1
|
Yan X, Liu J, Zhang Z, Li W, Sun S, Zhao J, Dong X, Qian J, Sun H. Low-level laser irradiation modulates brain-derived neurotrophic factor mRNA transcription through calcium-dependent activation of the ERK/CREB pathway. Lasers Med Sci 2016; 32:169-180. [PMID: 27864646 DOI: 10.1007/s10103-016-2099-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 10/17/2016] [Indexed: 12/29/2022]
Abstract
Low-level laser (LLL) irradiation has been reported to promote neuronal differentiation, but the mechanism remains unclear. Brain-derived neurotrophic factor (BDNF) has been confirmed to be one of the most important neurotrophic factors because it is critical for the differentiation and survival of neurons during development. Thus, this study aimed to investigate the effects of LLL irradiation on Bdnf messenger RNA (mRNA) transcription and the molecular pathway involved in LLL-induced Bdnf mRNA transcription in cultured dorsal root ganglion neurons (DRGNs) using Ca2+ imaging, pharmacological detections, RNA interference, immunocytochemistry assay, Western blot, and qPCR analysis. We show here that LLL induced increases in the [Ca2+] i level, Bdnf mRNA transcription, cAMP-response element-binding protein (CREB) phosphorylation, and extracellular signal-regulated kinase (ERK) phosphorylation, mediated by Ca2+ release via inositol triphosphate receptor (IP3R)-sensitive calcium (Ca2+) stores. Blockade of Ca2+ increase suppressed Bdnf mRNA transcription, CREB phosphorylation, and ERK phosphorylation. Downregulation of phosphorylated (p)-CREB reduced Bdnf mRNA transcription triggered by LLL. Furthermore, blockade of ERK using PD98059 inhibitor reduced p-CREB and Bdnf mRNA transcription induced by LLL. Taken together, these findings establish the Ca2+-ERK-CREB cascade as a potential signaling pathway involved in LLL-induced Bdnf mRNA transcription. To our knowledge, this is the first report of the mechanisms of Ca2+-dependent Bdnf mRNA transcription triggered by LLL. These findings may help further explore the complex molecular signaling networks in LLL-triggered nerve regeneration in vivo and may also provide experimental evidence for the development of LLL for clinical applications.
Collapse
Affiliation(s)
- Xiaodong Yan
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi'an, 710038, China
| | - Juanfang Liu
- Department of Clinical Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhengping Zhang
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Wenhao Li
- Cadet Brigade, Fourth Military Medical University, Xi'an, 710032, China
| | - Siguo Sun
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi'an, 710038, China
| | - Jian Zhao
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi'an, 710038, China
| | - Xin Dong
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi'an, 710038, China
| | - Jixian Qian
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi'an, 710038, China.
| | - Honghui Sun
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi'an, 710038, China.
| |
Collapse
|
2
|
Reed AM, Husain SZ, Thrower E, Alexandre M, Shah A, Gorelick FS, Nathanson MH. Low extracellular pH induces damage in the pancreatic acinar cell by enhancing calcium signaling. J Biol Chem 2011; 286:1919-26. [PMID: 21084290 PMCID: PMC3023488 DOI: 10.1074/jbc.m110.158329] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 11/01/2010] [Indexed: 01/30/2023] Open
Abstract
Low extracellular pH (pHe) occurs in a number of clinical conditions and sensitizes to the development of pancreatitis. The mechanisms responsible for this sensitization are unknown. Because abnormal Ca(2+) signaling underlies many of the early steps in the pathogenesis of pancreatitis, we evaluated the effect of decreasing pHe from 7.4 to 7.0 on Ca(2+) signals in the acinar cell. Low pHe significantly increased the amplitude of cerulein-induced Ca(2+) signals. The enhancement in amplitude was localized to the basolateral region of the acinar cell and was reduced by pretreatment with ryanodine receptor (RYR) inhibitors. Because basolateral RYRs also have been implicated in the pathogenesis of pancreatitis, we evaluated the effects of RYR inhibitors on pancreatitis responses in acidic conditions. RYR inhibitors significantly reduced the sensitizing effects of low pHe on zymogen activation and cellular injury. These findings suggest that enhanced RYR-mediated Ca(2+) signaling in the basolateral region of the acinar cell is responsible for the injurious effects of low pHe on the exocrine pancreas.
