1
|
Becknell B, El-Harakeh M, Rodriguez-Tirado F, Grounds KM, Li B, Kercsmar M, Wang X, Jackson AR. Keratin 5 basal cells are temporally regulated developmental and tissue repair progenitors in bladder urothelium. Am J Physiol Renal Physiol 2024; 326:F1078-F1090. [PMID: 38634130 PMCID: PMC11386981 DOI: 10.1152/ajprenal.00378.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/22/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
Urothelium forms a distensible yet impermeable barrier, senses and transduces stimuli, and defends the urinary tract from mechanical, chemical, and bacterial injuries. Biochemical and genetic labeling studies support the existence of one or more progenitor populations with the capacity to rapidly regenerate the urothelium following injury, but slow turnover, a low mitotic index, and inconsistent methodologies obscure progenitor identity. The progenitor properties of basal keratin 5 urothelial cells (K5-UCs) have been previously investigated, but those studies focused on embryonic or adult bladder urothelium. Urothelium undergoes desquamation and apoptosis after birth, which requires postnatal proliferation and restoration. Therefore, we mapped the fate of bladder K5-UCs across postnatal development/maturation and following administration of cyclophosphamide to measure homeostatic and reparative progenitor capacities, respectively. In vivo studies demonstrate that basal K5-UCs are age-restricted progenitors in neonates and juveniles, but not in adult mice. Neonatal K5-UCs retain a superior progenitor capacity in vitro, forming larger and more differentiated urothelial organoids than adult K5-UCs. Accordingly, K5-UC transcriptomes are temporally distinct, with enrichment of transcripts associated with cell proliferation and differentiation in neonates. Induction of urothelial proliferation is sufficient to restore adult K5-UC progenitor capacity. Our findings advance the understanding of urothelial progenitors and support a linear model of urothelial formation and regeneration, which may have significant impact on therapeutic development or tissue engineering strategies.NEW & NOTEWORTHY Fate mapping reveals an important linear relationship, whereby bladder basal urothelial cells give rise to intermediate and superficial cells in an age-restricted manner and contribute to tissue repair. Neonatal basal cells reprise their role as superior progenitors in vitro and display distinct transcriptional signatures, which suggest progenitor function is at least partially cell intrinsic. However, the urothelium progenitor niche cannot be overlooked, since FGF7 rescues adult basal cell progenitor function.
Collapse
Affiliation(s)
- Brian Becknell
- Kidney and Urinary Tract Center, Nationwide Children's Hospital, Columbus, Ohio, United States
- Division of Nephrology and Hypertension, Nationwide Children's Hospital, Columbus, Ohio, United States
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States
| | - Mohammad El-Harakeh
- Kidney and Urinary Tract Center, Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Felipe Rodriguez-Tirado
- Kidney and Urinary Tract Center, Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Kelly M Grounds
- Kidney and Urinary Tract Center, Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Birong Li
- Kidney and Urinary Tract Center, Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Macie Kercsmar
- Kidney and Urinary Tract Center, Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Xin Wang
- Kidney and Urinary Tract Center, Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Ashley R Jackson
- Kidney and Urinary Tract Center, Nationwide Children's Hospital, Columbus, Ohio, United States
- Division of Nephrology and Hypertension, Nationwide Children's Hospital, Columbus, Ohio, United States
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States
| |
Collapse
|
2
|
Suda K, Matsumoto Y, Ochi T, Koga H, Hattori N, Yamataka A, Nakamura T. Distinct effects of Fgf7 and Fgf10 on the terminal differentiation of murine bladder urothelium revealed using an organoid culture system. BMC Urol 2023; 23:169. [PMID: 37875848 PMCID: PMC10594814 DOI: 10.1186/s12894-023-01338-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 10/09/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND Dysregulation of the terminal differentiation of bladder urothelium is associated with the pathogenesis of urinary tract disorders. Fibroblast growth factor (Fgf)7 and Fgf10 stimulate urothelial proliferation; however, their roles in cellular differentiation remain unclear. In this study, we used an organoid system to investigate the roles of these Fgfs in regulating bladder urothelium differentiation and identify their distribution patterns in the mouse bladder. METHODS Adult bladder epithelia (AdBE) isolated from adult mouse bladder tissues (AdBTs) were used to culture adult bladder organoids (AdBOs) in the presence of Fgf7 and Fgf10. The differentiation status of the cells in AdBTs, AdBEs, AdBOs, and neonatal bladder tissues (NeoBTs) was analyzed via quantitative real-time-PCR for the presence of undifferentiated cell markers (Krt5, Trp63, and Krt14) and differentiated cell markers (Krt20, Upk1a, Upk2, and Upk3a). Organoid cell proliferation was assessed by counting cell numbers using the trypan blue method. The effects of Fgf7 and Fgf10 on organoid differentiation were assessed using different doses of Fgfs, and the involvement of peroxisome proliferator-activated receptor γ (PPARγ) signaling in these processes was tested by introducing a PPARγ agonist (Rosiglitazone) and antagonist (T0070907) to the culture. The expression patterns of Fgf7 and Fgf10 were examined via in situ hybridization of AdBTs. RESULTS AdBOs showed higher expression of undifferentiated cell markers and lower expression of differentiated cell markers than AdBTs, NeoBTs, and AdBEs, indicating the relatively immature state of AdBOs. Differentiation of AdBOs was enhanced by Rosiglitazone and Fgf7, suggesting an interplay of intracellular signals between Fgf7 and PPARγ. Co-addition of T0070907 suppressed Fgf7-mediated differentiation, demonstrating that PPARγ is activated downstream of Fgf7 to promote cellular differentiation into umbrella cells. Furthermore, we found that Fgf7 is predominantly expressed in the umbrella cells of the urothelium, whereas Fgf10 is predominantly expressed in the urothelium and stroma of AdBTs. CONCLUSIONS We demonstrated that unlike Fgf10, Fgf7 induces cellular differentiation via PPARγ activity and has a unique tissue distribution pattern in the adult bladder. Further studies on the Fgf7-PPARγ signaling axis would provide insights into the differentiation mechanisms toward functional umbrella cells and the pathogenesis of several urinary tract diseases.
Collapse
Affiliation(s)
- Kazuto Suda
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2- 1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
- Department of Research and Development for Organoids, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Yuka Matsumoto
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2- 1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
- Department of Research and Development for Organoids, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Takanori Ochi
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2- 1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Hiroyuki Koga
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2- 1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
- Department of Research and Development for Organoids, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Atsuyuki Yamataka
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2- 1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Tetsuya Nakamura
- Department of Research and Development for Organoids, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
3
|
Deuper L, Meuser M, Thiesler H, Jany UWH, Rudat C, Hildebrandt H, Trowe MO, Kispert A. Mesenchymal FGFR1 and FGFR2 control patterning of the ureteric mesenchyme by balancing SHH and BMP4 signaling. Development 2022; 149:276592. [DOI: 10.1242/dev.200767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/19/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The coordinated development of the mesenchymal and epithelial progenitors of the murine ureter depends on a complex interplay of diverse signaling activities. We have recently shown that epithelial FGFR2 signaling regulates stratification and differentiation of the epithelial compartment by enhancing epithelial Shh expression, and mesenchymal SHH and BMP4 activity. Here, we show that FGFR1 and FGFR2 expression in the mesenchymal primordium impinges on the SHH/BMP4 signaling axis to regulate mesenchymal patterning and differentiation. Mouse embryos with conditional loss of Fgfr1 and Fgfr2 in the ureteric mesenchyme exhibited reduced mesenchymal proliferation and prematurely activated lamina propria formation at the expense of the smooth muscle cell program. They also manifested hydroureter at birth. Molecular profiling detected increased SHH, WNT and retinoic acid signaling, whereas BMP4 signaling in the mesenchyme was reduced. Pharmacological activation of SHH signaling in combination with inhibition of BMP4 signaling recapitulated the cellular changes in explant cultures of wild-type ureters. Additional experiments suggest that mesenchymal FGFR1 and FGFR2 act as a sink for FGF ligands to dampen activation of Shh and BMP receptor gene expression by epithelial FGFR2 signaling.
