaijie Wu
- Department of Urology, The First Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an 710049, China
| | - Jun Huang
- Department of Urology, The First Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an 710049, China
| | - Ye Ding
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Eun-Jin Yun
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bin Wang
- Department of Urology, The First Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an 710049, China.,Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chunyong Ding
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Elizabeth Hernandez
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - John Santoyo
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Haiying Chen
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ho Lin
- Department of Life Sciences, National Chung Hsing University, Taichung 40705, Taiwan
| | - Arthur Sagalowsky
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dalin He
- Department of Urology, The First Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an 710049, China
| | - Jia Zhou
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jer-Tsong Hsieh
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Graduate Institute of Cancer Biology, China Medical University Hospital, Taichung 40447, Taiwan
| |
Collapse
|
5
|
Wang R, Wu Y, Huang W, Chen W. MicroRNA-940 Targets INPP4A or GSK3β and Activates the Wnt/β-Catenin Pathway to Regulate the Malignant Behavior of Bladder Cancer Cells. Oncol Res 2018; 26:145-155. [PMID: 28337959 PMCID: PMC7844674 DOI: 10.3727/096504017x14902261600566] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In this report, we aimed to explore the role and regulatory mechanism of microRNA-940 (miR-940) in bladder cancer development. The expressions of miR-940 in bladder cancer tissues and cells were measured. miR-940 mimics, miR-940 inhibitor small interference RNA against INPP4A (si-INPP4A), and GSK3β (si-GSK3β) and their corresponding controls were then transfected into cells. We investigated the effects of miR-940, INPP4A, or GSK3β on cell proliferation, migration, invasion, and apoptosis. Additionally, target prediction and luciferase reporter assays were performed to investigate the targets of miR-940. The regulatory relationship between miR-940 and the Wnt/β-catenin pathway was also investigated. miR-940 was upregulated in bladder cancer tissues and cells. Overexpression of miR-940 significantly increased bladder cancer cell proliferation, promoted migration and invasion, and inhibited cell apoptosis. INPP4A and GSK3β were the direct targets of miR-940, and knockdown of INPP4A or GSK3β significantly increased cancer cell proliferation, migration, and invasion and inhibited cell apoptosis. After miR-940 overexpression, the protein expression levels of c-Myc, cyclin D1, and β-catenin were significantly increased, and the expression levels of p27 and p-β-catenin were markedly decreased. The opposite effects were obtained after suppression of miR-940. XAV939, a tankyrase 1 inhibitor that could inhibit Wnt/β-catenin signaling, significantly reversed the effects of miR-940 overexpression on cell migration and invasion. Our results indicate that overexpression of miR-940 may promote bladder cancer cell proliferation, migration, and invasion and inhibit cell apoptosis via targeting INPP4A or GSK3β and activating the Wnt/β-catenin pathway. Our findings imply the key roles of suppressing miRNA-940 in the therapy of bladder cancer.
Collapse
Affiliation(s)
- Rong Wang
- Department of Urology, The Jintan Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, P.R. China
| | - Yunfeng Wu
- Department of Urology, The Jintan Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, P.R. China
| | - Weihua Huang
- Department of Urology, The Jintan Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, P.R. China
| | - Weijun Chen
- Department of Urology, The Jintan Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, P.R. China
| |
Collapse
|
6
|
Hsieh HY, Jou YC, Tung CL, Tsai YS, Wang YH, Chi CL, Lin RI, Hung SK, Chuang YM, Wu SF, Li C, Shen CH, Chan MWY, Hsu CD. Epigenetic silencing of the dual-role signal mediator, ANGPTL4 in tumor tissues and its overexpression in the urothelial carcinoma microenvironment. Oncogene 2017; 37:673-686. [PMID: 29035390 DOI: 10.1038/onc.2017.375] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 09/03/2017] [Accepted: 09/07/2017] [Indexed: 12/22/2022]
Abstract
Urothelial carcinoma (UC) carcinogenesis has been hypothesized to occur through epigenetic repression of tumor-suppressor genes (TSGs). By quantitative real-time polymerase chain reaction array, we found that one potential TSG, angiopoietin-like 4 (ANGPTL4), was expressed at very low levels in all bladder cancer cell lines we examined. Previous studies had demonstrated that ANGPTL4 is highly expressed in some cancers, but downregulated, by DNA methylation, in others. Consequently, owing to these seemingly conflicting functions in distinct cancers, the precise role of ANGPTL4 in the etiology of UC remains unclear. In this study, using methylation-specific PCR and bisulfite pyrosequencing, we show that ANGPTL4 is transcriptionally repressed by DNA methylation in UC cell lines and primary tumor samples, as compared with adjacent noncancerous bladder epithelium. Functional studies further demonstrated that ectopic expression of ANGPTL4 potently suppressed UC cell proliferation, monolayer colony formation in vitro, and invasion, migration, and xenograft formation in vivo. Surprisingly, circulating ANGPTL4 was significantly higher in plasma samples from UC patients than normal control, suggesting it might be secreted from other cell types. Interestingly, our data also indicated that exogenous cANGPTL4 could promote cell proliferation and cell migration via activation of signaling through the Erk/focal adhesion kinase axis. We further confirmed that mouse xenograft tumor growth could be promoted by administration of exogenous cANGPTL4. Finally, immunohistochemistry demonstrated that ANGPTL4 was downregulated in tumor cells but overexpressed in tumor adjacent stromal tissues of muscle-invasive UC tissue samples. In conclusion, our data support dual roles for ANGPTL4 in UC progression, either as a tumor suppressor or oncogene, in response to microenvironmental context.
Collapse
Affiliation(s)
- H-Y Hsieh
- Department of Medical Research, Ditmanson Medical Fountain Chiayi Christian Hospital, Chiayi, Taiwan.,Department of Urology, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi, Taiwan.,Department of Life Science, National Chung Cheng University, Chiayi, Taiwan.,Department of Biology, National Museum of Natural Science, Taichung, Taiwan
| | - Y-C Jou
- Department of Urology, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi, Taiwan
| | - C-L Tung
- Department of Pathology, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi, Taiwan
| | - Y-S Tsai
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Y-H Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of General Surgery, Department of Urology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - C-L Chi
- Department of Pathology, Buddhist Dalin Tzu Chi General Hospital, Chiayi, Taiwan
| | - R-I Lin
- Department of Radiation Oncology, Buddhist Dalin Tzu Chi General Hospital, Chiayi, Taiwan
| | - S-K Hung
- Department of Radiation Oncology, Buddhist Dalin Tzu Chi General Hospital, Chiayi, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Y-M Chuang
- Department of Life Science, National Chung Cheng University, Chiayi, Taiwan.,Institute of Molecular Biology, National Chung Cheng University, Chiayi, Taiwan
| | - S-F Wu
- Department of Life Science, National Chung Cheng University, Chiayi, Taiwan.,Institute of Molecular Biology, National Chung Cheng University, Chiayi, Taiwan
| | - C Li
- Department of Life Science, National Chung Cheng University, Chiayi, Taiwan.,Institute of Molecular Biology, National Chung Cheng University, Chiayi, Taiwan
| | - C-H Shen
- Department of Urology, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi, Taiwan
| | - M W Y Chan
- Department of Life Science, National Chung Cheng University, Chiayi, Taiwan.,Institute of Molecular Biology, National Chung Cheng University, Chiayi, Taiwan
| | - C-D Hsu
- Department of Medical Research, Ditmanson Medical Fountain Chiayi Christian Hospital, Chiayi, Taiwan.,Department of Urology, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi, Taiwan.,Department of Life Science, National Chung Cheng University, Chiayi, Taiwan
| |
Collapse
|
7
|
Hua F, Liu S, Zhu L, Ma N, Jiang S, Yang J. Highly expressed long non-coding RNA NNT-AS1 promotes cell proliferation and invasion through Wnt/β-catenin signaling pathway in cervical cancer. Biomed Pharmacother 2017. [PMID: 28628975 DOI: 10.1016/j.biopha.2017.03.057] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Cervical cancer is the most common gynecological malignancies in women worldwide. The previous study showed that lncRNA NNT-AS1 could play an important role in tumor development and metastasis of colorectal cancer. However, little is known about the function of NNT-AS1 in cervical cancer. The aim of this study was to investigate the expression profile of NNT-AS1 in cervical cancer and assess its possible molecular mechanism. METHODS Relative expression levels of NNT-AS1 in cervical cancer tissues were determined by qRT-PCR. The biologic functions of NNT-AS1 in cervical cancer were explored by MTT assay, transwell assay and flow cytometric analysis in vitro. The influence of NNT-AS1 on tumorigenesis was measured by mice xenograft model. In addition, we evaluated the activation of Wnt/β-catenin signaling pathway by luciferase assay and western blot. RESULTS Our results showed that NNT-AS1 expression in cervical cancer tissues compared with adjacent non-tumor tissues the overexpression of NNT-AS1 was positively associated with advanced FIGO stage, lymph node metastasis, depth of cervical invasion and poorer overall survival. Function assays showed that NNT-AS1 inhibition could suppress cervical cancer cells proliferation and invasion ability in vitro as well as the activation of Wnt/β-catenin signaling pathway. In vivo mice xenograft model revealed that silencing NNT-AS1 could reduce tumor growth in nude mice. CONCLUSIONS The results of the current study suggested that NNT-AS1 might play an important role in cervical carcinogenesis and might serve as a potentially therapeutic target and prognostic marker in the treatment of cervical cancer.
