1
|
Zhou J, Perelman JM, Kolosov VP, Zhou X. Neutrophil elastase induces MUC5AC secretion via protease-activated receptor 2. Mol Cell Biochem 2013; 377:75-85. [PMID: 23392769 DOI: 10.1007/s11010-013-1572-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 01/18/2013] [Indexed: 01/26/2023]
Abstract
Mucus hypersecretion is a major manifestation in patients with chronic inflammatory airway diseases, and mucin5AC (MUC5AC) protein is a major component of airway mucus. Previous studies have demonstrated that neutrophil elastase (NE) stimulates the secretion of MUC5AC from airway epithelial cells, however, the mechanism is poorly understood. NE is a known ligand for protein active receptors (PARs), which have been confirmed to participate in releasing MUC5AC in the airways. However, the role of PARs in NE-induced MUC5AC secretion remains unclear. We demonstrated that airway goblet-like Calu-3 cells express PAR1, PAR2, and PAR3 with a predominant level of PAR2. NE can increase PAR2 expression and MUC5AC release. In our study, we showed that NE binding to PAR2 can increase the cytosolic calcium concentration and subsequently activate PKC, leading to MUC5AC secretion. In order to investigate the mechanism of increased cytosolic calcium in Calu-3 cells, thapsigargin was used to exhaust the endoplasmic reticulum (ER) calcium pools, and 2-aminoethoxydiphenyl borate was used to inhibit the function of the store-operated calcium entry (SOCE) channels in the plasma membrane. We found that the NE-induced increase in intracellular calcium concentration is derived from release of the ER calcium pool and its subsequent calcium internal flux from the extracellular space via SOCE channels, which is dependent on sufficient levels of extracellular calcium.
Collapse
Affiliation(s)
- Jia Zhou
- Division of Respiratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Yuzhong District, Chongqing, China.
| | | | | | | |
Collapse
|
2
|
Nishiyama T, Nakamura T, Obara K, Inoue H, Mishima K, Matsumoto N, Matsui M, Manabe T, Mikoshiba K, Saito I. Up-Regulated PAR-2-Mediated Salivary Secretion in Mice Deficient in Muscarinic Acetylcholine Receptor Subtypes. J Pharmacol Exp Ther 2006; 320:516-24. [PMID: 17077315 DOI: 10.1124/jpet.106.113092] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Protease-activated receptor-2 (PAR-2) is expressed in the salivary glands and is expected to be a new target for the treatment of exocrine dysfunctions, such as dry mouth; however, the salivary secretory mechanism mediated by PAR-2 remains to be elucidated. Therefore, mechanism of the PAR-2-mediated salivary secretion was investigated in this study. We found that a PAR-2 agonist peptide, SLIGRL-OH, induced salivary flow in vivo and dose-dependent increase in [Ca(2+)](i) submandibular gland (SMG) acinar cells in wild-type (WT) mice and mice lacking M(3) or both M(1) and M(3) muscarinic acetylcholine receptors (mAChRs), whereas secretions in PAR-2 knockout (PAR-2KO) mice were completely abolished. The saliva composition secreted by SLIGRL-OH was similar to that secreted by mAChR stimulation. Ca(2+) imaging in WT acinar cells and beta-galactosidase staining in PAR-2KO mice, in which the beta-galactosidase gene (LacZ) was incorporated into the disrupted gene, revealed a nonubiquitous, sporadic distribution of PAR-2 in the SMG. Furthermore, compared with the secretion in WT mice, PAR-2-mediated salivary secretion and Ca(2+) response were enhanced in mice lacking M(3) or both M(1) and M(3) mAChRs, in which mAChR-stimulated secretion and Ca(2+) response in acinar cells were severely impaired. Although the mechanism underlying the enhanced PAR-2-mediated salivary secretion in M(3)-deficient mice is not clear, the result suggests the presence of some compensatory mechanism involving PAR-2 in the salivary glands deficient in cholinergic activation. These results indicate that PAR-2 present in the salivary glands mediates Ca(2+)-dependent fluid secretion, demonstrating potential usefulness of PAR-2 as a target for dry mouth treatment.