Collapse
Affiliation(s)
- Lena Deuper
- Institute of Molecular Biology, Medizinische Hochschule Hannover 1 , 30625 Hannover , Germany
| | - Max Meuser
- Institute of Molecular Biology, Medizinische Hochschule Hannover 1 , 30625 Hannover , Germany
| | - Hauke Thiesler
- Institute of Clinical Biochemistry, Medizinische Hochschule Hannover 2 , 30625 Hannover , Germany
| | - Ulrich W. H. Jany
- Institute of Molecular Biology, Medizinische Hochschule Hannover 1 , 30625 Hannover , Germany
| | - Carsten Rudat
- Institute of Molecular Biology, Medizinische Hochschule Hannover 1 , 30625 Hannover , Germany
| | - Herbert Hildebrandt
- Institute of Clinical Biochemistry, Medizinische Hochschule Hannover 2 , 30625 Hannover , Germany
| | - Mark-Oliver Trowe
- Institute of Molecular Biology, Medizinische Hochschule Hannover 1 , 30625 Hannover , Germany
| | - Andreas Kispert
- Institute of Molecular Biology, Medizinische Hochschule Hannover 1 , 30625 Hannover , Germany
| |
Collapse
|
4
|
Jackson AR, Narla ST, Bates CM, Becknell B. Urothelial progenitors in development and repair. Pediatr Nephrol 2022; 37:1721-1731. [PMID: 34471946 PMCID: PMC8942604 DOI: 10.1007/s00467-021-05239-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022]
Abstract
Urothelium is a specialized multilayer epithelium that lines the urinary tract from the proximal urethra to the kidney. In addition to proliferation and differentiation during development, urothelial injury postnatally triggers a robust regenerative capacity to restore the protective barrier between the urine and tissue. Mounting evidence supports the existence of dedicated progenitor cell populations that give rise to urothelium during development and in response to injury. Understanding the cellular and molecular basis for urothelial patterning and repair will inform tissue regeneration therapies designed to ameliorate a number of structural and functional defects of the urinary tract. Here, we review the current understanding of urothelial progenitors and the signaling pathways that govern urothelial development and repair. While most published studies have focused on bladder urothelium, we also discuss literature on upper tract urothelial progenitors. Furthermore, we discuss evidence supporting existence of context-specific progenitors. This knowledge is fundamental to the development of strategies to regenerate or engineer damaged or diseased urothelium.
Collapse
Affiliation(s)
- Ashley R Jackson
- Center for Clinical and Translational Research, The Abigail Wexner Research Institute At Nationwide Children's Hospital, 700 Children's Drive, W308, Columbus, 43205, OH, USA
- Department of Pediatrics, Ohio State University College of Medicine, Columbus, OH, USA
- Division of Nephrology and Hypertension, Nationwide Children's Hospital, Columbus, OH, USA
| | - Sridhar T Narla
- Department of Pediatrics, Division of Nephrology, University of Pittsburgh School of Medicine, Rangos Research Building, 4401 Penn Avenue, Pittsburgh, 15224, PA, USA
| | - Carlton M Bates
- Department of Pediatrics, Division of Nephrology, University of Pittsburgh School of Medicine, Rangos Research Building, 4401 Penn Avenue, Pittsburgh, 15224, PA, USA.
- Division of Nephrology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA.
| | - Brian Becknell
- Center for Clinical and Translational Research, The Abigail Wexner Research Institute At Nationwide Children's Hospital, 700 Children's Drive, W308, Columbus, 43205, OH, USA.
- Department of Pediatrics, Ohio State University College of Medicine, Columbus, OH, USA.
- Division of Nephrology and Hypertension, Nationwide Children's Hospital, Columbus, OH, USA.
| |
Collapse
|
5
|
Jafari NV, Rohn JL. The urothelium: a multi-faceted barrier against a harsh environment. Mucosal Immunol 2022; 15:1127-1142. [PMID: 36180582 PMCID: PMC9705259 DOI: 10.1038/s41385-022-00565-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/18/2022] [Accepted: 08/28/2022] [Indexed: 02/04/2023]
Abstract
All mucosal surfaces must deal with the challenge of exposure to the outside world. The urothelium is a highly specialized layer of stratified epithelial cells lining the inner surface of the urinary bladder, a gruelling environment involving significant stretch forces, osmotic and hydrostatic pressures, toxic substances, and microbial invasion. The urinary bladder plays an important barrier role and allows the accommodation and expulsion of large volumes of urine without permitting urine components to diffuse across. The urothelium is made up of three cell types, basal, intermediate, and umbrella cells, whose specialized functions aid in the bladder's mission. In this review, we summarize the recent insights into urothelial structure, function, development, regeneration, and in particular the role of umbrella cells in barrier formation and maintenance. We briefly review diseases which involve the bladder and discuss current human urothelial in vitro models as a complement to traditional animal studies.
Collapse
Affiliation(s)
- Nazila V Jafari
- Department of Renal Medicine, Division of Medicine, University College London, Royal Free Hospital Campus, London, UK
| | - Jennifer L Rohn
- Department of Renal Medicine, Division of Medicine, University College London, Royal Free Hospital Campus, London, UK.
| |
Collapse
|
6
|
Wiessner GB, Plumber SA, Xiang T, Mendelsohn CL. Development, regeneration and tumorigenesis of the urothelium. Development 2022; 149:dev198184. [PMID: 35521701 PMCID: PMC10656457 DOI: 10.1242/dev.198184] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The urothelium of the bladder functions as a waterproof barrier between tissue and outflowing urine. Largely quiescent during homeostasis, this unique epithelium rapidly regenerates in response to bacterial or chemical injury. The specification of the proper cell types during development and injury repair is crucial for tissue function. This Review surveys the current understanding of urothelial progenitor populations in the contexts of organogenesis, regeneration and tumorigenesis. Furthermore, we discuss pathways and signaling mechanisms involved in urothelial differentiation, and consider the relevance of this knowledge to stem cell biology and tissue regeneration.