Collapse
Affiliation(s)
- Fangfang Hua
- Department of Gynecology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, PR China
| | - Shanshan Liu
- Department of Gynecology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, PR China
| | - Lihong Zhu
- Department of Gynecology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, PR China
| | - Ning Ma
- Department of Gynecology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, PR China
| | - Shan Jiang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, PR China
| | - Jun Yang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, PR China.
| |
Collapse
|
8
|
Liang X, Men QL, Li YW, Li HC, Chong T, Li ZL. Silencing of Armadillo Repeat-Containing Protein 8 (ARMc8) Inhibits TGF-β-Induced EMT in Bladder Carcinoma UMUC3 Cells. Oncol Res 2017; 25:99-105. [PMID: 28081738 PMCID: PMC7840676 DOI: 10.3727/096504016x14719078133609] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Armadillo repeat-containing protein 8 (ARMc8) is a key factor in regulating cell migration, proliferation, tissue maintenance, and tumorigenesis. However, its role in bladder cancer remains unknown. Thus, in this study we sought to investigate the effect of ARMc8 on the epithelial-to-mesenchymal transition (EMT) progress in bladder cancer cells induced by transforming growth factor-β1 (TGF-β1). Our results found that ARMc8 was highly expressed in bladder cancer cell lines. ARMc8 silencing inhibited the TGF-β1-induced migration and invasion and suppressed the EMT progress in bladder cancer cells. Furthermore, ARMc8 silencing inhibited the TGF-β1-induced expression of β-catenin, cyclin D1, and c-myc in bladder cancer cells. In conclusion, the present study demonstrates a novel function for ARMc8, which acts as a mediator for TGF-β1-induced cell migration/invasion through modulation of the Wnt/β-catenin signaling pathway in bladder cancer cells. This study suggests that ARMc8 may be a potential therapeutic target for the development of therapies for bladder cancer.
Collapse
Affiliation(s)
- Xuan Liang
- *Department of Oncology, The First Affiliated Hospital, Xi’an Jiaotong University Medical College, Xi’an, Shaanxi, P.R. China
| | - Qun-Li Men
- †Department of Urology, The Central Hospital of Baoji, Baoji, Shaanxi, P.R. China
| | - Yong-wei Li
- ‡Department of Urology, The Central Hospital of Weinan, Weinan, Shaanxi, P.R. China
| | - He-Cheng Li
- §Department of Urology, The Second Affiliated Hospital, Xi’an Jiaotong University Medical College, Xi’an, Shaanxi, P.R. China
| | - Tie Chong
- §Department of Urology, The Second Affiliated Hospital, Xi’an Jiaotong University Medical College, Xi’an, Shaanxi, P.R. China
| | - Zhao-lun Li
- §Department of Urology, The Second Affiliated Hospital, Xi’an Jiaotong University Medical College, Xi’an, Shaanxi, P.R. China
| |
Collapse
|
9
|
Abstract
Urothelial cell carcinoma (UCC) of the bladder is one of the most common malignancies, causing considerable morbidity and mortality worldwide. It is unique among the epithelial carcinomas as two distinct pathways to tumourigenesis appear to exist: low grade, recurring papillary tumours usually contain oncogenic mutations in FGFR3 or HRAS whereas high grade, muscle invasive tumours with metastatic potential generally have defects in the pathways controlled by the tumour suppressors p53 and retinoblastoma. Over the last two decades, a number of transgenic mouse models of UCC, containing deletions or mutations of key tumour suppressor genes or oncogenes, have helped us understand the mechanisms behind tumour development. In this summary, I present my work investigating the role of the WNT signalling cascade in UCC.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Transitional Cell/genetics
- Carcinoma, Transitional Cell/metabolism
- Carcinoma, Transitional Cell/pathology
- Gene Expression Regulation, Neoplastic
- Humans
- Mice
- Mice, Transgenic
- Mutation
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Signal Transduction
- Urinary Bladder Neoplasms/genetics
- Urinary Bladder Neoplasms/metabolism
- Urinary Bladder Neoplasms/pathology
- Wnt Proteins/genetics
- Wnt Proteins/metabolism
Collapse
Affiliation(s)
- I Ahmad
- University Hospitals of North Midlands NHS Trust , UK
| |
Collapse
|
10
|
Liu F, Dong X, Lv H, Xiu P, Li T, Wang F, Xu Z, Li J. Targeting hypoxia-inducible factor-2α enhances sorafenib antitumor activity via β-catenin/C-Myc-dependent pathways in hepatocellular carcinoma. Oncol Lett 2015; 10:778-784. [PMID: 26622569 DOI: 10.3892/ol.2015.3315] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 05/07/2015] [Indexed: 12/12/2022] Open
Abstract
Sorafenib is a type of multikinase inhibitor that exhibits antiangiogenic and antiproliferative effects; in addition, sorafenib is a unique first-line drug recommended for the treatment of advanced hepatocellular carcinoma (HCC). However, the effectiveness of HCC treatment remains poor due to acquired drug resistance. It has been suggested that hypoxia, induced as a results of the antiangiogenic effects of sustained sorafenib treatment, may be an important factor in sorafenib resistance. The transcription factor hypoxia-inducible factor (HIF)-2α has been reported to be associated with cell proliferation under hypoxic conditions; therefore, it was hypothesized that hypoxia may enhance tumor cell proliferation via this mechanism. The present study aimed to evaluate whether the knock-down of HIF-2α was able to enhance the therapeutic efficacy of sorafenib in order to effectively treat HCC. The results demonstrated that hypoxia protected HCC cells against sorafenib; however, short hairpin RNA-HIF-2α transfection in combination with sorafenib treatment exhibited a significantly synergistic effect against HCC cell proliferation. In addition, HCC cells acquired increased β-catenin/C-Myc expression, which enhanced proliferation under hypoxic conditions; however, targeted knock-down of HIF-2α or C-Myc markedly decreased cell proliferation in HCC cells. In conclusion, the results of the present study indicated that the targeted knock-down of HIF-2α in combination with sorafenib may be a promising strategy for the treatment of HCC.
Collapse
Affiliation(s)
- Feng Liu
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Xiaofeng Dong
- Department of Hepatobiliary Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China
| | - Hong Lv
- Department of Hematology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Peng Xiu
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Tao Li
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Fuhai Wang
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Zongzhen Xu
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Jie Li
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
11
|
Intranodal palisaded myofibroblastoma: another mesenchymal neoplasm with CTNNB1 (β-catenin gene) mutations: clinicopathologic, immunohistochemical, and molecular genetic study of 18 cases. Am J Surg Pathol 2015; 39:197-205. [PMID: 25025452 DOI: 10.1097/pas.0000000000000299] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Intranodal palisaded myofibroblastoma is a benign, lymph node-based myofibroblastic tumor of unknown pathogenesis. We report the clinicopathologic, immunohistochemical, and molecular genetic features of this rare entity. The study cohort consisted of 14 men and 4 women ranging in age from 31 to 65 (mean, 47; median 49) years with tumors arising in inguinal lymph nodes (n=15), a neck lymph node (n=1), and undesignated lymph nodes (n=2). Most individuals presented with a painless mass or lump. Possible trauma/injury to the inguinal region was documented in 4 cases. Tumors ranged in size from 1.0 to 4.2 (mean, 3.1; median; 3.0) cm. Microscopically, the process presented as a well-circumscribed, oftentimes pseudoencapsulated nodule (n=17) or nodules (n=1). Tumors consisted of a cellular proliferation of cytologically bland, spindled cells arranged in short fascicles and whorls within a finely collagenous (n=11) or myxocollagenous (n=7) matrix. In 12 tumors, scattered fibromatosis-like fascicles of spindled cells were noted. Histologic features characteristic of the process included nuclear palisades (n=16 cases), collagenous bodies (n=15), and perinuclear intracytoplasmic hyaline globules (n=10). Mitotic activity ranged from 0 to 8 (mean, 2; median, 1) mitotic figures/50 high-powered fields with no atypical division figures identified. Immunohistochemically, all tumors tested expressed smooth muscle actin and/or muscle-specific actin (n=5, each), and nuclear β-catenin and cyclin D1 (n=8, each). The latter 2 results prompted a screening for mutations in the β-catenin gene glycogen synthase kinase-3 β phosphorylation mutational "hotspot" region in exon 3 using polymerase chain reaction amplification and Sanger sequencing. Single nucleotide substitutions leading to missense mutations at the protein level were identified in 7 of 8 (88%) analyzed tumors and are responsible for the abnormal expression of β-catenin and cyclin D1. These results demonstrate that mutational activation of the β-catenin gene is likely a pivotal event in the pathogenesis of intranodal palisaded myofibroblastoma.
Collapse
|
12
|
Mitsui Y, Yasumoto H, Nagami T, Hiraki M, Arichi N, Ishikawa N, Araki A, Maruyama R, Tanaka Y, Dahiya R, Shiina H. Extracellular activation of Wnt signaling through epigenetic dysregulation of Wnt inhibitory factor-1 (Wif-1) is associated with pathogenesis of adrenocortical tumor. Oncotarget 2015; 5:2198-207. [PMID: 24755523 PMCID: PMC4039156 DOI: 10.18632/oncotarget.1889] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Wnt/β-catenin signaling is considered to be an essential regulator of adrenocortical oncogenesis. Wnt inhibitory factor-1 (Wif-1), an extracellular regulator of Wnt signaling, is frequently down-regulated by hypermethylation of the promoter CpG. We investigated epigenetic regulation of Wif-1 and its association with adrenocortical (AC) tumor pathogenesis in light of Wnt activation. The AC tumors showed a high prevalence of Wif-1 promoter methylation and low prevalence of Wif-1 mRNA transcription as compared to the normal adrenal (NA) samples. Furthermore, a significant correlation was found between Wif-1 promoter methylation and mRNA transcription in the tumors. Either intracellular β-catenin accumulation or β-catenin mRNA transcription was significantly elevated in the AC tumors, which also showed an inverse correlation with Wif-1 mRNA transcription. Cyclin D1, a target gene of Wnt signaling, was also up-regulated in the AC tumors as compared with the NA samples. In addition, down-regulation of Wif-1 was correlated with increased cyclin D1 at both mRNA and protein levels. However, despite the proposed activation of Wnt signaling in AC tumors, only 2 of 20 with intracellular β-catenin accumulation showed β-catenin mutations. Thus, genetic alterations of β-catenin and epigenetics-related Wif-1 promoter hypermethylation may be important mechanisms underlying AC tumor formation though aberrant canonical Wnt/β-catenin signaling activation.