Collapse
Affiliation(s)
- Tatsuaki Nishiyama
- Department of Pathology, Tsurumi University School of Dental Medicine, Tsurumi-ku, Yokohama, 230-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Sato S, Ito Y, Kondo M, Ohashi T, Ito S, Nakayama S, Shimokata K, Kume H. Ion transport regulated by protease-activated receptor 2 in human airway Calu-3 epithelia. Br J Pharmacol 2006; 146:397-407. [PMID: 16025139 PMCID: PMC1576280 DOI: 10.1038/sj.bjp.0706330] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We examined the mechanisms underlying anion secretion mediated by protease-activated receptor 2 (PAR2) and its role in the regulation of ion transport, using polarized human airway Calu-3 cells. PAR2 stimulation by trypsin and a PAR2-activating peptide (PAR2AP), especially from the basolateral aspect, caused transient Cl(-) secretion due to cytosolic Ca(2+) mobilization. Antagonists of PI-PLC (U73122, ET-18-OCH(3)) and inositol 1,4,5-triphosphate (xestospongin C (Xest C)) were without effect on the PAR2AP-mediated Cl(-) secretion, whereas it was attenuated by D609 (a PC-PLC inhibitor) and phorbol 12-myristate 13 acetate (PMA, a PKC activator). Even 30 min after removal of PAR2AP after a 10-min-exposure, cells were still poorly responsive to PAR2 stimulation, but the reduced responsiveness was upregulated by a PKC inhibitor, GF109203X (GFX). Pretreatment with PAR2AP did not affect responses to anion secretagogues, such as isoproterenol, forskolin, thapsigargin, 1-ethyl-2-benzimdazolinone, and adenosine, but ATP-induced responses were significantly reduced. Nystatin permeabilization studies revealed that the presence of PAR2AP prevented ATP-induced increments in basolateral membrane K(+) conductance without affecting apical membrane Cl(-) conductance. ATP-elicited Ca(2+) mobilization, which was sensitive to D609 and PMA, was inhibited by the pretreatment with PAR2AP, and this inhibition was blunted by the presence of GFX. Collectively, stimulation of PAR2 generates a brief response of Cl(-) secretion through PC-PLC-mediated pathway, followed by not only auto-desensitization of PAR2 itself but also cross-desensitization of a PC-PLC-coupled purinoceptor. The two types of desensitization seem likely to have PKC-mediated downregulation of PC-PLC in common.
Collapse
Affiliation(s)
- Shinji Sato
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Yasushi Ito
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
- Author for correspondence:
| | - Masashi Kondo
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Takamasa Ohashi
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Satoru Ito
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Shinsuke Nakayama
- Department of Cell Physiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Kaoru Shimokata
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Hiroaki Kume
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| |
Collapse
|
4
|
Nakayama Y, Hattori N, Otani H, Inagaki C. Gamma-aminobutyric acid (GABA)-C receptor stimulation increases prolactin (PRL) secretion in cultured rat anterior pituitary cells. Biochem Pharmacol 2006; 71:1705-10. [PMID: 16677614 DOI: 10.1016/j.bcp.2006.03.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Accepted: 03/14/2006] [Indexed: 11/22/2022]
Abstract
Gamma-aminobutyric acid (GABA) reportedly inhibits secretion of anterior pituitary hormones by directly acting on GABA-A and GABA-B receptors on anterior pituitary cells, but the roles of GABA-C receptors are little known. In this study, involvement of GABA-C receptors in the secretion of prolactin (PRL) was examined using cultured rat anterior pituitary cells. GABA-C receptor agonist, cis-4-aminocrotonic acid (CACA, 0.1-1 mM) increased PRL secretion dose-dependently, while GABA-A receptor agonist, 100 microM muscimol, but not GABA-B receptor agonist, 100 microM baclofen, decreased the secretion. GABA-C receptor antagonist, 15 microM (1,2,5,6-tetrahydropyridin-4-yl) methylphosphinic acid (TPMPA), and GABA-A receptor antagonist, 100 microM bicuculline, not only reversed such an agonist-induced increase or decrease in PRL secretion, but also suppressed or enhanced spontaneous PRL secretion, raising a possibility of GABA-C or GABA-A receptor stimulation by intrinsic pituitary-derived GABA. GABA-C receptor subunits (rho1, rho2, rho3) and GABA synthesizing enzymes (GAD 65 and GAD 67) were shown to be expressed as assayed by RT-PCR, and GABA-C receptor stimulation by CACA obviously increased intracellular Ca2+ concentration in the anterior pituitary cells. Thus, PRL secretion from anterior pituitary cells appears to be enhanced via direct GABA-C receptor stimulation by GABA originating from the anterior pituitary cells besides well-known hypothalamic GABA.