Collapse
Affiliation(s)
- Gregory B. Wiessner
- Departments of Urology, Genetics and Development, Pathology and Cell Biology, Columbia Stem Cell Initiative and Institute of Human Nutrition, Columbia University, New York, NY 10032, USA
- Institute of Human Nutrition, Columbia University, New York, NY 10032, USA
| | - Sakina A. Plumber
- Departments of Urology, Genetics and Development, Pathology and Cell Biology, Columbia Stem Cell Initiative and Institute of Human Nutrition, Columbia University, New York, NY 10032, USA
| | - Tina Xiang
- Departments of Urology, Genetics and Development, Pathology and Cell Biology, Columbia Stem Cell Initiative and Institute of Human Nutrition, Columbia University, New York, NY 10032, USA
| | - Cathy L. Mendelsohn
- Departments of Urology, Genetics and Development, Pathology and Cell Biology, Columbia Stem Cell Initiative and Institute of Human Nutrition, Columbia University, New York, NY 10032, USA
- Institute of Human Nutrition, Columbia University, New York, NY 10032, USA
| |
Collapse
|
7
|
Meuser M, Deuper L, Rudat C, Aydoğdu N, Thiesler H, Zarnovican P, Hildebrandt H, Trowe MO, Kispert A. FGFR2 signaling enhances the SHH-BMP4 signaling axis in early ureter development. Development 2022; 149:273983. [DOI: 10.1242/dev.200021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/09/2021] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The patterned array of basal, intermediate and superficial cells in the urothelium of the mature ureter arises from uncommitted epithelial progenitors of the distal ureteric bud. Urothelial development requires signaling input from surrounding mesenchymal cells, which, in turn, depend on cues from the epithelial primordium to form a layered fibro-muscular wall. Here, we have identified FGFR2 as a crucial component in this reciprocal signaling crosstalk in the murine ureter. Loss of Fgfr2 in the ureteric epithelium led to reduced proliferation, stratification, intermediate and basal cell differentiation in this tissue, and affected cell survival and smooth muscle cell differentiation in the surrounding mesenchyme. Loss of Fgfr2 impacted negatively on epithelial expression of Shh and its mesenchymal effector gene Bmp4. Activation of SHH or BMP4 signaling largely rescued the cellular defects of mutant ureters in explant cultures. Conversely, inhibition of SHH or BMP signaling in wild-type ureters recapitulated the mutant phenotype in a dose-dependent manner. Our study suggests that FGF signals from the mesenchyme enhance, via epithelial FGFR2, the SHH-BMP4 signaling axis to drive urothelial and mesenchymal development in the early ureter.
Collapse
Affiliation(s)
- Max Meuser
- Institute of Molecular Biology, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Lena Deuper
- Institute of Molecular Biology, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Carsten Rudat
- Institute of Molecular Biology, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Nurullah Aydoğdu
- Institute of Molecular Biology, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Hauke Thiesler
- Institute of Clinical Biochemistry, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Patricia Zarnovican
- Institute of Clinical Biochemistry, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Herbert Hildebrandt
- Institute of Clinical Biochemistry, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Mark-Oliver Trowe
- Institute of Molecular Biology, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Andreas Kispert
- Institute of Molecular Biology, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| |
Collapse
|
8
|
Murray BO, Flores C, Williams C, Flusberg DA, Marr EE, Kwiatkowska KM, Charest JL, Isenberg BC, Rohn JL. Recurrent Urinary Tract Infection: A Mystery in Search of Better Model Systems. Front Cell Infect Microbiol 2021; 11:691210. [PMID: 34123879 PMCID: PMC8188986 DOI: 10.3389/fcimb.2021.691210] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022] Open
Abstract
Urinary tract infections (UTIs) are among the most common infectious diseases worldwide but are significantly understudied. Uropathogenic E. coli (UPEC) accounts for a significant proportion of UTI, but a large number of other species can infect the urinary tract, each of which will have unique host-pathogen interactions with the bladder environment. Given the substantial economic burden of UTI and its increasing antibiotic resistance, there is an urgent need to better understand UTI pathophysiology - especially its tendency to relapse and recur. Most models developed to date use murine infection; few human-relevant models exist. Of these, the majority of in vitro UTI models have utilized cells in static culture, but UTI needs to be studied in the context of the unique aspects of the bladder's biophysical environment (e.g., tissue architecture, urine, fluid flow, and stretch). In this review, we summarize the complexities of recurrent UTI, critically assess current infection models and discuss potential improvements. More advanced human cell-based in vitro models have the potential to enable a better understanding of the etiology of UTI disease and to provide a complementary platform alongside animals for drug screening and the search for better treatments.
Collapse
Affiliation(s)
- Benjamin O. Murray
- Centre for Urological Biology, Department of Renal Medicine, University College London, London, United Kingdom
| | - Carlos Flores
- Centre for Urological Biology, Department of Renal Medicine, University College London, London, United Kingdom
| | - Corin Williams
- Department of Bioengineering, Charles Stark Draper Laboratory, Inc., Cambridge, MA, United States
| | - Deborah A. Flusberg
- Department of Bioengineering, Charles Stark Draper Laboratory, Inc., Cambridge, MA, United States
| | - Elizabeth E. Marr
- Department of Bioengineering, Charles Stark Draper Laboratory, Inc., Cambridge, MA, United States
| | - Karolina M. Kwiatkowska
- Centre for Urological Biology, Department of Renal Medicine, University College London, London, United Kingdom
| | - Joseph L. Charest
- Department of Bioengineering, Charles Stark Draper Laboratory, Inc., Cambridge, MA, United States
| | - Brett C. Isenberg
- Department of Bioengineering, Charles Stark Draper Laboratory, Inc., Cambridge, MA, United States
| | - Jennifer L. Rohn
- Centre for Urological Biology, Department of Renal Medicine, University College London, London, United Kingdom
| |
Collapse
|
9
|
Narla ST, Bushnell DS, Schaefer CM, Nouraie M, Tometich JT, Hand TW, Bates CM. Loss of Fibroblast Growth Factor Receptor 2 (FGFR2) Leads to Defective Bladder Urothelial Regeneration after Cyclophosphamide Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 191:631-651. [PMID: 33385344 DOI: 10.1016/j.ajpath.2020.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 11/03/2020] [Accepted: 12/10/2020] [Indexed: 10/22/2022]
Abstract
Cyclophosphamide may cause hemorrhagic cystitis and eventually bladder urothelial cancer. Genetic determinants for poor outcomes are unknown. We assessed actions of fibroblast growth factor receptor (FGFR) 2 in urothelium after cyclophosphamide exposure. Conditional urothelial deletion of Fgfr2 (Fgfr2KO) did not affect injury severity or proliferation of keratin 14+ (KRT14+) basal progenitors or other urothelial cells 1 day after cyclophosphamide exposure. Three days after cyclophosphamide exposure, Fgfr2KO urothelium had defective regeneration, fewer cells, larger basal cell bodies and nuclei, paradoxical increases in proliferation markers, and excessive replication stress versus controls. Fgfr2KO mice had evidence of pathologic basal cell endoreplication associated with absent phosphorylated ERK staining and decreased p53 expression versus controls. Mice with conditional deletion of Fgfr2 in urothelium enriched for KRT14+ cells reproduced Fgfr2KO abnormalities after cyclophosphamide exposure. Fgfr2KO urothelium had defects up to 6 months after injury versus controls, including larger basal cells and nuclei, more persistent basal and ectopic lumenal KRT14+ cells, and signs of metaplasia (attenuated E-cadherin staining). Mice missing one allele of Fgfr2 also had (less severe) regeneration defects and basal cell endoreplication 3 days after cyclophosphamide exposure versus controls. Thus, reduced FGFR2/ERK signaling apparently leads to abnormal urothelial repair after cyclophosphamide exposure from pathologic basal cell endoreplication. Patients with genetic variants in FGFR2 or its ligands may have increased risks of hemorrhagic cystitis or urothelial cancer from persistent and ectopic KRT14+ cells.