Collapse
Affiliation(s)
- Yozo Mitsui
- Departments of Urology, Shimane University Faculty of Medicine, 89-1 Enya-cho, 693-8501 Izumo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Malgor R, Crouser S, Greco D, Brockett C, Coschigano K, Nakazawa M, Jenkinson S. Correlation of Wnt5a expression with histopathological grade/stage in urothelial carcinoma of the bladder. Diagn Pathol 2013; 8:139. [PMID: 23947922 PMCID: PMC3846281 DOI: 10.1186/1746-1596-8-139] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 08/01/2013] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Bladder cancer, including urothelial carcinoma (UC), is the most common malignancy of the urinary tract and the fourth most frequent cancer overall in men. Wnt5a, a member of the Wnt family of proteins, has been shown to have contradictory roles in the pathogenesis of many cancers, acting either as tumor suppressor or tumor promoter. The objective of this study was to investigate the expression and role of Wnt5a in the pathogenesis of UC and suggest possible clinical applications for diagnosis, prognosis and treatment. METHODS We characterized the expression of Wnt5a in 33 human UC samples using immunohistochemistry. The samples were obtained via transurethral resection, immediately fixed in formalin and then embedded in paraffin. The correlation between Wnt5a immunoreactivity, histological grade, and pathological stage of the tumor was analyzed. The expression of Wnt5a mRNA as well as the effect of Wnt5a on cell migration was also evaluated in two UC cell lines, T24 and J82, and a normal urothelial cell line. RESULTS Our immunohistochemical results revealed that Wnt5a staining intensity correlated positively with the histological grade and pathological stage of the UC. Wnt5a mRNA expression differed widely in the three urothelial cell lines, with high levels in one carcinoma cell line and low levels in the other cell line in comparison to the normal urothelial cell line. Migration increased in both UC cell lines in response to Wnt5a treatment. CONCLUSIONS Our results show that the Wnt5a pathway may play a role in the pathogenesis of UC and suggest that Wnt5a may serve as an additional, complementary diagnostic/prognostic marker for UC. VIRTUAL SLIDE http://www.diagnosticpathology.diagnomx.eu/vs/1952312091979566.
Collapse
Affiliation(s)
- Ramiro Malgor
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701-2979, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
Li Y, Zheng Y, Izumi K, Ishiguro H, Ye B, Li F, Miyamoto H. Androgen activates β-catenin signaling in bladder cancer cells. Endocr Relat Cancer 2013; 20:293-304. [PMID: 23447569 DOI: 10.1530/erc-12-0328] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Androgen receptor (AR) signals have been implicated in bladder carcinogenesis and tumor progression. Activation of Wnt/β-catenin signaling has also been reported to correlate with bladder cancer progression and poor patients' outcomes. However, cross talk between AR and β-catenin pathways in bladder cancer remains uncharacterized. In radical cystectomy specimens, we immunohistochemically confirmed aberrant expression of β-catenin especially in aggressive tumors. There was a strong association between nuclear expressions of AR and β-catenin in bladder tumors (P=0.0215). Kaplan-Meier and log-rank tests further revealed that reduced membranous β-catenin expression (P=0.0276), nuclear β-catenin expression (P=0.0802), and co-expression of nuclear AR and β-catenin (P=0.0043) correlated with tumor progression after cystectomy. We then assessed the effects of androgen on β-catenin in AR-positive and AR-negative bladder cancer cell lines. A synthetic androgen R1881 increased the expression of an active form of β-catenin and its downstream target c-myc only in AR-positive lines. R1881 also enhanced the activity of β-catenin-mediated transcription, which was abolished by an AR antagonist hydroxyflutamide. Using western blotting and immunofluorescence, R1881 was found to induce nuclear translocation of β-catenin when co-localized with AR. Finally, co-immunoprecipitation revealed androgen-induced associations of AR with β-catenin or T-cell factor (TCF) in bladder cancer cells. Thus, it was likely that androgen was able to activate β-catenin signaling through the AR pathway in bladder cancer cells. Our results also suggest that activation of β-catenin signaling possibly via formation of AR/β-catenin/TCF complex contributes to the progression of bladder cancer, which may enhance the feasibility of androgen deprivation as a potential therapeutic approach.
Collapse
Affiliation(s)
- Yi Li
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Wang JS, Ji AF, Wan HJ, Lu YL, Yang JZ, Ma LL, Wang YJ, Wei W. Gene silencing of β-catenin by RNAi inhibits proliferation of human esophageal cancer cells by inducing G0/G1 cell cycle arrest. Asian Pac J Cancer Prev 2013; 13:2527-32. [PMID: 22938416 DOI: 10.7314/apjcp.2012.13.6.2527] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVES The aim of the present study was to explore mechanisms underlying the effects of down-regulating β-catenin expression on esophageal carcinoma (EC) cells. METHODS Cell cycle distribution and apoptosis were determined using flow cytometry and annexin V apoptosis assay, respectively. Transmission electron microscopy (TEM) was used to examine changes in ultrastructure, while expression of cyclin D1 protein and mRNA was detected by western blot and real-time PCR. Proliferating cell nuclear antigen (PCNA) and extracellular signal-regulated kinase (ERK) 1/2 were evaluated by Western blot analysis. PCNA labeling index (LI) was determined by immunocytochemistry. RESULTS Compared with pGen-3-con transfected and Eca-109 cells, the percentage of G0/G1-phase pGen-3-CTNNB1 transfected cells was obviously increased (P<0.05), with no significant difference among the three groups with regard to apoptosis (P>0.05). pGen-3-CTNNB1 transfected cells exhibited obvious decrease in cyclin D1 mRNA and protein expression (P<0.05) and the ultrastructure of Eca-109 cells underwent a significant change after being transfected with pGen-3-CTNNB1, suggesting that down-regulating β-catenin expression can promote the differentiation and maturation. The expression of PCNA and the ERKI/2 phosphorylation state were also down-regulated in pGen-3-CTNNB1 transfected cells (P<0.05). At the same time, the PCNA labeling index was decreased accordingly (P<0.05). CONCLUSION Inhibition of EC Eca-109 cellproliferation by down-regulating β-catenin expression could improve cell ultrastructure by mediating blockade in G0/G1 through inhibiting cyclin D1, PCNA and the MAPK pathway (p-ERK1/2).
Collapse
Affiliation(s)
- Jin-Sheng Wang
- Central Laboratory, Peace Hospital Affiliated to Changzhi Medical University, Changzhi, China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Xue Y, Wu G, Wang X, Zou X, Zhang G, Xiao R, Yuan Y, Long D, Yang J, Wu Y, Xu H, Liu F, Liu M. CIP2A is a predictor of survival and a novel therapeutic target in bladder urothelial cell carcinoma. Med Oncol 2012; 30:406. [PMID: 23275123 DOI: 10.1007/s12032-012-0406-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 10/05/2012] [Indexed: 11/28/2022]
Abstract
Cancerous inhibitor of protein phosphatase 2A (CIP2A) is a recently identified human oncoprotein that stabilizes the c-MYC protein. Herein, we aimed to investigate its expression pattern, clinical significance, and biological function in urothelial cell carcinoma (UCC) of the bladder. CIP2A expression was examined in 20 fresh bladder UCC tissues and paired adjacent normal bladder tissues by RT-PCR and Western blot. Immunohistochemistry for CIP2A was performed on additional 117 bladder UCC tissues. The clinical significance of CIP2A expression was analyzed. CIP2A downregulation was performed in bladder UCC cell line T24 with high abundance of CIP2A, and the effects of CIP2A silencing on cell proliferation, migration, invasion in vitro, and tumor growth in vivo were evaluated. We found that CIP2A expression was upregulated in bladder UCC tissues relative to adjacent normal bladder tissues. Clinicopathological analysis showed that CIP2A expression was significantly associated with tumor stage (P = 0.004), histological grade (P = 0.007), and lymph node status (P = 0.001). The Kaplan-Meier survival curves revealed that CIP2A expression was associated with poor prognosis in bladder UCC patients (log-rank value = 14.704, P < 0.001). CIP2A expression was an independent prognostic marker of overall patient survival in a multivariate analysis (P = 0.015). Knockdown of the CIP2A expression reduced cell proliferation, anchorage-independent growth, migration, invasion, and tumor growth in xenograft model mice. Our findings suggest that CIP2A is an independent predictor of poor prognosis of bladder UCC patients, and inhibition of its expression might be of therapeutic significance.
Collapse
Affiliation(s)
- Yijun Xue
- Department of Urology, First Affiliated Hospital of Gannan Medical University, No. 23, Qing Nian Road, Ganzhou 341000, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ahmad I, Sansom OJ, Leung HY. Exploring molecular genetics of bladder cancer: lessons learned from mouse models. Dis Model Mech 2012; 5:323-32. [PMID: 22422829 PMCID: PMC3339826 DOI: 10.1242/dmm.008888] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Urothelial cell carcinoma (UCC) of the bladder is one of the most common malignancies worldwide, causing considerable morbidity and mortality. It is unusual among the epithelial carcinomas because tumorigenesis can occur by two distinct pathways: low-grade, recurring papillary tumours usually contain oncogenic mutations in FGFR3 or HRAS, whereas high-grade, muscle-invasive tumours with metastatic potential generally have defects in the pathways controlled by the tumour suppressors p53 and retinoblastoma (RB). Over the past 20 years, a plethora of genetically engineered mouse (GEM) models of UCC have been developed, containing deletions or mutations of key tumour suppressor genes or oncogenes. In this review, we provide an up-to-date summary of these GEM models, analyse their flaws and weaknesses, discuss how they have advanced our understanding of UCC at the molecular level, and comment on their translational potential. We also highlight recent studies supporting a role for dysregulated Wnt signalling in UCC and the development of mouse models that recapitulate this dysregulation.