Collapse
Affiliation(s)
- Yasuhisa Nakayama
- Department of Pharmacology, Kansai Medical University, Osaka 570-8506, Japan.
| | | | | | | |
Collapse
|
5
|
Yagi Y, Otani H, Ando S, Oshiro A, Kawai K, Nishikawa H, Araki H, Fukuhara S, Inagaki C. Involvement of Rho signaling in PAR2-mediated regulation of neutrophil adhesion to lung epithelial cells. Eur J Pharmacol 2006; 536:19-27. [PMID: 16564523 DOI: 10.1016/j.ejphar.2006.02.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Accepted: 02/15/2006] [Indexed: 11/24/2022]
Abstract
Protease-activated receptor 2 (PAR2) has been implicated in the pathogenesis of airway inflammation. We report that epithelial PAR2 stimulation with trypsin (0.05-1 U/ml) or an agonist peptide (SLIGKV-NH2, 1-100 microM) for 0.5-3 h dose- and time-dependently enhanced neutrophil adhesion to alveolar type II epithelial cells (A549 cells) and that this stimulation also induced the formation of epithelial actin filaments. Both responses in neutrophil adhesion and epithelial actin reorganization were reduced by a Rho inhibitor, mevastatin and by a Rho-associated kinase (ROCK) inhibitor, Y-27632 ((R)-(+)-trans-N-(4-Pyridyl)-4-(1-aminoethyl)-cyclohexanecarboxamide). Neutrophil adherence was also inhibited by an inhibitor of actin polymerization, cytochalasin D and a tyrosine kinase inhibitor, genistein. Further, the PAR2-mediated tyrosine phosphorylation of focal adhesion kinase (FAK), a major cytoskeleton protein, was detected, and this response was inhibited by mevastatin or Y-27632. These results suggest that PAR2 stimulation of alveolar epithelial cells enhances neutrophil adhesion presumably at least in part through Rho/ROCK signal-mediated actin cytoskeleton reorganization associated with the tyrosine phosphorylation of FAK.
Collapse
Affiliation(s)
- Yasuhiro Yagi
- Department of Pharmacology, Kansai Medical University, Moriguchi Osaka 570-8506, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Henry PJ. The protease-activated receptor2 (PAR2)-prostaglandin E2-prostanoid EP receptor axis: a potential bronchoprotective unit in the respiratory tract? Eur J Pharmacol 2006; 533:156-70. [PMID: 16483565 DOI: 10.1016/j.ejphar.2005.12.051] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2005] [Indexed: 01/12/2023]
Abstract
Protease-activated receptor2 (PAR2) is a subtype of G protein-coupled receptor that is widely expressed within the respiratory tract. Stimulation of PAR2 by proteases such as trypsin and tryptase, or by small peptidic activators induces a complex array of effects within the airways. One such PAR2-mediated effect by basal airway epithelial cells is the generation of prostaglandin E2. Prostaglandin E2 produces a raft of anti-inflammatory effects within the airways, principally through the activation of the prostanoid EP2 and EP3 receptor subtypes. This article reviews the PAR2-prostaglandin E2-prostanoid EP receptor axis and discusses approaches through which its activation may provide beneficial effects in respiratory disease.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/pharmacology
- Anti-Inflammatory Agents/therapeutic use
- Dinoprostone/metabolism
- Disease Models, Animal
- Humans
- Ligands
- Pneumonia/metabolism
- Pneumonia/prevention & control
- Receptor, PAR-2/drug effects
- Receptor, PAR-2/metabolism
- Receptors, Prostaglandin E/drug effects
- Receptors, Prostaglandin E/metabolism
- Receptors, Prostaglandin E, EP1 Subtype
- Receptors, Prostaglandin E, EP2 Subtype
- Receptors, Prostaglandin E, EP3 Subtype
- Respiratory Mucosa/drug effects
- Respiratory Mucosa/metabolism
- Respiratory System/drug effects
- Respiratory System/metabolism
Collapse
Affiliation(s)
- Peter J Henry
- School of Medicine and Pharmacology, University of Western Australia, Stirling Highway, Nedlands, Western Australia, 6009, Australia.