Collapse
Affiliation(s)
- Sridhar T Narla
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Daniel S Bushnell
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Caitlin M Schaefer
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Mehdi Nouraie
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Justin T Tometich
- Mellon Institute for Pediatric Research, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Infectious Disease Section, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Timothy W Hand
- Mellon Institute for Pediatric Research, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Infectious Disease Section, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Carlton M Bates
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Division of Nephrology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
10
|
Jackson AR, Ching CB, McHugh KM, Becknell B. Roles for urothelium in normal and aberrant urinary tract development. Nat Rev Urol 2020; 17:459-468. [PMID: 32647226 DOI: 10.1038/s41585-020-0348-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2020] [Indexed: 12/11/2022]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUTs) represent the leading cause of chronic kidney disease and end-stage kidney disease in children. Increasing evidence points to critical roles for the urothelium in the developing urinary tract and in the genesis of CAKUTs. The involvement of the urothelium in patterning the urinary tract is supported by evidence that CAKUTs can arise as a result of abnormal urothelial development. Emerging evidence indicates that congenital urinary tract obstruction triggers urothelial remodelling that stabilizes the obstructed kidney and limits renal injury. Finally, the diagnostic potential of radiological findings and urinary biomarkers derived from the urothelium of patients with CAKUTs might aid their contribution to clinical care.
Collapse
Affiliation(s)
- Ashley R Jackson
- Nephrology and Urology Research Affinity Group, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Christina B Ching
- Nephrology and Urology Research Affinity Group, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Division of Pediatric Urology, Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Kirk M McHugh
- Nephrology and Urology Research Affinity Group, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Department of Anatomy, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Brian Becknell
- Nephrology and Urology Research Affinity Group, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA. .,Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA. .,Nephrology Division, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
11
|
Directed differentiation of human induced pluripotent stem cells into mature stratified bladder urothelium. Sci Rep 2019; 9:10506. [PMID: 31324820 PMCID: PMC6642190 DOI: 10.1038/s41598-019-46848-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 07/05/2019] [Indexed: 02/06/2023] Open
Abstract
For augmentation or reconstruction of urinary bladder after cystectomy, bladder urothelium derived from human induced pluripotent stem cells (hiPSCs) has recently received focus. However, previous studies have only shown the emergence of cells expressing some urothelial markers among derivatives of hiPSCs, and no report has demonstrated the stratified structure, which is a particularly important attribute of the barrier function of mature bladder urothelium. In present study, we developed a method for the directed differentiation of hiPSCs into mature stratified bladder urothelium. The caudal hindgut, from which the bladder urothelium develops, was predominantly induced via the high-dose administration of CHIR99021 during definitive endoderm induction, and this treatment subsequently increased the expressions of uroplakins. Terminal differentiation, characterized by the increased expression of uroplakins, CK13, and CK20, was induced with the combination of Troglitazone + PD153035. FGF10 enhanced the expression of uroplakins and the stratification of the epithelium, and the transwell culture system further enhanced such stratification. Furthermore, the barrier function of our urothelium was demonstrated by a permeability assay using FITC-dextran. According to an immunohistological analysis, the stratified uroplakin II-positive epithelium was observed in the transwells. This method might be useful in the field of regenerative medicine of the bladder.
Collapse
|
12
|
Mouse and human urothelial cancer organoids: A tool for bladder cancer research. Proc Natl Acad Sci U S A 2019; 116:4567-4574. [PMID: 30787188 DOI: 10.1073/pnas.1803595116] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Bladder cancer is a common malignancy that has a relatively poor outcome. Lack of culture models for the bladder epithelium (urothelium) hampers the development of new therapeutics. Here we present a long-term culture system of the normal mouse urothelium and an efficient culture system of human bladder cancer cells. These so-called bladder (cancer) organoids consist of 3D structures of epithelial cells that recapitulate many aspects of the urothelium. Mouse bladder organoids can be cultured efficiently and genetically manipulated with ease, which was exemplified by creating genetic knockouts in the tumor suppressors Trp53 and Stag2. Human bladder cancer organoids can be derived efficiently from both resected tumors and biopsies and cultured and passaged for prolonged periods. We used this feature of human bladder organoids to create a living biobank consisting of bladder cancer organoids derived from 53 patients. Resulting organoids were characterized histologically and functionally. Organoid lines contained both basal and luminal bladder cancer subtypes based on immunohistochemistry and gene expression analysis. Common bladder cancer mutations like TP53 and FGFR3 were found in organoids in the biobank. Finally, we performed limited drug testing on organoids in the bladder cancer biobank.
Collapse
|
13
|
Al-Kurdi B. Hierarchical transcriptional profile of urothelial cells development and differentiation. Differentiation 2017; 95:10-20. [PMID: 28135607 DOI: 10.1016/j.diff.2016.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 10/09/2016] [Accepted: 10/14/2016] [Indexed: 11/27/2022]
Abstract
The urothelial lining of the lower urinary tract is the most efficient permeability barrier in animals, exhibiting a highly differentiated phenotype and a remarkable regenerative capacity upon wounding. During development and possibly during repair, cells undergo a sequence of hierarchical transcriptional events that mark the transition of these cells from the least differentiated urothelial phenotype characteristic of the basal cell layer, to the most differentiated cellular phenotype characteristic of the superficial cell layer. Unraveling normal urothelial differentiation program is essential to uncover the underlying causes of many congenital abnormalities and for the development of an appropriate differentiation niche for stem cells, for future use in urinary tract tissue engineering and organ reconstruction. Kruppel like factor-5 appears to be at the top of the hierarchy activating several downstream transcription factors, the most prominent of which is peroxisome proliferator activator receptor-γ. Eventually those lead to the activation of transcription factors that directly regulate the expression of uroplakin proteins along with other proteins that mediate the permeability function of the urothelium. In this review, we discuss the most recent findings in the area of urothelial cellular differentiation and transcriptional regulation, aiming for a comprehensive overview that aids in a refined understanding of this process.
Collapse
Affiliation(s)
- Ban Al-Kurdi
- Cell Therapy Center, The University of Jordan, Amman, Jordan.
| |
Collapse
|
14
|
Gardner JC, Wu H, Noel JG, Ramser BJ, Pitstick L, Saito A, Nikolaidis NM, McCormack FX. Keratinocyte growth factor supports pulmonary innate immune defense through maintenance of alveolar antimicrobial protein levels and macrophage function. Am J Physiol Lung Cell Mol Physiol 2016; 310:L868-79. [PMID: 26919897 DOI: 10.1152/ajplung.00363.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/19/2016] [Indexed: 11/22/2022] Open
Abstract
Keratinocyte growth factor (KGF) is an epithelial mitogen that has been reported to protect the lungs from a variety of toxic and infectious insults. In prior studies we found that recombinant human KGF accelerates clearance of bacteria from the murine lung by augmenting the function of alveolar macrophages (AM). In this study we tested the hypothesis that endogenous KGF plays a role in the maintenance of innate pulmonary defense against gram-negative bacterial infections. KGF-deficient mice exhibited delayed clearance of Escherichia coli from the lungs, attenuated phagocytosis by AM, and decreased antimicrobial activity in bronchoalveolar lavage (BAL) fluid, due in part to reductions in levels of surfactant protein A, surfactant protein D, and lysozyme. These immune deficits were accompanied by lower alveolar type II epithelial cell counts and reduced alveolar type II epithelial cell expression of collectin and lysozyme genes on a per cell basis. No significant between-group differences were detected in selected inflammatory cytokines or BAL inflammatory cell populations at baseline or after bacterial challenge in the wild-type and KGF-deficient mice. A single intranasal dose of recombinant human KGF reversed defects in bacterial clearance, AM function, and BAL fluid antimicrobial activity. We conclude that KGF supports alveolar innate immune defense through maintenance of alveolar antimicrobial protein levels and functions of AM. Together these data demonstrate a role for endogenous KGF in maintenance of normal pulmonary innate immune function.