Collapse
Affiliation(s)
- Imran Ahmad
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, UK.
| | | | | |
Collapse
|
18
|
A systematic study of gene mutations in urothelial carcinoma; inactivating mutations in TSC2 and PIK3R1. PLoS One 2011; 6:e18583. [PMID: 21533174 PMCID: PMC3077383 DOI: 10.1371/journal.pone.0018583] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 03/04/2011] [Indexed: 02/07/2023] Open
Abstract
Background Urothelial carcinoma (UC) is characterized by frequent gene mutations of which activating mutations in FGFR3 are the most frequent. Several downstream targets of FGFR3 are also mutated in UC, e.g., PIK3CA, AKT1, and RAS. Most mutation studies of UCs have been focused on single or a few genes at the time or been performed on small sample series. This has limited the possibility to investigate co-occurrence of mutations. Methodology/Principal Findings We performed mutation analyses of 16 genes, FGFR3, PIK3CA, PIK3R1 PTEN, AKT1, KRAS, HRAS, NRAS, BRAF, ARAF, RAF1, TSC1, TSC2, APC, CTNNB1, and TP53, in 145 cases of UC. We show that FGFR3 and PIK3CA mutations are positively associated. In addition, we identified PIK3R1 as a target for mutations. We demonstrate a negative association at borderline significance between FGFR3 and RAS mutations, and show that these mutations are not strictly mutually exclusive. We show that mutations in BRAF, ARAF, RAF1 rarely occurs in UC. Our data emphasize the possible importance of APC signaling as 6% of the investigated tumors either showed inactivating APC or activating CTNNB1 mutations. TSC1, as well as TSC2, that constitute the mTOR regulatory tuberous sclerosis complex were found to be mutated at a combined frequency of 15%. Conclusions/Significance Our data demonstrate a significant association between FGFR3 and PIK3CA mutations in UC. Moreover, the identification of mutations in PIK3R1 further emphasizes the importance of the PI3-kinase pathway in UC. The presence of TSC2 mutations, in addition to TSC1 mutations, underlines the involvement of mTOR signaling in UC.
Collapse
|
19
|
Ahmad I, Morton JP, Singh LB, Radulescu SM, Ridgway RA, Patel S, Woodgett J, Winton DJ, Taketo MM, Wu XR, Leung HY, Sansom OJ. β-Catenin activation synergizes with PTEN loss to cause bladder cancer formation. Oncogene 2011; 30:178-89. [PMID: 20818428 PMCID: PMC3044461 DOI: 10.1038/onc.2010.399] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 06/29/2010] [Accepted: 07/10/2010] [Indexed: 11/09/2022]
Abstract
Although deregulation of the Wnt signalling pathway has been implicated in urothelial cell carcinoma (UCC), the functional significance is unknown. To test its importance, we have targeted expression of an activated form of β-catenin to the urothelium of transgenic mice using Cre-Lox technology (UroIICRE(+) β-catenin(exon3/+)). Expression of this activated form of β-catenin led to the formation of localized hyperproliferative lesions by 3 months, which did not progress to malignancy. These lesions were characterized by a marked increase of the phosphatase and tensin homologue (PTEN) tumour suppressor protein. This appears to be a direct consequence of activating Wnt signalling in the bladder as conditional deletion of the adenomatous polyposis coli (Apc) gene within the adult bladder led rapidly to coincident β-catenin and PTEN expression. This PTEN expression blocked proliferation. Next, we combined PTEN deficiency with β-catenin activation and found that this caused papillary UCC. These tumours had increased pAKT signalling and were dependent on mammalian target of rapamycin (mTOR). Importantly, in human UCC, there was a significant correlation between high levels of β-catenin and pAKT (and low levels of PTEN). Taken together these data show that deregulated Wnt signalling has a critical role in promoting UCC, and suggests that human UCC that have high levels of Wnt and PI3 kinase signalling may be responsive to mTOR inhibition.
Collapse
Affiliation(s)
- Imran Ahmad
- The Beatson Institute for Cancer Research, Glasgow, Scotland. G611BD
| | - Jennifer P Morton
- The Beatson Institute for Cancer Research, Glasgow, Scotland. G611BD
- Centre for Oncology and Applied Pharmacology, University of Glasgow, Glasgow, Scotland
| | | | | | - Rachel A Ridgway
- The Beatson Institute for Cancer Research, Glasgow, Scotland. G611BD
| | - Satish Patel
- Samuel Lunenfeld Research Institute, Toronto, ON, Canada
| | - James Woodgett
- Samuel Lunenfeld Research Institute, Toronto, ON, Canada
| | - Douglas J Winton
- Department of Oncology, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Addenbrooke's Hospital, Hills Road, Cambridge, UK
| | - Makato Mark Taketo
- Department of Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Xue-Ru Wu
- Departments of Urology and Pathology, New York University School of Medicine, New York, U.S.A
| | - Hing Y Leung
- The Beatson Institute for Cancer Research, Glasgow, Scotland. G611BD
| | - Owen J Sansom
- The Beatson Institute for Cancer Research, Glasgow, Scotland. G611BD
| |
Collapse
|
20
|
Wang C, Lisanti MP, Liao DJ. Reviewing once more the c-myc and Ras collaboration: converging at the cyclin D1-CDK4 complex and challenging basic concepts of cancer biology. Cell Cycle 2011; 10:57-67. [PMID: 21200143 DOI: 10.4161/cc.10.1.14449] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The c-myc is a proto-oncogene that manifests aberrant expression at high frequencies in most types of human cancer. C-myc gene amplifications are often observed in various cancers as well. Ample studies have also proved that c-myc has a potent oncogenicity, which can be further enhanced by collaborations with other oncogenes such as Bcl-2 and activated Ras. Studies on the collaborations of c-myc with Ras or other genes in oncogenicity have established several basic concepts and have disclosed their underlying mechanisms of tumor biology, including "immortalization" and "transformation". In many cases, these collaborations may converge at the cyclin D1-CDK4 complex. In the meantime, however, many results from studies on the c-myc, Ras and cyclin D1-CDK4 also challenge these basic concepts of tumor biology and suggest to us that the immortalized status of cells should be emphasized. Stricter criteria and definitions for a malignantly transformed status and a benign status of cells in culture also need to be established to facilitate our study of the mechanisms for tumor formation and to better link up in vitro data with animal results and eventually with human cancer pathology.
Collapse
Affiliation(s)
- Chenguang Wang
- Department of Stem Cell and Regenerative Medicine, and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | |
Collapse
|
21
|
Xu WL, Wang Q, Du M, Zhao YH, Sun XR, Sun WG, Chen BQ. Growth Inhibition Effect of β-Catenin Small Interfering RNA–Mediated Gene Silencing on Human Colon Carcinoma HT-29 Cells. Cancer Biother Radiopharm 2010; 25:529-37. [DOI: 10.1089/cbr.2010.0768] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Wei-Li Xu
- School of Food Science and Engineering, Harbin Institute of Technology, Harbin, People's Republic of China
| | - Qi Wang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, People's Republic of China
| | - Ming Du
- School of Food Science and Engineering, Harbin Institute of Technology, Harbin, People's Republic of China
| | - Yong-Huan Zhao
- Department of Food Science, Heilongjiang August First Land Reclamation University, Daqing, People's Republic of China
| | - Xiang-Rong Sun
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, People's Republic of China
| | - Wen-Guang Sun
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, People's Republic of China
| | - Bing-Qing Chen
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, People's Republic of China
| |
Collapse
|
22
|
Silibinin suppresses spontaneous tumorigenesis in APC min/+ mouse model by modulating beta-catenin pathway. Pharm Res 2009; 26:2558-67. [PMID: 19779968 DOI: 10.1007/s11095-009-9968-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 08/31/2009] [Indexed: 02/06/2023]
Abstract
PURPOSE Here we assessed whether silibinin, a nontoxic chemopreventive agent, inhibits spontaneous intestinal tumorigenesis in APC ( min/+) mouse model, a genetically predisposed animal model of human familial adenomatous polyposis (FAP). MATERIALS AND METHODS Six-week-old APC (min/+) mice were divided into four groups and orally gavaged with 0.2 ml vehicle, or 250, 500 and 750 mg silibinin/kg body weight in 0.2 ml vehicle for five days/week. After 6 weeks, polyp burden was analyzed and tissues examined for molecular alterations. RESULTS Silibinin treatments decreased total number of intestinal polyps by 34% (P < 0.01), 42% (P < 0.01) and 55% (P < 0.001), respectively. Immunohistochemical analysis showed that silibinin dose-dependently decreases (P < 0.001) proliferation and induces (P < 0.001) apoptosis only in intestinal polyps without any considerable effects on normal crypt-villi in APC (min/+) or wild-type mice. Further analysis of polyps showed that silibinin decreases beta-catenin, cyclin D1, c-Myc and phospho-glycogen synthase kinase-3beta expression. Silibinin treatment also decreased phospho-Akt, cyclooxygenase-2, inducible nitric oxide synthase, nitrotyrosine and nitrite levels in polyps, the well-known mediators of intestinal/colon carcinogenesis. CONCLUSION Together, these results establish silibinin efficacy in a well-established genetic model of FAP, APC (min/+) mouse, and suggest that this natural agent modulates various molecular pathways including beta-catenin in its overall chemopreventive efficacy against intestinal carcinogenesis.