| |
Collapse
|
7
|
Luo W, Wang Y, Reiser G. Two types of protease-activated receptors (PAR-1 and PAR-2) mediate calcium signaling in rat retinal ganglion cells RGC-5. Brain Res 2005; 1047:159-67. [PMID: 15907810 DOI: 10.1016/j.brainres.2005.04.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2005] [Revised: 04/07/2005] [Accepted: 04/15/2005] [Indexed: 10/25/2022]
Abstract
Protease-activated receptors (PARs), G-protein-coupled receptors, are widely expressed in various tissues, where they participate in physiological and pathological processes, such as hemostasis, proliferation, tissue repair, and inflammation. Recently, we found that PARs were upregulated in the rat retina following optic nerve crush injury. However, the role of PAR in retinal ganglion cells following optic nerve crush still remains unknown. Here, we studied PAR-mediated calcium signaling in retinal ganglion cells, RGC-5. Using reverse transcription-polymerase chain reaction, we demonstrate that RGC-5 cells mainly express PAR-1 and to a lower extent PAR-2, which was further confirmed by indirect immunofluorescence. Short-term stimulation of RGC-5 cells with thrombin (0.001-1 U/ml) and trypsin (1-100 nM) concentration-dependently induced a transient increase in intracellular calcium concentration ([Ca(2+)](i)). An increase in [Ca(2+)](i) was also induced by both TRag (PAR-1 activating peptide) and PAR-2 activating peptide (PAR-2 AP). The EC(50) values were 0.3 nM for thrombin, 12.0 nM for trypsin, 1.3 microM for TRag, and 1.6 microM for PAR-2 AP, respectively. Desensitization was studied using two successive pulses of agonists. The thrombin-induced calcium response was significantly reduced by PAR-1 desensitization caused by pre-challenging RGC-5 cells with thrombin or TRag, but not by PAR-2 desensitization. On the other hand, pretreatment with trypsin, TRag or PAR-2 AP desensitized the cells since the calcium response to a second exposure to trypsin was significantly reduced. Calcium source studies revealed that PAR-induced [Ca(2+)](i) rise mainly comes from intracellular stores in RGC-5 cells. Thus, we demonstrate that PAR-1 and PAR-2 are functionally expressed in retinal ganglion cells, mediating calcium mobilization mainly from intracellular stores.
Collapse
Affiliation(s)
- Weibo Luo
- Institut für Neurobiochemie, Medizinische Fakultät, Otto-von-Guericke-Universität, Magdeburg, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | | | | |
Collapse
|
8
|
Steinhoff M, Buddenkotte J, Shpacovitch V, Rattenholl A, Moormann C, Vergnolle N, Luger TA, Hollenberg MD. Proteinase-activated receptors: transducers of proteinase-mediated signaling in inflammation and immune response. Endocr Rev 2005; 26:1-43. [PMID: 15689571 DOI: 10.1210/er.2003-0025] [Citation(s) in RCA: 364] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Serine proteinases such as thrombin, mast cell tryptase, trypsin, or cathepsin G, for example, are highly active mediators with diverse biological activities. So far, proteinases have been considered to act primarily as degradative enzymes in the extracellular space. However, their biological actions in tissues and cells suggest important roles as a part of the body's hormonal communication system during inflammation and immune response. These effects can be attributed to the activation of a new subfamily of G protein-coupled receptors, termed proteinase-activated receptors (PARs). Four members of the PAR family have been cloned so far. Thus, certain proteinases act as signaling molecules that specifically regulate cells by activating PARs. After stimulation, PARs couple to various G proteins and activate signal transduction pathways resulting in the rapid transcription of genes that are involved in inflammation. For example, PARs are widely expressed by cells involved in immune responses and inflammation, regulate endothelial-leukocyte interactions, and modulate the secretion of inflammatory mediators or neuropeptides. Together, the PAR family necessitates a paradigm shift in thinking about hormone action, to include proteinases as key modulators of biological function. Novel compounds that can modulate PAR function may be potent candidates for the treatment of inflammatory or immune diseases.
Collapse
Affiliation(s)
- Martin Steinhoff
- Department of Dermatology and Boltzmann Institute for Immunobiology of the Skin, University of Münster, von-Esmarch-Strasse 58, 48149 Münster, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Kawabata A, Kawao N. Physiology and pathophysiology of proteinase-activated receptors (PARs): PARs in the respiratory system: cellular signaling and physiological/pathological roles. J Pharmacol Sci 2005; 97:20-4. [PMID: 15655298 DOI: 10.1254/jphs.fmj04005x4] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Proteinase-activated receptors (PARs), a family of G protein-coupled receptors, are widely distributed in the mammalian body, playing a variety of physiological/pathophysiological roles. In the respiratory systems, PARs, particularly PAR-2 and PAR-1, are expressed in the epithelial and smooth muscle cells. In addition to the G(q/11)-mediated activation of the phospholipase C beta pathway, epithelial PAR activation causes prompt and/or delayed prostanoid formation, leading to airway smooth muscle relaxation and/or modulation of an inflammatory process. PAR-2 present in the epithelium and smooth muscle is considered primarily pro-inflammatory in the respiratory system, although PAR-2 may also be anti-inflammatory under certain conditions. In the lung epithelial cells, PAR-2 can also be activated by exogenous proteinases including house dust mite allergens, in addition to various possible endogenous agonist proteinases. Clinical evidence also suggests possible involvement of PARs, particularly PAR-2, in respiratory diseases. PARs thus appear to play critical roles in the respiratory systems, and the agonists/antagonists for PARs may serve as the novel therapeutic strategy for treatment of certain respiratory diseases including asthma.