Collapse
Affiliation(s)
- Jason C Gardner
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio; and
| | - Huixing Wu
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio; and
| | - John G Noel
- Department of Research, Shriners Hospitals for Children, Cincinnati, Ohio
| | - Benjamin J Ramser
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio; and
| | - Lori Pitstick
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio; and
| | - Atsushi Saito
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio; and
| | - Nikolaos M Nikolaidis
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio; and
| | - Francis X McCormack
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio; and
| |
Collapse
|
15
|
Finch PW, Mark Cross LJ, McAuley DF, Farrell CL. Palifermin for the protection and regeneration of epithelial tissues following injury: new findings in basic research and pre-clinical models. J Cell Mol Med 2014; 17:1065-87. [PMID: 24151975 PMCID: PMC4118166 DOI: 10.1111/jcmm.12091] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 05/06/2013] [Accepted: 05/15/2013] [Indexed: 02/06/2023] Open
Abstract
Keratinocyte growth factor (KGF) is a paracrine-acting epithelial mitogen produced by cells of mesenchymal origin, that plays an important role in protecting and repairing epithelial tissues. Pre-clinical data initially demonstrated that a recombinant truncated KGF (palifermin) could reduce gastrointestinal injury and mortality resulting from a variety of toxic exposures. Furthermore, the use of palifermin in patients with hematological malignancies reduced the incidence and duration of severe oral mucositis experienced after intensive chemoradiotherapy. Based upon these findings, as well as the observation that KGF receptors are expressed in many, if not all, epithelial tissues, pre-clinical studies have been conducted to determine the efficacy of palifermin in protecting different epithelial tissues from toxic injury in an attempt to model various clinical situations in which it might prove to be of benefit in limiting tissue damage. In this article, we review these studies to provide the pre-clinical background for clinical trials that are described in the accompanying article and the rationale for additional clinical applications of palifermin.
Collapse
|
16
|
Girshovich A, Vinsonneau C, Perez J, Vandermeersch S, Verpont MC, Placier S, Jouanneau C, Letavernier E, Baud L, Haymann JP. Ureteral obstruction promotes proliferation and differentiation of the renal urothelium into a bladder-like phenotype. Kidney Int 2013; 82:428-35. [PMID: 22513823 DOI: 10.1038/ki.2012.110] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The renal urothelium, the monolayered epithelium that covers the papilla, is the direct target of increased pressure during obstruction, yet most studies have mainly focused on tubules, fibroblasts, and inflammatory cells. We studied this epithelium in a unilateral ureteral obstruction mouse mode land found that it was disrupted and had broken tight junctions, enlarged intercellular space, with loss of apicaluroplakins, and marginal lumen desquamation. Shortly after obstruction these urothelial cells proliferated, peaking at day 2. By day 14, the renal urothelium was transformed into a multilayered barrier with newly synthesized uroplakins including the de novo induction of uroplakin II. This proliferation was found to be fibroblast growth factor (FGF)dependent. Renal urothelial cells constitutively express the FGF receptor 2, and obstruction activated the receptor by phosphorylation. Treatment with FGF receptor 2-antisense or vitamin A (an inhibitor of the MAP kinase in the FGFR2 pathway) decreased renal urothelial cell proliferation. Among known FGF receptor 2 ligands, only FGF7 was upregulated.Infusion of FGF7 into control mice caused the formation of a multilayered structure at 7 days, resembling the urothelium 14 days following obstruction. Thus, the pressure/stretching of renal monolayered urothelial cells is a very efficient trigger for proliferation, causing the formation of a bladder-like multistratified barrier with enhanced apical uroplakin plaques. Presumably, this ensures efficient barrier protection and repair.
Collapse
Affiliation(s)
- Alexey Girshovich
- UPMC et Inserm UMR_S 702, Remodelage et Réparation du Tissu Rénal, Paris, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
He D, Ujjal K. Bhawal, Hamada N, Kuboyama N, Abiko Y, Arakawa H. Low Level Fluoride Stimulates Epithelial-Mesenchymal Interaction in Oral Mucosa. J HARD TISSUE BIOL 2013. [DOI: 10.2485/jhtb.22.59] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
When urothelial differentiation pathways go wrong: implications for bladder cancer development and progression. Urol Oncol 2011; 31:802-11. [PMID: 21924649 DOI: 10.1016/j.urolonc.2011.07.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 07/27/2011] [Accepted: 07/28/2011] [Indexed: 12/23/2022]
Abstract
Differentiation is defined as the ability of a cell to acquire full functional behavior. For instance, the function of bladder urothelium is to act as a barrier to the diffusion of solutes into or out of the urine after excretion by the kidney. The urothelium also serves to protect the detrusor muscle from toxins present in stored urine. A major event in the initiation and progression of bladder cancer is loss of urothelial differentiation. This is important because less differentiated urothelial tumors (higher histologic tumor grade) are typically associated with increased biologic and clinical aggressiveness. The differentiation status of urothelial carcinomas can be assessed by histopathologic examination and is reflected in the assignment of a histologic grade (low-grade or high-grade). Although typically limited to morphologic evaluation in most routine diagnostic practices, tumor grade can also be assessed using biochemical markers. Indeed, current pathological analysis of tumor specimens is increasingly reliant on molecular phenotyping. Thus, high priorities for bladder cancer research include identification of (1) biomarkers that will enable the identification of high grade T1 tumors that pose the most threat and require the most aggressive treatment; (2) biomarkers that predict the likelihood that a low grade, American Joint Committee on Cancer stage pTa bladder tumor will progress into an invasive carcinoma with metastatic potential; (3) biomarkers that indicate which pTa tumors are most likely to recur, thus enabling clinicians to prospectively identify patients who require aggressive treatment; and (4) how these markers might contribute to biological processes that underlie tumor progression and metastasis, potentially through loss of terminal differentiation. This review will discuss the proteins associated with urothelial cell differentiation, with a focus on those implicated in bladder cancer, and other proteins that may be involved in neoplastic progression. It is hoped that ongoing discoveries associated with the study of these differentiation-promoting proteins can be translated into the clinic to positively impact patient care.
Collapse
|
19
|
mRNA and protein expression of FGF-1, FGF-2 and their receptors in the porcine umbilical cord during pregnancy. Folia Histochem Cytobiol 2011; 48:572-80. [PMID: 21478100 DOI: 10.2478/v10042-010-0073-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The fibroblast growth factors (FGFs) are multifunctional proteins that, among other roles, regulate structural reorganization of uterine and placental vascular bed during pregnancy. Thus, we analyzed mRNA and protein expression and immunohistochemical localization of FGF-1 and FGF-2, and their receptors (FGFR-1 and FGFR-2) in the developing umbilical cord (UC) on days 40, 60, 75 and 90 of pregnancy and after the physiological delivery in the pig (day 114). qPCR analysis demonstrated an increase in FGF-1 and FGF-2 mRNA levels beginning on day 75 and on day 114 of pregnancy, respectively. In addition, significantly increased FGFR-1IIIc mRNA expression was also found on day 114. On the other hand, no significant changes in FGFR-2IIIb mRNA expression were observed. Western Blot analysis revealed a decrease in FGF-1 and FGFR-2 protein expression after day 40. Beside an increased protein expression of FGF-2 on day 60, no significant changes in FGFR-1 protein expression were detected. Immunohistochemical staining enabled detection of FGF-FGFR system, with different intensity of immunoreaction in endothelial and tunica media cells of the umbilical vessels and in allantoic duct and amniotic epithelium as well as in myofibroblasts. In conclusion, our results show that members of FGF-FGFR system are expressed specifically in UC structures. Furthermore their day of pregnancy-related expression suggest that they may be an important players during UC formation and development.