Collapse
|
23
|
Tang Y, Simoneau AR, Liao WX, Yi G, Hope C, Liu F, Li S, Xie J, Holcombe RF, Jurnak FA, Mercola D, Hoang BH, Zi X. WIF1, a Wnt pathway inhibitor, regulates SKP2 and c-myc expression leading to G1 arrest and growth inhibition of human invasive urinary bladder cancer cells. Mol Cancer Ther 2009; 8:458-68. [PMID: 19174556 DOI: 10.1158/1535-7163.mct-08-0885] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Epigenetic silencing of secreted wingless-type (Wnt) antagonists through hypermethylation is associated with tobacco smoking and with invasive bladder cancer. The secreted Wnt inhibitory factor-1 (WIF1) has shown consistent growth-inhibitory effect on various cancer cell lines. Therefore, we assessed the mechanisms of action of WIF1 by either restoring WIF1 expression in invasive bladder cancer cell lines (T24 and TSU-PR1) or using a recombinant protein containing functional WIF1 domain. Both ectopic expression of WIF1 and treatment with WIF1 domain protein resulted in cell growth inhibition via G(1) arrest. The G(1) arrest induced by WIF1 is associated with down-regulation of SKP2 and c-myc and up-regulation of p21/WAF1 and p27/Kip1. Conversely, reexpression of SKP2 in WIF1-overexpressing TSU-PR1 cells attenuated the WIF1-induced G(1) arrest. Furthermore, inhibition of nuclear Wnt signaling by either dominant-negative LEF1 or short hairpin RNA of TCF4 also reduced SKP2 expression. The human SKP2 gene contains two TCF/LEF1 consensus binding sites within the promoter. Chromatin immunoprecipitation/real-time PCR analysis revealed that both WIF1 and dominant-negative LEF1 expression decreased the in vivo binding of TCF4 and beta-catenin to the SKP2 promoter. Together, our results suggest that mechanisms of WIF1-induced G(1) arrest include (a) SKP2 down-regulation leading to p27/Kip1 accumulation and (b) c-myc down-regulation releasing p21/WAF1 transcription. Additionally, we show that WIF1 inhibits in vivo bladder tumor growth in nude mice. These observations suggest a mechanism for transformation of bladder epithelium on loss of WIF1 function and provide new targets such as SKP2 for intervention in WIF1-deficient bladder cancer.
Collapse
Affiliation(s)
- Yaxiong Tang
- Department of Urology, University of California at Irvine, Irvine, CA 92868, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Kastritis E, Murray S, Kyriakou F, Horti M, Tamvakis N, Kavantzas N, Patsouris ES, Noni A, Legaki S, Dimopoulos MA, Bamias A. Somatic mutations of adenomatous polyposis coli gene and nuclear b-catenin accumulation have prognostic significance in invasive urothelial carcinomas: evidence for Wnt pathway implication. Int J Cancer 2009; 124:103-8. [PMID: 18844223 DOI: 10.1002/ijc.23917] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Wnt pathway signaling is crucial in many cancers and data indicate crosstalk with other key cancer pathways, however in urothelial carcinogenesis it has not been extensively studied. We searched for mutations in adenomatous polyposis coli (APC), a key regulator of the pathway, and studied b-catenin expression and interactions with the expression of other markers of apoptosis, angiogenesis, and proliferation in patients with invasive urothelial cancer. The mutation cluster region of APC was directly sequenced in 70 patients with muscle invasive disease who were treated with surgery and adjuvant chemotherapy. COX-2, p53, Ki67, and b-catenin were studied immunohistochemically and micro vessel density was quantified by CD105 expression. Single somatic amino-acid substitutions (missense) were found in 9 (13%) and frameshift deletions in 2 (3%) tumors, all located in regions adjacent to b-catenin binding sites. Patients having either APC missense mutations or b-catenin nuclear accumulation had less frequent COX-2 overexpression (24% vs. 76%, p = 0.043) and more frequent lymph node involvement (75% vs. 38%, p = 0.023). Patients with either APC mutations or b-catenin accumulation had shorter disease-free interval (13.4 vs. 28 months, p = 0.07), whereas in multivariate analysis they had shorter disease-specific survival (60.5 vs. 20.6 months, p = 0.048). Somatic APC missense mutations are not rare in advanced urothelial neoplasms. Either APC mutations and/or aberrant expression of b-catenin are associated with worse outcome. Further study of the role of the Wnt pathway, potential crosstalk with other pathways and potential candidate therapeutic targets in urothelial cancer is needed.
Collapse
Affiliation(s)
- Efstathios Kastritis
- Department of Clinical Therapeutics, Athens University, School of Medicine, Athens, Greece
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Wang JS, Zheng CL, Wang YJ, Wen JF, Ren HZ, Liu Y, Jiang HY. Gene silencing of beta-catenin by RNAi inhibits cell proliferation in human esophageal cancer cells in vitro and in nude mice. Dis Esophagus 2008; 22:151-62. [PMID: 19021690 DOI: 10.1111/j.1442-2050.2008.00875.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
beta-Catenin, which is frequently overexpressed in a variety of human cancers including esophageal cancer, mediates cancer cell proliferation and tumor growth. In the present study, we used a human U6 promoter-driven DNA-template approach to induce short hairpin RNA (shRNA)-triggered RNA interference to silence beta-catenin gene expression in human esophageal squamous cell carcinoma cell line Eca-109, and then evaluated its effects on the proliferation and growth of tumor cells in vitro and in nude mice. beta-Catenin expression levels decreased markedly in Eca-109 cells transfected with a plasmid expressing shRNA for beta-catenin. Downregulation of beta-catenin was concomitantly accompanied by reduction of cyclin D1, colony formation, and growth inhibition of Eca-109 cells in vitro. The mechanism appears to be the G0/G1 phase arrest but not induction of apoptosis. In vivo, treatment of Eca-109 cells with beta-catenin shRNA greatly impeded tumor growth in nude mice. We conclude that plasmid vector-mediated beta-catenin RNA interference holds great promise as a novel treatment on human esophageal cancer with beta-catenin overexpression.
Collapse
Affiliation(s)
- Jin-Sheng Wang
- Department of Pathology, Xiangya Medical College, Central South University, Changsha, China
| | | | | | | | | | | | | |
Collapse
|
26
|
Arnold HK, Sears RC. A tumor suppressor role for PP2A-B56alpha through negative regulation of c-Myc and other key oncoproteins. Cancer Metastasis Rev 2008; 27:147-58. [PMID: 18246411 DOI: 10.1007/s10555-008-9128-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Loss or inhibition of the serine/threonine protein phosphatase 2A (PP2A) has revealed a critical tumor suppressor function for PP2A. However, PP2A has also been shown to have important roles in cell cycle progression and survival. Therefore, PP2A is not a typical tumor suppressor. This is most likely due to the fact that PP2A represents a large number of different holoenzymes. Further understanding of PP2A function(s), and especially its tumor suppressor activity, will depend largely on our ability to determine specific targets for these different PP2A holoenzymes and to gain an understanding of how these targets confer tumor suppressor activity or contribute to cell cycle progression and cell survival. Recent work has identified c-Myc as a target of the PP2A holoenzyme, PP2A-B56alpha. This holoenzyme also negatively regulates beta-catenin expression and modulates the anti-apoptotic activity of Bcl2, thus characterizing PP2A-B56alpha as a tumor suppressor PP2A holoenzyme. This review will focus on the role of PP2A-B56alpha in regulating c-Myc and will place this tumor suppressor activity of PP2A within the context of its other tumor suppressor functions. Finally, the mechanism(s) through which PP2A-B56alpha tumor suppressor activity may be lost in cancer will be discussed.
Collapse
Affiliation(s)
- Hugh K Arnold
- Department of Molecular and Medical Genetics, Oregon Health & Sciences University, Portland, OR 97239, USA
| | | |
Collapse
|
27
|
Huang WS, Wang JP, Wang T, Fang JY, Lan P, Ma JP. ShRNA-mediated gene silencing of β-catenin inhibits growth of human colon cancer cells. World J Gastroenterol 2007; 13:6581-7. [PMID: 18161931 PMCID: PMC4611300 DOI: 10.3748/wjg.v13.i48.6581] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To observe the gene silencing mediated by the specific shRNA targeted against β-catenin and its effect on cell proliferation and cycle distribution in the human colon cancer cell line Colo205.
METHODS: Two shRNA plasmid vectors against β-catenin were constructed and transfected into Colo205 cells with LipofectamineTM2000. The down-regulations of β-catenin, c-myc and cyclinD1 expressions were detected by RT-PCR and western blot analysis. The cell proliferation inhibitions were determined by MTT assay and soft agar colony formation assay. The effect of these two β-catenin shRNAs on cell cycle distribution and apoptosis was examined by flow cytometry.
RESULTS: These two shRNA vectors targeted against β-catenin efficiently suppressed the expression of β-catenin and its down stream genes, c-myc and cyclinD1. The expression inhibition rates were around 40%-50% either at the mRNA or at the protein level. The shRNA-mediated gene silencing of β-catenin resulted in significant inhibition of cell growth both on the culture plates and in the soft agar. Moreover, the cancer cells showed significant G0/G1 arrest and increased apoptosis at 72 h post transfection due to gene silencing.
CONCLUSION: These specific shRNAs targeted against β-catenin could have a gene silencing effect and block the WNT signaling pathway. They could inhibit cell growth, increase apoptosis, and induce cell cycle arrest in Colo205 cells. ShRNA interference against β-catenin is of potential value in gene therapy of colon cancer.