Collapse
Affiliation(s)
- Atsufumi Kawabata
- Division of Physiology and Pathophysiology, School of Pharmaceutical Sciences, Kinki University, Higashi-Osaka, Japan.
| | | |
Collapse
|
10
|
Oshiro A, Otani H, Yagi Y, Fukuhara S, Inagaki C. Protease-Activated Receptor-2–Mediated Inhibition for Ca2+Response to Lipopolysaccharide in Guinea Pig Tracheal Epithelial Cells. Am J Respir Cell Mol Biol 2004; 30:886-92. [PMID: 14754755 DOI: 10.1165/rcmb.2003-0223oc] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The protease-activated receptor-2 (PAR-2) has been implicated in airway inflammation. Here, we examined the interaction between PAR-2 and lipopolysaccharide (LPS), a major proinflammatory factor, using cultured guinea pig tracheal epithelial cells. In fura2-loaded cells, LPS (1 microg/ml) transiently increased intracellular Ca(2+) concentrations ([Ca(2+)]i), this effect being abolished by a Ca(2+) channel blocker, verapamil, and Ca(2+) removal. Prestimulation of PAR-2 with trypsin (0.1-1 U/ml) or an agonist peptide (SLIGRL-NH(2), 1 microM) for 60 min inhibited the LPS-induced [Ca(2+)]i increase. Such an inhibitory effect of trypsin was abolished by inhibitors of protein kinase C (PKC), chelerythrine and staurosporine. A PKC activator, phorbol 12,13-dibutylate, also reduced the LPS response. Trypsin also inhibited a transient increase in [Ca(2+)]i caused by a Ca(2+) channel opener, Bay K 8644. When the trypsin-pretreated cells were incubated in normal buffer for 10-60 min before LPS exposure, the effect of trypsin on the Ca(2+) response to LPS diminished in a time-dependent manner. Such a recovery was slowed by incubation with a protein phosphatase inhibitor, okadaic acid. Further, trypsin induced sustained activations of PKCalpha and -epsilon. Thus, PAR-2 stimulation reduced the epithelial cell response to LPS, probably through the inactivation of Ca(2+) channels via PKC-mediated phosphorylation.
Collapse
Affiliation(s)
- Akihiro Oshiro
- Department of Pharmacology, Kansai Medical University, Moriguchi, Osaka 570-8506, Japan
| | | | | | | | | |
Collapse
|
11
|
Lan RS, Stewart GA, Goldie RG, Henry PJ. Altered expression and in vivo lung function of protease-activated receptors during influenza A virus infection in mice. Am J Physiol Lung Cell Mol Physiol 2003; 286:L388-98. [PMID: 14633513 DOI: 10.1152/ajplung.00286.2003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Protease-activated receptors (PARs) are widely distributed in human airways, and recent evidence indicates a role for PARs in the pathophysiology of inflammatory airway disease. To further investigate the role of PARs in airway disease, we determined the expression and function of PARs in a murine model of respiratory tract viral infection. PAR-1, PAR-2, PAR-3, and PAR-4 mRNA and protein were expressed in murine airways, and confocal microscopy revealed colocalization of PAR-2 and cyclooxygenase (COX)-2 immunostaining in basal tracheal epithelial cells. Elevated levels of PAR immunostaining, which was particularly striking for PAR-1 and PAR-2, were observed in the airways of influenza A/PR-8/34 virus-infected mice compared with sham-infected mice. Furthermore, increased PAR-1 and PAR-2 expression was associated with significant changes in in vivo lung function responses. PAR-1 agonist peptide potentiated methacholine-induced increases in airway resistance in anesthetized sham-infected mice (and in indomethacin-treated, virus-infected mice), but no such potentiation was observed in virus-infected mice. PAR-2 agonist peptide transiently inhibited methacholine-induced bronchoconstriction in sham-infected mice, and this effect was prolonged in virus-infected mice. These findings suggest that during viral infection, the upregulation of PARs in the airways is coupled to increased activation of COX and enhanced generation of bronchodilatory prostanoids.