Collapse
|
20
|
Bell SM, Zhang L, Mendell A, Xu Y, Haitchi HM, Lessard JL, Whitsett JA. Kruppel-like factor 5 is required for formation and differentiation of the bladder urothelium. Dev Biol 2011; 358:79-90. [PMID: 21803035 DOI: 10.1016/j.ydbio.2011.07.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 07/08/2011] [Accepted: 07/09/2011] [Indexed: 12/20/2022]
Abstract
Kruppel-like transcription factor 5 (Klf5) was detected in the developing and mature murine bladder urothelium. Herein we report a critical role of KLF5 in the formation and terminal differentiation of the urothelium. The Shh(GfpCre) transgene was used to delete the Klf5(floxed) alleles from bladder epithelial cells causing prenatal hydronephrosis, hydroureter, and vesicoureteric reflux. The bladder urothelium failed to stratify and did not express terminal differentiation markers characteristic of basal, intermediate, and umbrella cells including keratins 20, 14, and 5, and the uroplakins. The effects of Klf5 deletion were unique to the developing bladder epithelium since maturation of the epithelium comprising the bladder neck and urethra was unaffected by the lack of KLF5. mRNA analysis identified reductions in Pparγ, Grhl3, Elf3, and Ovol1expression in Klf5 deficient fetal bladders supporting their participation in a transcriptional network regulating bladder urothelial differentiation. KLF5 regulated expression of the mGrhl3 promoter in transient transfection assays. The absence of urothelial Klf5 altered epithelial-mesenchymal signaling leading to the formation of an ectopic alpha smooth muscle actin positive layer of cells subjacent to the epithelium and a thinner detrusor muscle that was not attributable to disruption of SHH signaling, a known mediator of detrusor morphogenesis. Deletion of Klf5 from the developing bladder urothelium blocked epithelial cell differentiation, impaired bladder morphogenesis and function causing hydroureter and hydronephrosis at birth.
Collapse
Affiliation(s)
- Sheila M Bell
- Perinatal Institute of Cincinnati Children's Hospital Medical Center, Division of Neonatology-Perinatal-Pulmonary Biology, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Eastman R, Leaf EM, Zhang D, True LD, Sweet RM, Seidel K, Siebert JR, Grady R, Mitchell ME, Bassuk JA. Fibroblast growth factor-10 signals development of von Brunn's nests in the exstrophic bladder. Am J Physiol Renal Physiol 2010; 299:F1094-110. [PMID: 20719973 PMCID: PMC2980411 DOI: 10.1152/ajprenal.00056.2010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 08/16/2010] [Indexed: 12/29/2022] Open
Abstract
von Brunn's nests have long been recognized as precursors of benign lesions of the urinary bladder mucosa. We report here that von Brunn's nests are especially prevalent in the exstrophic bladder, a birth defect that predisposes the patient to formation of bladder cancer. Cells of von Brunn's nest were found to coalesce into a stratified, polarized epithelium which surrounds itself with a capsule-like structure rich in types I, III, and IV collagen. Histocytochemical analysis and keratin profiling demonstrated that nested cells exhibited a phenotype similar, but not identical, to that of urothelial cells of transitional epithelium. Immunostaining and in situ hybridization analysis of exstrophic tissue demonstrated that the FGF-10 receptor is synthesized and retained by cells of von Brunn's nest. In contrast, FGF-10 is synthesized and secreted by mesenchymal fibroblasts via a paracrine pathway that targets basal epithelial cells of von Brunn's nests. Small clusters of 10pRp cells, positive for both FGF-10 and its receptor, were observed both proximal to and inside blood vessels in the lamina propria. The collective evidence points to a mechanism where von Brunn's nests develop under the control of the FGF-10 signal transduction system and suggests that 10pRp cells may be the original source of nested cells.
Collapse
Affiliation(s)
- Rocky Eastman
- Program in Human Urothelial Biology, Center for Tissue and Cell Sciences, Seattle Children's Research Institute, 1900 9th Ave., Mailstop C9S-5, Seattle, WA 98101, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Montzka K, Läufer T, Becker C, Grosse J, Heidenreich A. Microstructure and cytocompatibility of collagen matrices for urological tissue engineering. BJU Int 2010; 107:1974-81. [PMID: 20840325 DOI: 10.1111/j.1464-410x.2010.09680.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVES • To analyse the in vitro cytocompatibility of several engineered collagen-based biomaterials for tissue engineering of the urinary tract. • Tissue-engineered implants for the reconstruction of the urinary tract are of major interest for urological researchers as well as clinicians. Although several materials have been investigated, the ideal replacement has still to be identified. MATERIALS AND METHODS • Several collagen matrices were tested. • Electron microscopy was used to visualize the microstructure of the tested matrices. • Examination of cell attachment and growth of primary porcine urothelial and smooth muscle cells were performed and cell phenotypes were analysed using immunohistochemical stains. • Urea permeability was investigated using Ussing chamber experiments. RESULTS • The best cytocompatibility for both urinary tract-specific cell types was obtained with OptiMaix(®) (Matricel GmbH, Herzogenrath, Germany) materials. • Cell-specific phenotypes were maintained during culture as shown by immunohistochemical staining. • Furthermore, simultaneous cultivation of both cell types for 7 and 14 days significantly reduced urea permeability. CONCLUSION • These results show the potential of OptiMaix materials in tissue engineering approaches of urinary tract tissues.
Collapse
|
23
|
Vinsonneau C, Girshovich A, M'rad MB, Perez J, Mesnard L, Vandermersch S, Placier S, Letavernier E, Baud L, Haymann JP. Intrarenal urothelium proliferation: an unexpected early event following ischemic injury. Am J Physiol Renal Physiol 2010; 299:F479-86. [PMID: 20591940 DOI: 10.1152/ajprenal.00585.2009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Identification of renal cell progenitors and recognition of the events contributing to cell regeneration following ischemia-reperfusion injury (IRI) are a major challenge. In a mouse model of unilateral renal IRI, we demonstrated that the first cells to proliferate within injured kidneys were urothelial cells expressing the progenitor cell marker cytokeratin 14. A systematic cutting of the injured kidney revealed that these urothelial cells were located in the deep cortex at the corticomedullary junction in the vicinity of lobar vessels. Contrary to multilayered bladder urothelium, these intrarenal urothelial cells located in the upper part of the medulla constitute a monolayered barrier and express among uroplakins only uroplakin III. However, like bladder progenitors, intrarenal urothelial cells proliferated through a FGF receptor-2 (FGFR2)-mediated process. They strongly expressed FGFR2 and proliferated in vivo after recombinant FGF7 administration to control mice. In addition, IRI led to FGFR phosphorylation together with the selective upregulation of FGF7 and FGF2. Conversely, by day 2 following IRI, renal urothelial cell proliferation was significantly inhibited by FGFR2 antisense oligonucleotide administration into an intrarenal urinary space. Of notice, no significant migration of these early dividing urothelial cells was detected in the cortex within 7 days following IRI. Thus our data show that following IRI, proliferation of urothelial cells is mediated by the FGFR2 pathway and precedes tubular cell proliferation, indicating a particular sensitivity of this structure to changes caused by the ischemic process.