Collapse
|
28
|
Baumgart E, Cohen MS, Silva Neto B, Jacobs MA, Wotkowicz C, Rieger-Christ KM, Biolo A, Zeheb R, Loda M, Libertino JA, Summerhayes IC. Identification and prognostic significance of an epithelial-mesenchymal transition expression profile in human bladder tumors. Clin Cancer Res 2007; 13:1685-94. [PMID: 17363521 DOI: 10.1158/1078-0432.ccr-06-2330] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE Epithelial to mesenchymal transition (EMT) is reportedly an important transition in cancer progression in which the underlying cellular changes have been identified mainly using in vitro models. In this study, we examined the expression pattern of EMT markers in vivo and determined the occurrence and clinical significance of these events in a series of bladder carcinomas. EXPERIMENTAL DESIGN Eight hundred and twenty-five tumor samples from 572 bladder cancer patients were assembled in 10 tissue microarrays. Paraffin sections from each tissue microarray were subjected to antigen retrieval and processed by immunohistochemistry for the expression of E-cadherin, plakoglobin, beta-catenin, N-cadherin, and vimentin. RESULTS Pathologic expression of E-cadherin, beta-catenin, plakoglobin, and vimentin were associated with the clinicopathologic variables of grade and stage with only the cytoplasmic localization of plakoglobin found associated with lymph node status. Associations between the aforementioned markers were found significant as determined by the Spearman correlation coefficient with N-cadherin showing no associations in this analysis. In univariate survival analysis involving patients who underwent cystectomy, the reduction or loss of plakoglobin significantly influenced overall survival (P = 0.02) in which the median time to death was 2 years compared with 4 years when a normal level of plakoglobin was recorded. When the analysis was done for cancer-specific survival, low levels of both plakoglobin (P = 0.02) and beta-catenin (P = 0.02) significantly influenced survival. CONCLUSION The putative markers of EMT defined within a panel of bladder carcinoma cell lines were recorded in vivo, frequently associated with tumors of high grade and stage. Although multivariate analysis showed no significant influence of the EMT biomarkers on survival, alterations associated with plakoglobin were identified as significant prognostic features in these tumors.
Collapse
Affiliation(s)
- Egbert Baumgart
- Cell and Molecular Biology Laboratory, RE Wise MD Research and Education Institute, Department of Urology, Lahey Clinic, Burlington, MA 01805, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Yasmeen A, Bismar TA, Al Moustafa AE. ErbB receptors and epithelial-cadherin-catenin complex in human carcinomas. Future Oncol 2007; 2:765-81. [PMID: 17155902 DOI: 10.2217/14796694.2.6.765] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The ErbB family of receptor tyrosine kinases have important roles in maintaining normal epithelial cell function. The ErbBs are involved in the interaction between cells and cell-matrix adhesion molecules and have proven critical in maintaining the integrity of the epithelial cell environment. Deregulation of these tyrosine receptors has been associated with several human diseases. In particular, the expression or activation of epidermal growth factor receptor (EGFR) and ErbB2 is altered in many epithelial tumors. Epithelial (E)-cadherin is another major molecule expressed by epithelial cells. To create efficient cell-cell adhesion, E-cadherin couples its cytoplasmic domain to catenins and the actin cytoskeleton. The loss of intercellular adhesion appears to be a fundamental aspect of the neoplastic phenomena. In addition, EGFR and ErbB2 signaling associated with the E-cadherin-catenin complex has been demonstrated in normal and cancer cells. This signaling is involved in regulating cell adhesion and the invasive growth of cancers. This article provides an overview of the interaction between the ErbB tyrosine receptors and the E-cadherin-catenin complex in human carcinomas.
Collapse
Affiliation(s)
- Amber Yasmeen
- McGill University, Program in Cancer Genetics, Department of Oncology, Montreal, Quebec, Canada.
| | | | | |
Collapse
|
30
|
Yoshino T, Shiina H, Urakami S, Kikuno N, Yoneda T, Shigeno K, Igawa M. Bcl-2 Expression as a Predictive Marker of Hormone-Refractory Prostate Cancer Treated with Taxane-Based Chemotherapy. Clin Cancer Res 2006; 12:6116-24. [PMID: 17062688 DOI: 10.1158/1078-0432.ccr-06-0147] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Bcl-2 inhibits apoptosis, and its overexpression is associated with hormone refractory prostate cancer (HRPC). Bak and Bax are in the Bcl-2 family and counteract the antiapoptotic function of Bcl-2. Taxane-induced (paclitaxel and its analogue docetaxel) phosphorylation of Bcl-2 abolishes the potential antiapoptotic effect of Bcl-2. We hypothesized that (a) survival benefit in HRPC patients treated with taxanes is determined by the presence of Bcl-2 protein and (b) altered expression of Bak and Bax protein caused by genetic mutation is associated with biological aggressiveness of prostate cancer. EXPERIMENTAL DESIGN Forty localized prostate cancer and 30 HRPC cases were used in this study. Surgical specimens of localized prostate cancer and biopsy specimens of HRPC were used for immunostaining of Bcl-2, Bak, and Bax as well as DNA extraction. Mutations in the Bak and Bax genes were screened by single-strand conformational polymorphism, and confirmed by direct DNA sequencing. RESULTS Bcl-2-positive HRPC showed longer cause-specific survival in comparison with the counterparts. Multivariate analysis revealed that the level of Bcl-2 expression before treatment with taxane-based chemotherapy was an independent predictor for cause-specific survival (P < 0.01) and baseline prostate-specific antigen level was an independent predictor for progression-free survival (P < 0.01). Bax gene mutation was found in only one HRPC specimen. CONCLUSIONS Bcl-2 expression in addition to prostate-specific antigen measurement before treatment could identify HRPC patients who may benefit from taxane-based chemotherapy. Mutation of the Bak and Bax genes is a rare event in prostate cancer.
Collapse
Affiliation(s)
- Tateki Yoshino
- Department of Urology, Shimane University School of Medicine, Izumo, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Urothelial carcinoma (UC), the common histological subtype of bladder cancer, presents as a papillary tumor or as an invasive, often lethal form. To study UC molecular biology, candidate gene and genome-wide approaches have been followed. Here, it is argued that a 'cancer pathway' perspective is useful to integrate findings from both approaches. According to this view, papillary cancers typically exhibit activation of the MAPK pathway, as a consequence of oncogenic mutations in FGFR3 or HRAS, with increased Cyclin D1 expression. In contrast, invasive UC are characterized by severe disturbances in proximate cell cycle regulators, e.g. RB1 and CDKN2A/p16(INK4A), which decrease dependency on mitogenic signaling. In addition, these disturbances permit, promote and are in turn exacerbated by chromosomal instability, which is further enhanced by loss of TP53 function. In another vicious cycle, defective cell cycle regulation interacts with DNA methylation alterations. The transition toward invasive UC may require concomitant and interacting defects in cell cycle regulation and the control of genomic stability. Intriguingly, neither canonical WNT/beta-Catenin nor hedgehog signaling appear to play major roles in UC. This may reflect its origin from more differentiated urothelial cells possessing a high regenerative potential rather than a stem cell population.
Collapse
Affiliation(s)
- Wolfgang A Schulz
- Department of Urology, Heinrich-Heine-University Düsseldorf, Germany.
| |
Collapse
|
32
|
Urakami S, Shiina H, Enokida H, Kawakami T, Tokizane T, Ogishima T, Tanaka Y, Li LC, Ribeiro-Filho LA, Terashima M, Kikuno N, Adachi H, Yoneda T, Kishi H, Shigeno K, Konety BR, Igawa M, Dahiya R. Epigenetic inactivation of Wnt inhibitory factor-1 plays an important role in bladder cancer through aberrant canonical Wnt/beta-catenin signaling pathway. Clin Cancer Res 2006; 12:383-91. [PMID: 16428476 DOI: 10.1158/1078-0432.ccr-05-1344] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE Aberrant activation of the Wingless-type (Wnt) pathway plays a significant role in the pathogenesis of several human cancers. Wnt inhibitory factor-1 (Wif-1) was identified as one of the secreted antagonists that can bind Wnt protein. We hypothesize that Wif-1 plays an important role in bladder cancer pathogenesis. EXPERIMENTAL DESIGN To test this hypothesis, epigenetic and genetic pathways involved in the Wif-1 gene modulation and expression of Wnt/beta-catenin-related genes were analyzed in 4 bladder tumor cell lines and 54 bladder tumor and matched normal bladder mucosa. RESULTS Wif-1 mRNA expression was significantly enhanced after 5-aza-2'-deoxycytidine treatment in bladder tumor cell lines. Wif-1 promoter methylation level was significantly higher and Wif-1 mRNA expression was significantly lower in bladder tumor samples than in bladder mucosa samples. In the total bladder tumor and bladder mucosa samples, an inverse correlation was found between promoter methylation and Wif-1 mRNA transcript levels. However, loss-of-heterozygosity at chromosome 12q14.3 close to the Wif-1 gene loci was a rare event (3.7%). Nuclear accumulation of beta-catenin was significantly more frequent in bladder tumor than in bladder mucosa and inversely correlated with Wif-1 expression. In addition, known targets of the canonical Wnt/beta-catenin signaling pathway, such as c-myc and cyclin D1, were up-regulated in bladder tumor compared with bladder mucosa, and this up-regulation was associated with reduced Wif-1 expression at both mRNA and protein levels. Furthermore, transfection of Wif-1 small interfering RNA into bladder tumor cells expressing Wif-1 mRNA transcripts had increased levels of c-myc and cyclin D1 and accelerated cell growth. CONCLUSION This is the first report showing that CpG hypermethylation of the Wif-1 promoter is a frequent event in bladder tumor and may contribute to pathogenesis of bladder cancer through aberrant canonical Wnt/beta-catenin signaling pathway. The present study elucidates novel pathways that are involved in the pathogenesis of bladder cancer.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Adult
- Aged
- Aged, 80 and over
- Antimetabolites, Antineoplastic/pharmacology
- Azacitidine/analogs & derivatives
- Azacitidine/pharmacology
- Base Sequence
- Carcinoma, Transitional Cell/genetics
- Carcinoma, Transitional Cell/metabolism
- Carcinoma, Transitional Cell/pathology
- Carrier Proteins/antagonists & inhibitors
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Line, Tumor
- Cyclin D1/genetics
- Cyclin D1/metabolism
- DNA Modification Methylases/antagonists & inhibitors
- Decitabine
- Epigenesis, Genetic/physiology
- Gene Expression Regulation, Neoplastic
- Humans
- Middle Aged
- Molecular Sequence Data
- Proto-Oncogene Proteins c-myc/genetics
- Proto-Oncogene Proteins c-myc/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/pharmacology
- Repressor Proteins/antagonists & inhibitors
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Urinary Bladder Neoplasms/genetics
- Urinary Bladder Neoplasms/metabolism
- Urinary Bladder Neoplasms/pathology
- Wnt Proteins/metabolism
- beta Catenin/metabolism
Collapse
Affiliation(s)
- Shinji Urakami
- Department of Urology 112F, Veterans Affairs Medical Center, and University of California at San Francisco, 4150 Clement Street, San Francisco, CA 94121, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Saban MR, Hellmich HL, Turner M, Nguyen NB, Vadigepalli R, Dyer DW, Hurst RE, Centola M, Saban R. The inflammatory and normal transcriptome of mouse bladder detrusor and mucosa. BMC PHYSIOLOGY 2006; 6:1. [PMID: 16420690 PMCID: PMC1382248 DOI: 10.1186/1472-6793-6-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Accepted: 01/18/2006] [Indexed: 11/22/2022]
Abstract
Background An organ such as the bladder consists of complex, interacting set of tissues and cells. Inflammation has been implicated in every major disease of the bladder, including cancer, interstitial cystitis, and infection. However, scanty is the information about individual detrusor and urothelium transcriptomes in response to inflammation. Here, we used suppression subtractive hybridizations (SSH) to determine bladder tissue- and disease-specific genes and transcriptional regulatory elements (TRE)s. Unique TREs and genes were assembled into putative networks. Results It was found that the control bladder mucosa presented regulatory elements driving genes such as myosin light chain phosphatase and calponin 1 that influence the smooth muscle phenotype. In the control detrusor network the Pax-3 TRE was significantly over-represented. During development, the Pax-3 transcription factor (TF) maintains progenitor cells in an undifferentiated state whereas, during inflammation, Pax-3 was suppressed and genes involved in neuronal development (synapsin I) were up-regulated. Therefore, during inflammation, an increased maturation of neural progenitor cells in the muscle may underlie detrusor instability. NF-κB was specifically over-represented in the inflamed mucosa regulatory network. When the inflamed detrusor was compared to control, two major pathways were found, one encoding synapsin I, a neuron-specific phosphoprotein, and the other an important apoptotic protein, siva. In response to LPS-induced inflammation, the liver X receptor was over-represented in both mucosa and detrusor regulatory networks confirming a role for this nuclear receptor in LPS-induced gene expression. Conclusion A new approach for understanding bladder muscle-urothelium interaction was developed by assembling SSH, real time PCR, and TRE analysis results into regulatory networks. Interestingly, some of the TREs and their downstream transcripts originally involved in organogenesis and oncogenesis were also activated during inflammation. The latter represents an additional link between inflammation and cancer. The regulatory networks represent key targets for development of novel drugs targeting bladder diseases.