Collapse
Affiliation(s)
- Rommel S Lan
- School of Medicine and Pharmacology, Faculty of Medicine and Dentistry, University of Western Australia, Perth, 6009 W. A., Australia
| | | | | | | |
Collapse
|
12
|
Yang L, Omori K, Omori K, Otani H, Suzukawa J, Inagaki C. GABAC receptor agonist suppressed ammonia-induced apoptosis in cultured rat hippocampal neurons by restoring phosphorylated BAD level. J Neurochem 2003; 87:791-800. [PMID: 14535961 DOI: 10.1046/j.1471-4159.2003.02069.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ammonia-induced apoptosis and its prevention by GABAC receptor stimulation were examined using primary cultured rat hippocampal neurons. Ammonia (0.5-5 mm NH4Cl) dose-dependently induced apoptosis in pyramidal cell-like neurons as assayed by double staining with Hoechst 33258 and anti-neurofilament antibody. A GABAC receptor agonist, cis-4-aminocrotonic acid (CACA, 200 microm), but not GABAA and GABAB receptor agonists, muscimol (10 micro m) and baclofen (50 microm), respectively, inhibited the ammonia (2 mm)-induced apoptosis, and this inhibition was abolished by a GABAC receptor antagonist (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA, 15 microm). Expression of all three GABAC receptor subunits was demonstrated in the cultured neurons by RT-PCR. The ammonia-treatment also activated caspases-3 and -9 as observed in immunocytochemistry for PARP p85 and western blot. Such activation of the caspases was again inhibited by CACA in a TPMPA-sensitive manner. The anti-apoptotic effect of CACA was blocked by inhibitors for MAP kinase kinase and cAMP-dependent protein kinase, PD98059 (20 microm) and KT5720 (1 microm), suggesting possible involvement of an upstream pro-apoptotic protein, BAD. Levels of phospho-BAD (Ser112 and Ser155) were decreased by the ammonia-treatment and restored by coadministration of CACA. These findings suggest that GABAC receptor stimulation protects hippocampal pyramidal neurons from ammonia-induced apoptosis by restoring Ser112- and Ser155-phospho-BAD levels.
Collapse
Affiliation(s)
- Li Yang
- Department of Pharmacology, Kansai Medical University, Moriguchi, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Maul H, Bytautiene E, Vedernikov Y, Garfield RE, Saade GR. Proteinase-activated receptor-2 activation induces uterine contractility in term pregnant rats that is not dependent on mast cell activation and cyclo-oxygenase products. Am J Obstet Gynecol 2003; 188:1498-502; discussion 1502-3. [PMID: 12824984 DOI: 10.1067/mob.2003.400] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVES This study was undertaken to evaluate the effect of proteinase-activated receptor-2 (PAR-2) activation on the contractility of uterine tissues from term pregnant rats and the role of mast cells and prostaglandins in such an effect. STUDY DESIGN Uterine rings from pregnant (day 20-21) Sprague-Dawley rats were used for isometric tension recording in organ chamber experiments (Krebs solution, 5% carbon dioxide in air, 37 degrees C, pH approximately 7.4). Responses to the PAR-2 activating peptide SLIGRL (serine-leucine-isoleucine-glycine-arginine-leucine), and to the inactive reverse peptide LRGILS (leucine-arginine-glycine-isoleucine-leucine-serine) were determined after pretreatments with compound 48/80, cromolyn, S[+]-chlorpheniramine maleate, cimetidine, combinations of histamine (H) receptor antagonists with cromolyn or ibuprofen and compared with vehicle. RESULTS SLIGRL significantly augmented contractility of uterine tissues, and this response was not inhibited by compound 48/80, cromolyn, and ibuprofen, as well as by H(1)- and H(2)-receptor antagonists, alone or in combination with cromolyn. CONCLUSION PAR-2 activation augments uterine contractility in tissues obtained from term pregnant rats, and this effect is independent of mast cell activation or cyclo-oxygenase pathway products.
Collapse
Affiliation(s)
- Holger Maul
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, 77755-1062, USA
| | | | | | | | | |
Collapse
|