Collapse
Affiliation(s)
- C Vinsonneau
- INSERM UMRS, Université Pierre et Marie Curie Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Hauser PJ, Dozmorov MG, Bane BL, Slobodov G, Culkin DJ, Hurst RE. Abnormal expression of differentiation related proteins and proteoglycan core proteins in the urothelium of patients with interstitial cystitis. J Urol 2007; 179:764-9. [PMID: 18082196 DOI: 10.1016/j.juro.2007.09.022] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Indexed: 11/30/2022]
Abstract
PURPOSE Expression of the proteoglycan core proteins biglycan, decorin, perlecan and syndecan-1, and differentiation related markers of keratins 18 and 20 were examined to determine the origins of the loss of the glycosaminoglycan layer and investigate more fully the altered differentiation of the urothelium in interstitial cystitis. MATERIALS AND METHODS Formalin fixed biopsies from 27 patients with interstitial cystitis and 5 controls were immunohistochemically labeled for the described proteins and scored using a modification of previous scoring for other markers. Inflammation was scored from hematoxylin and eosin stained slides. By combining previous with new data, cluster analysis showed the relationships among the markers and samples. RESULTS Interstitial cystitis specimens clustered into 4 groups, ranging from most biomarkers abnormal to most biomarkers normal, but all clustered separately from normal controls. One group of interstitial cystitis specimens mainly showed aberrant expression of E-cadherin, which might represent an early abnormality. The biomarkers fell into 2 major groupings. One group consisted of chondroitin sulfate, perlecan, biglycan, decorin and the tight junction protein ZO-1. A second cluster consisted of uroplakin, the epithelial marker keratin 18 and 20, and the morphology of the layer. E-cadherin and syndecan-1 showed little relation to the other 2 clusters or to each other. Inflammation correlated moderately with syndecan-1 but to no other marker. CONCLUSIONS Findings strongly suggest abnormal differentiation in the interstitial cystitis urothelium with a loss of barrier function markers and altered differentiation markers being independent and occurring independently of inflammation. Loss of the glycosaminoglycan layer was associated with a loss of biglycan and perlecan on the luminal layer.
Collapse
Affiliation(s)
- Paul J Hauser
- Department of Urology, College of Medicine, Oklahoma University Health Sciences Center, Oklahoma City, Oklahoma, USA
| | | | | | | | | | | |
Collapse
|
25
|
Lendvay TS, Sweet R, Han CH, Soygur T, Cheng JF, Plaire JC, Charleston JS, Charleston LB, Bagai S, Cochrane K, Rubio E, Bassuk JA. Compensatory paracrine mechanisms that define the urothelial response to injury in partial bladder outlet obstruction. Am J Physiol Renal Physiol 2007; 293:F1147-56. [PMID: 17609292 DOI: 10.1152/ajprenal.00006.2007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Diseases and conditions affecting the lower urinary tract are a leading cause of dysfunctional sexual health, incontinence, infection, and kidney failure. The growth, differentiation, and repair of the bladder's epithelial lining are regulated, in part, by fibroblast growth factor (FGF)-7 and -10 via a paracrine cascade originating in the mesenchyme (lamina propria) and targeting the receptor for FGF-7 and -10 within the transitional epithelium (urothelium). The FGF-7 gene is located at the 15q15-q21.1 locus on chromosome 15 and four exons generate a 3.852-kb mRNA. Five duplicated FGF-7 gene sequences that localized to chromosome 9 were predicted not to generate functional protein products, thus validating the use of FGF-7-null mice as an experimental model. Recombinant FGF-7 and -10 induced proliferation of human urothelial cells in vitro and transitional epithelium of wild-type and FGF-7-null mice in vivo. To determine the extent that induction of urothelial cell proliferation during the bladder response to injury is dependent on FGF-7, an animal model of partial bladder outlet obstruction was developed. Unbiased stereology was used to measure the percentage of proliferating urothelial cells between obstructed groups of wild-type and FGF-7-null mice. The stereological analysis indicated that a statistical significant difference did not exist between the two groups, suggesting that FGF-7 is not essential for urothelial cell proliferation in response to partial outlet obstruction. In contrast, a significant increase in FGF-10 expression was observed in the obstructed FGF-7-null group, indicating that the compensatory pathway that functions in this model results in urothelial repair.
Collapse
Affiliation(s)
- Thomas S Lendvay
- Program in Human Urothelial Biology, Seattle Children's Hospital Research Institute, Seattle, WA 98105, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Zhang D, Kosman J, Carmean N, Grady R, Bassuk JA. FGF-10 and its receptor exhibit bidirectional paracrine targeting to urothelial and smooth muscle cells in the lower urinary tract. Am J Physiol Renal Physiol 2006; 291:F481-94. [PMID: 16597614 DOI: 10.1152/ajprenal.00025.2006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Control of the regenerative properties of urothelial tissue would greatly aid the clinician in the management of urinary tract disease and disorders. Fibroblast growth factor 10 (FGF-10) is a mitogen which is particularly promising as a protein therapy for urothelial injury. The spatial synthesis, transport, targeting, and mechanistic pathway of FGF-10 and its receptor were studied in a human urothelial cell culture model and in fixed sections of lower urinary tract tissue. Synthesis of FGF-10 was restricted to mesenchymal fibroblasts, and secreted FGF-10 exhibited paracrine transport to two proximal sites, transitional epithelium and smooth muscle cell bundles, both of which were also the exclusive sites of FGF-10 receptor synthesis. The addition of recombinant FGF-10 to quiescent urothelial cells in vitro was sufficient to stimulate DNA synthesis. This stimulation was through a pathway independent of the epidermal growth factor receptor pathway. Deconvolution, light and transmission electron microscopic studies captured FGF-10 and its receptor in association with the urothelial cell surface, in cytoplasm, and within nuclei, observations that describe the mechanism that transduces the mitogenic signal in these tissues. Localization of the FGF-10 receptor to the superficial urothelial layer is clinically significant because intravesical administration of FGF-10 may provide the clinician a means to control the turnover of transitional epithelium in bladder disorders such as interstitial cystitis.
Collapse
MESH Headings
- Cells, Cultured
- DNA/biosynthesis
- Fibroblast Growth Factor 10/analysis
- Fibroblast Growth Factor 10/genetics
- Fibroblast Growth Factor 10/physiology
- Fibroblasts/chemistry
- Fibroblasts/cytology
- Fibroblasts/physiology
- Gene Expression Regulation
- Humans
- Microscopy, Electron, Transmission
- Mucous Membrane/chemistry
- Mucous Membrane/cytology
- Mucous Membrane/physiology
- Myocytes, Smooth Muscle/chemistry
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/physiology
- Paracrine Communication/physiology
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Receptor Cross-Talk/physiology
- Receptor, Fibroblast Growth Factor, Type 2/analysis
- Receptor, Fibroblast Growth Factor, Type 2/genetics
- Receptor, Fibroblast Growth Factor, Type 2/physiology
- Receptors, Fibroblast Growth Factor/analysis
- Receptors, Fibroblast Growth Factor/genetics
- Receptors, Fibroblast Growth Factor/physiology
- Urinary Tract Physiological Phenomena
- Urothelium/chemistry
- Urothelium/cytology
- Urothelium/physiology
- Urothelium/ultrastructure
Collapse
Affiliation(s)
- Dianzhong Zhang
- Program in Human Urothelial Biology, Children's Hospital and Regional Medical Center, 4800 NE Sand Point Way, Mail Stop A8938, Seattle, WA 98105, USA
| | | | | | | | | |
Collapse
|
27
|
Abstract
PURPOSE The urothelial stroma is presumed to have a critical role in the formation and homeostasis of normal urothelium. To determine the intrinsic capacity of urothelial cells to initiate urothelial differentiation human urothelial cell were cultured under conditions that promote differentiation in the absence of stromal signaling. MATERIALS AND METHODS Immortalized and primary human urothelial cells were cultured in semisolid medium. Recovered cells were then analyzed by immunofluorescence, flow cytometry and immunoblotting for expression of the differentiation specific keratins K18 and K8, and cyclin-cyclin-dependent kinase inhibitors. The expression of these markers in cells following semisolid culture was then compared with that in normal bladder and ureteral mucosa as well as in synthetic urothelium generated by 3-dimensional organotypic raft cultures. RESULTS Organotypic raft culture of primary and immortalized urothelial cells generated full-thickness epithelium that resembled human bladder and ureteral urothelium, and expressed K8 and K18 in superficial layers. Suspension culture in semisolid medium induced K18 expression approximately 9-fold at 24 hours. p21 and p27 expression were induced by 6 hours and yet p21 expression subsided within 12 hours, while p27 expression persisted. CONCLUSIONS These results indicate that primary and immortalized human urothelial cells have the capacity to enter the urothelial differentiation program and such entry does not require inductive signals from stroma. Furthermore, these data suggest that p21 and p27 have distinct roles in regulating the urothelial cell cycle.