Collapse
Affiliation(s)
- Marcia R Saban
- Department of Physiology, The University Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Helen L Hellmich
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, USA
| | - Mary Turner
- Oklahoma Medical Research Foundation (OMRF), Arthritis and Immunology Research Program, Microarray Core Facility, Oklahoma City, USA
| | - Ngoc-Bich Nguyen
- Department of Physiology, The University Oklahoma Health Sciences Center, Oklahoma City, USA
- Cellular & Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, USA
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute for Functional Genomics and Computational Biology. Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, USA
| | - David W Dyer
- Department of Microbiology and Immunology, Laboratory for Genomics and Bioinformatics, Oklahoma University Health Sciences Center, Oklahoma City, USA
| | - Robert E Hurst
- Department of Urology, The University Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Michael Centola
- Oklahoma Medical Research Foundation (OMRF), Arthritis and Immunology Research Program, Microarray Core Facility, Oklahoma City, USA
| | - Ricardo Saban
- Department of Physiology, The University Oklahoma Health Sciences Center, Oklahoma City, USA
| |
Collapse
|
34
|
Abstract
Cancer of the bladder shows divergent clinical behaviour following diagnosis and it has been proposed that two major groups of tumours exist that develop via different molecular pathways. Low-grade, non-invasive papillary tumours recur frequently, but patients with these tumours do not often suffer progression of disease to muscle invasion. In contrast, tumours that are invading muscle at diagnosis are aggressive and associated with significant mortality. Molecular studies have identified distinct genetic, epigenetic and expression changes in these groups. However, it is not yet clear whether there is direct progression of low-grade superficial tumours to become invasive (a Jeckell and Hyde scenario) or whether in those patients who apparently progress from one form of the disease to the other, different tumour clones are involved and that the two tumour groups are mutually exclusive ('chalk and cheese'). If the latter is true, then attempts to identify molecular markers to predict progression of low-grade superficial bladder tumours may be fruitless. Similarly, it is not clear whether other subgroups of tumours exist that arise via different molecular pathways. There is now a large amount of molecular information about bladder cancer that facilitates examination of these possibilities. Some recent studies provide evidence for the existence of at least one further group of tumours, high-grade superficial papillary tumours, which may develop via a distinct molecular pathway. Patients with such tumours do show increased risk of disease progression and for these there may exist a real progression continuum from non-invasive to invasive. If this is the case, definition of the molecular signature of this pathway and improved understanding of the biological consequences of the events involved will be pivotal in disease management.
Collapse
Affiliation(s)
- Margaret A Knowles
- Cancer Research UK Clinical Centre, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK.
| |
Collapse
|
35
|
Kunjoonju JP, Raitanen M, Grénman S, Tiwari N, Worsham MJ. Identification of individual genes altered in squamous cell carcinoma of the vulva. Genes Chromosomes Cancer 2005; 44:185-93. [PMID: 16001430 DOI: 10.1002/gcc.20230] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Chromosome rearrangements in squamous cell carcinoma of the vulva (SCV) have indicated common consistent regions of loss and gain. The overall aim of our research was to define and characterize individual genes that underlie the pathogenesis of SCV. Thirteen cell lines from 12 SCV patients were evaluated for loss and gain of 122 genes distributed throughout the genome. Individual genes were analyzed for genetic alterations using a novel genomewide strategy, the multiplex ligation-dependent probe amplification assay. Our candidate gene approach identified several altered loci. Most frequent was the loss of 1 copy of TMSB10, observed in 11 of 12 SCV patients, followed by loss of CTNNB1 and BCL2, which occurred in 7 of 12 patients. Frequent gains/amplifications included CCND1, observed in 8 of 12 patients, and IL12A, in 7 of the 12 patients. Loss and gain of specific genes observed in our study were generally concordant with the results of previous studies of cytogenetics and CGH utilizing the same SCV cell lines. Genetic alterations are hallmarks of tumorigenesis, and there is wide agreement that recurrent altered genomic loci contain genes important for tumor development and progression. Understanding the interplay of cancer genes and the pathways they utilize can lead to the detection of novel molecular targets in the diagnosis, prognosis, and treatment of SCV.
Collapse
Affiliation(s)
- Josena P Kunjoonju
- Department of Otolaryngology/Head and Neck Research, Henry Ford Health System, Detroit, Michigan 48202, USA
| | | | | | | | | |
Collapse
|
36
|
Kundu JK, Choi KY, Surh YJ. beta-Catenin-mediated signaling: a novel molecular target for chemoprevention with anti-inflammatory substances. Biochim Biophys Acta Rev Cancer 2005; 1765:14-24. [PMID: 16226380 DOI: 10.1016/j.bbcan.2005.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2004] [Revised: 08/16/2005] [Accepted: 08/23/2005] [Indexed: 01/12/2023]
Abstract
Inflammation is thought to play a role in the pathophysiology of cancer. Accumulating evidence from clinical and laboratory-based studies suggests that substances with anti-inflammatory activities are potential candidates for chemoprevention. Recent advances in cellular and molecular biology of cancer shed light on components of intracellular signaling cascades that can be potential molecular targets of chemoprevention with various anti-inflammatory substances. Although cyclooxygenase-2, a primary enzyme that mediates inflammatory responses, has been well recognized as a molecular target for chemoprevention by both synthetic and natural anti-inflammatory agents, the cellular signaling mechanisms that associate inflammation and cancer are not still clearly illustrated. Recent studies suggest that beta-catenin-mediated signaling, which regulates developmental processes, may act as a potential link between inflammation and cancer. This review aims to focus on beta-catenin-mediated signaling pathways, particularly in relation to its contribution to carcinogenesis, and the modulation of inappropriately activated beta-catenin-mediated signaling by nonsteroidal anti-inflammatory drugs and chemopreventive phytochemicals possessing anti-inflammatory properties.
Collapse
Affiliation(s)
- Joydeb Kumar Kundu
- National Research Laboratory of Molecular Carcinogenesis and Chemoprevention, College of Pharmacy, Seoul National University, Shinlim-dong, Kwanak-ku, Seoul 151-742, South Korea
| | | | | |
Collapse
|
37
|
Shiina H, Breault JE, Basset WW, Enokida H, Urakami S, Li LC, Okino ST, Deguchi M, Kaneuchi M, Terashima M, Yoneda T, Shigeno K, Carroll PR, Igawa M, Dahiya R. Functional Loss of the gamma-catenin gene through epigenetic and genetic pathways in human prostate cancer. Cancer Res 2005; 65:2130-8. [PMID: 15781623 DOI: 10.1158/0008-5472.can-04-3398] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Gamma-catenin is a cell adhesion molecule and a candidate mediator of Wnt signal transduction. We hypothesized that impaired regulation of gamma-catenin through genetic and epigenetic pathways is associated with the pathogenesis of prostate cancer. To test this hypothesis, cytosine-phosphate-guanine methylation, loss of heterozygosity (LOH), and mutation status of the gamma-catenin gene were analyzed in cultured prostate cancer cell lines, 180 localized prostate cancers, 69 benign prostatic hyperplasias, and 11 hormone refractory prostate cancers (HRPC). In prostate cancer cell lines (DuPro, LNCaP, ND-1, and PC3), gamma-catenin mRNA transcripts were increased after 5-aza-2'-deoxycytidine treatment. In localized prostate cancer, gamma-catenin expression was lower but prevalence of gamma-catenin methylation was higher compared with benign prostatic hyperplasia. However, gamma-catenin methylation did not correlate with Gleason sum, pT category, or capsular penetration. Among localized prostate cancers with positive gamma-catenin methylation, the presence of LOH at chromosome 17q21 was closely related to down-regulation of gamma-catenin mRNA expression. The gamma-catenin mutations were not found in localized prostate cancers, whereas six mutations were found in five HRPCs within or close to the GSK-3beta consensus motif phosphorylation site, among which four HRPCs showed strong nuclear gamma-catenin accumulation. In these four HRPCs, Bcl-2 expression was increased, whereas the target of the Wnt signal, c-myc, was only expressed in one HRPC. Therefore, although epigenetic gamma-catenin methylation is an early event in the development of prostate cancer, simultaneous events of epigenetic cytosine-phosphate-guanine methylation and genetic LOH may be responsible for functional loss of gamma-catenin. The gamma-catenin mutation related to Bcl-2 overexpression has a significant effect on the pathogenesis of HRPC. This is the first report to characterize the epigenetic and genetic regulation of gamma-catenin in human prostate cancer.