Collapse
Affiliation(s)
- Christopher S Mudge
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | |
Collapse
|
28
|
Maurer S, Feil G, Stenzl A. In vitro stratifiziertes Urothelium und seine Bedeutung für die rekonstruktive Urologie. Urologe A 2005; 44:738-42. [PMID: 15952014 DOI: 10.1007/s00120-005-0847-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
There are two main objectives regarding tissue engineering in reconstructive urology: (1) to provide the surgeon with autologous tissue for urogenital reconstructive purposes and (2) to create the framework for experimental investigations to better understand the structure and function of the tissues involved. In the last years urothelial cell culture has become a routine laboratory technique. There is sufficient cellular output after isolation and propagation to seed cells as single cell suspensions on biodegradable matrices for the construction of cell-matrix implants. In recent publications attention was directed toward using established primary cell cultures for in vitro stratification of multilayered urothelial sheets. Urothelial sheets have been used quite successfully for covering acellular matrices for bladder augmentation in dog and minipig models. However, up to now there has been no clinical application in humans of urothelial sheets generated in vitro. Here we review facts about the different strategies for generating multilayered urothelial sheets.
Collapse
Affiliation(s)
- S Maurer
- Labor für Tissue Engineering, Klinik für Urologie, Eberhard-Karls-Universität, Tübingen.
| | | | | |
Collapse
|
29
|
Finch PW, Rubin JS. Keratinocyte growth factor/fibroblast growth factor 7, a homeostatic factor with therapeutic potential for epithelial protection and repair. Adv Cancer Res 2004; 91:69-136. [PMID: 15327889 DOI: 10.1016/s0065-230x(04)91003-2] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Keratinocyte growth factor (KGF) is a paracrine-acting, epithelial mitogen produced by cells of mesenchymal origin. It is a member of the fibroblast growth factor (FGF) family, and acts exclusively through a subset of FGF receptor isoforms (FGFR2b) expressed predominantly by epithelial cells. The upregulation of KGF after epithelial injury suggested it had an important role in tissue repair. This hypothesis was reinforced by evidence that intestinal damage was worse and healing impaired in KGF null mice. Preclinical data from several animal models demonstrated that recombinant human KGF could enhance the regenerative capacity of epithelial tissues and protect them from a variety of toxic exposures. These beneficial effects are attributed to multiple mechanisms that collectively act to strengthen the integrity of the epithelial barrier, and include the stimulation of cell proliferation, migration, differentiation, survival, DNA repair, and induction of enzymes involved in the detoxification of reactive oxygen species. KGF is currently being evaluated in clinical trials to test its ability to ameliorate severe oral mucositis (OM) that results from cancer chemoradiotherapy. In a phase 3 trial involving patients who were treated with myeloablative chemoradiotherapy before autologous peripheral blood progenitor cell transplantation for hematologic malignancies, KGF significantly reduced both the incidence and duration of severe OM. Similar investigations are underway in patients being treated for solid tumors. On the basis of its success in ameliorating chemoradiotherapy-induced OM in humans and tissue damage in a variety of animal models, additional clinical applications of KGF are worthy of investigation.
Collapse
Affiliation(s)
- Paul W Finch
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
30
|
Daher A, de Boer WI, Le Frère-Belda MA, Kheuang L, Abbou CC, Radvanyi F, Jaurand MC, Thiery JP, Gil Diez de Medina S, Chopin DK. Growth, differentiation and senescence of normal human urothelium in an organ-like culture. Eur Urol 2004; 45:799-805. [PMID: 15149756 DOI: 10.1016/j.eururo.2004.01.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2004] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To examine the kinetics of growth, differentiation and senescence of normal human urothelium in an organoid-like culture model. MATERIALS AND METHODS Micro-dissected normal human urothelium explants were grown on porous membranes pretreated with various matrix components. Between 5 and 30 days of culture, cell proliferation was assessed by BrdU incorporation. Differentiation was evaluated on the basis of cytokeratin (Ck) and uroplakin (UP) expression. Epidermal growth factor family mRNA expression was monitored during explant outgrowth. Senescence was assessed by measuring endogenous beta-galactosidase activity and p16(INK4a) mRNA expression. RESULTS Collagen IV was the most efficient matrix component for urothelial cell expansion. BrdU incorporation by urothelial cells was 5% between 15 and 30 days, corresponding to steady-state urothelium in vivo. Heparin-binding EGF (HB-EGF), Amphiregulin (AR) and Transforming Growth Factor alpha (TGF alpha) expression correlated with increased cell proliferation. UPII expression was stable throughout culture. P16(INK4a) mRNA expression and beta-galactosidase activity increased on day 25, giving signs of senescence. CONCLUSIONS This model retains many characteristics of the urothelium in vivo. It can be used for pharmacological studies between 15 to 25 days and to study mechanisms such as wound healing, proliferation and senescence.
Collapse
Affiliation(s)
- Ahmad Daher
- INSERM EMI 03-37, Faculté de Médecine, 8, Rue du Général Sarrail, Université Paris 12, 94000 Créteil cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
|
32
|
|
33
|
Bagai S, Rubio E, Cheng JF, Sweet R, Thomas R, Fuchs E, Grady R, Mitchell M, Bassuk JA. Fibroblast growth factor-10 is a mitogen for urothelial cells. J Biol Chem 2002; 277:23828-37. [PMID: 11923311 DOI: 10.1074/jbc.m201658200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fibroblast growth factor (FGF)-10 plays an important role in regulating growth, differentiation, and repair of the urothelium. This process occurs through a paracrine cascade originating in the mesenchyme (lamina propria) and targeting the epithelium (urothelium). In situ hybridization analysis demonstrated that (i) fibroblasts of the human lamina propria were the cell type that synthesized FGF-10 RNA and (ii) the FGF-10 gene is located at the 5p12-p13 locus of chromosome 5. Recombinant (r) preparations of human FGF-10 were found to induce proliferation of human urothelial cells in vitro and of transitional epithelium of wild-type and FGF7-null mice in vivo. Mechanistic studies with human cells indicated two modes of FGF-10 action: (i) translocation of rFGF-10 into urothelial cell nuclei and (ii) a signaling cascade that begins with the heparin-dependent phosphorylation of tyrosine residues of surface transmembrane receptors. The normal urothelial phenotype, that of quiescence, is proposed to be typified by negligible levels of FGF-10. During proliferative phases, levels of FGF-10 rise at the urothelial cell surface and/or within urothelial cell nuclei. An understanding of how FGF-10 works in conjunction with these other processes will lead to better management of many diseases of the bladder and urinary tract.
Collapse
Affiliation(s)
- Shelly Bagai
- Department of Urology, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|