Collapse
Affiliation(s)
- Hiroaki Shiina
- Department of Urology, Shimane University School of Medicine, Izumo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Breault JE, Shiina H, Igawa M, Ribeiro-Filho LA, Deguchi M, Enokida H, Urakami S, Terashima M, Nakagawa M, Kane CJ, Carroll PR, Dahiya R. Methylation of the γ -Catenin Gene Is Associated With Poor Prognosis of Renal Cell Carcinoma. Clin Cancer Res 2005. [DOI: 10.1158/1078-0432.557.11.2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Purpose: γ-Catenin is a cell adhesion protein, and its functional loss is associated with tumor invasion and metastasis. We hypothesize that (1) promoter CpG methylation regulates the expression and function of the γ-catenin gene in renal cell carcinoma (RCC) and (2) methylation of the γ-catenin gene is associated with poor prognosis of RCC. To test these hypotheses, we analyzed the CpG methylation status of the γ-catenin gene and its correlation with clinical outcome in RCC.
Experimental Design: Genomic DNA and total RNA were extracted from three renal cancer cell lines (A498, Caki-1, and Caki-2) and 54 RCC tissue samples with their corresponding normal kidney tissue samples. Expression of γ-catenin gene was analyzed by reverse transcription-PCR and immunostaining. Promoter methylation was analyzed by two different methylation-specific PCR (MSP-A and MSP-B), and the results were verified by DNA sequencing.
Results: The demethylating agent (5-aza-2′-deoxycytidine) increased levels of mRNA transcript of the γ-catenin gene in three renal cancer cell lines. γ-Catenin mRNA and protein expression were significantly reduced in RCC samples compared with normal kidney samples, respectively (P < 0.05). MSP-A and MSP-B bands were detected in 45 of 54 (83.3%) and 49 of 54 (90.7%) RCC samples, respectively. In normal kidney, weak products of MSP-A and MSP-B were detected in 5 of 54 (9.3%) and 6 of 54 (11.1%) samples, respectively. Likewise, both MSP-A and MSP-B ratios were significantly higher in RCC samples compared with normal kidney samples, respectively (P < 0.01). Multivariate analysis revealed that the MSP-B ratio was a powerful and independent predictor superior to nuclear grade and Robson stage with respect to survival and disease progression (P = 0.029 and 0.0071, respectively). No mutations in the NH2-terminal region of γ-catenin were found in this study.
Conclusion: Expression of γ-catenin is regulated by promoter CpG methylation, and the balance between methylated and unmethylated RCC cell populations could determine its functional role. Because the conventional nuclear grade and/or staging system have some limitations to predict precise clinical outcome, this is the first report demonstrating that promoter CpG methylation of γ-catenin can be an independent and superior predictor for survival and disease progression.
Collapse
Affiliation(s)
- Julia E. Breault
- 1Department of Urology, Veterans Affairs Medical Center and University of California at San Francisco, San Francisco, California; Departments of
| | - Hiroaki Shiina
- 1Department of Urology, Veterans Affairs Medical Center and University of California at San Francisco, San Francisco, California; Departments of
| | | | - Leopoldo A. Ribeiro-Filho
- 1Department of Urology, Veterans Affairs Medical Center and University of California at San Francisco, San Francisco, California; Departments of
| | - Masao Deguchi
- 1Department of Urology, Veterans Affairs Medical Center and University of California at San Francisco, San Francisco, California; Departments of
| | - Hideki Enokida
- 1Department of Urology, Veterans Affairs Medical Center and University of California at San Francisco, San Francisco, California; Departments of
| | - Shinji Urakami
- 1Department of Urology, Veterans Affairs Medical Center and University of California at San Francisco, San Francisco, California; Departments of
| | | | - Masayuki Nakagawa
- 4Department of Urology, Kagoshima University Faculty of Medicine, Kagoshima, Japan
| | - Christopher J. Kane
- 1Department of Urology, Veterans Affairs Medical Center and University of California at San Francisco, San Francisco, California; Departments of
| | - Peter R. Carroll
- 1Department of Urology, Veterans Affairs Medical Center and University of California at San Francisco, San Francisco, California; Departments of
| | - Rajvir Dahiya
- 1Department of Urology, Veterans Affairs Medical Center and University of California at San Francisco, San Francisco, California; Departments of
| |
Collapse
|
39
|
Lin YC, Wu MY, Li DR, Wu XY, Zheng RM. Prognostic and clinicopathological features of E-cadherin, α-catenin, β-catenin, γ-catenin and cyclin D 1 expression in human esophageal squamous cell carcinoma. World J Gastroenterol 2004; 10:3235-9. [PMID: 15484291 PMCID: PMC4572286 DOI: 10.3748/wjg.v10.i22.3235] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM: To investigate the expression of E-cadherin, α-catenin, β-catenin, γ-catenin and cyclin D1 in patients with esophageal squamous cell carcinoma (ESCC), and analyze their interrelationship with clinicopathological variables and their effects on prognosis.
METHODS: Expression of E-cadherin, α-catenin, β-catenin, γ-catenin and cyclin D1 was determined by EnVision or SABC immunohistochemical technique in patients with ESCC consecutively, their correlation with clinical characteristics was evaluated and analyzed by univariate analysis.
RESULTS: The reduced expression rate of E-cadherin, α-catenin, β-catenin and γ-catenin was 88.7%, 69.4%, 35.5% and 53.2%, respectively. Cyclin D1 positive expression rate was 56.5%. Expression of γ-catenin was inversely correlated with the degree of tumor differentiation and lymph node metastasis (χ2 = 4.183 and χ2 = 5.035, respectively, P < 0.05), whereas the expression of E-cadherin was correlated only with the degree of differentiation (χ2 = 5.769, P < 0.05). Reduced expression of E-cadherin and γ-catenin was associated with poor differentiation of tumor, reduced expression of γ-catenin was also associated with lymph node metastasis. There obviously existed an inverse correlation between level of E-cadherin and γ-catenin protein and survival. The 3-year survival rates were 100% and 56% in E-cadherin preserved expression group and in reduced expression one and were 78% and 48% in γ-catenin preserved expression group and in reduced expression one, respectively. The differences were both statistically significant. Correlation analysis showed the expression level of α-catenin correlated with that of E-cadherin and β-catenin (P < 0.05).
CONCLUSION: The reduced expression of E-cadherin and α-catenin, but not β-catenin, γ-catenin and cyclin D1, implies more aggressive malignant behaviors of esophageal carcinoma cells and predicts the poor prognosis of patients.
Collapse
Affiliation(s)
- Ying-Cheng Lin
- Department of Medical Oncology, Tumor Hospital, Shantou University Medical College, Shantou 515031, Guangdong Province, China.
| | | | | | | | | |
Collapse
|
40
|
Nesaretnam K, Ambra R, Selvaduray KR, Radhakrishnan A, Reimann K, Razak G, Virgili F. Tocotrienol-rich fraction from palm oil affects gene expression in tumors resulting from MCF-7 cell inoculation in athymic mice. Lipids 2004; 39:459-67. [PMID: 15506241 DOI: 10.1007/s11745-004-1251-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
It has recently been shown that tocotrienols are the components of vitamin E responsible for inhibiting the growth of human breast cancer cells in vitro, through an estrogen-independent mechanism. Although tocotrienols act on cell proliferation in a dose-dependent manner and can induce programmed cell death, no specific gene regulation has yet been identified. To investigate the molecular basis of the effect of tocotrienols, we injected MCF-7 breast cancer cells into athymic nude mice. Mice were fed orally with 1 mg/d of tocotrienol-rich fraction (TRF) for 20 wk. At end of the 20 wk, there was a significant delay in the onset, incidence, and size of the tumors in nude mice supplemented with TRF compared with the controls. At autopsy, the tumor tissue was excised and analyzed for gene expression by means of a cDNA array technique. Thirty out of 1176 genes were significantly affected. Ten genes were downregulated and 20 genes up-regulated with respect to untreated animals, and some genes in particular were involved in regulating the immune system and its function. The expression of the interferon-inducible transmembrane protein-1 gene was significantly up-regulated in tumors excised from TRF-treated animals compared with control mice. Within the group of genes related to the immune system, we also found that the CD59 glycoprotein precursor gene was up-regulated. Among the functional class of intracellular transducers/effectors/modulators, the c-myc gene was significantly down-regulated in tumors by TRF treatment. Our observations indicate that TRF supplementation significantly and specifically affects MCF-7 cell response after tumor formation in vivo and therefore the host immune function. The observed effect on gene expression is possibly exerted independently from the antioxidant activity typical of this family of molecules.
Collapse
|