Collapse
Affiliation(s)
- Anamika M Reed
- Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, Connecticut 06515, USA.
| | | | | | | | | | | | | |
Collapse
|
3
|
Abstract
The sarcoplasmic reticulum (SR) of smooth muscles presents many intriguing facets and questions concerning its roles, especially as these change with development, disease, and modulation of physiological activity. The SR's function was originally perceived to be synthetic and then that of a Ca store for the contractile proteins, acting as a Ca amplification mechanism as it does in striated muscles. Gradually, as investigators have struggled to find a convincing role for Ca-induced Ca release in many smooth muscles, a role in controlling excitability has emerged. This is the Ca spark/spontaneous transient outward current coupling mechanism which reduces excitability and limits contraction. Release of SR Ca occurs in response to inositol 1,4,5-trisphosphate, Ca, and nicotinic acid adenine dinucleotide phosphate, and depletion of SR Ca can initiate Ca entry, the mechanism of which is being investigated but seems to involve Stim and Orai as found in nonexcitable cells. The contribution of the elemental Ca signals from the SR, sparks and puffs, to global Ca signals, i.e., Ca waves and oscillations, is becoming clearer but is far from established. The dynamics of SR Ca release and uptake mechanisms are reviewed along with the control of luminal Ca. We review the growing list of the SR's functions that still includes Ca storage, contraction, and relaxation but has been expanded to encompass Ca homeostasis, generating local and global Ca signals, and contributing to cellular microdomains and signaling in other organelles, including mitochondria, lysosomes, and the nucleus. For an integrated approach, a review of aspects of the SR in health and disease and during development and aging are also included. While the sheer versatility of smooth muscle makes it foolish to have a "one model fits all" approach to this subject, we have tried to synthesize conclusions wherever possible.
Collapse
Affiliation(s)
- Susan Wray
- Department of Physiology, School of Biomedical Sciences, University of Liverpool, Liverpool, Merseyside L69 3BX, United Kingdom.
| | | |
Collapse
|
4
|
Kiyoshi H, Yamazaki D, Ohya S, Kitsukawa M, Muraki K, Saito SY, Ohizumi Y, Imaizumi Y. Molecular and electrophysiological characteristics of K+ conductance sensitive to acidic pH in aortic smooth muscle cells of WKY and SHR. Am J Physiol Heart Circ Physiol 2006; 291:H2723-34. [PMID: 16815980 DOI: 10.1152/ajpheart.00894.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Changes in K(+) conductances and their contribution to membrane depolarization in the setting of an acidic pH environment have been studied in myocytes from aortic smooth muscle cells of spontaneously hypertensive rats (SHR) compared with those from Wistar-Kyoto (WKY) rats. The resting membrane potential (RMP) of aortic smooth muscle at extracellular pH (pH(o)) of 7.4 was significantly more depolarized in SHR than in WKY rats. Acidification to pH(o) 6.5 made this difference in RMP between SHR and WKY rats more significant by further depolarizing the SHR myocytes. Large-conductance Ca(2+)-activated K(+) (BK) currents, which were markedly suppressed by acidification, were larger in aortic myocytes of SHR than in those of WKY rats. In contrast, acid-sensitive, non-BK currents were smaller in SHR. Western blot analyses showed that expression of BK-alpha- and -beta(1) subunits in SHR aortas was upregulated and comparable with those in WKY rats, respectively. Additional electrophysiological and molecular studies showed that pH- and halothane-sensitive two-pore domain weakly inward rectifying K(+) channel (TWIK)-like acid-sensitive K(+) (TASK) channel subtypes were functionally expressed in aortas, and TASK1 expression was significantly higher in WKY than in SHR. Although the background current through TASK channels at normal pH(o) (7.4) was small and may not contribute significantly to the regulation of RMP, TASK channel activation by halothane or alkalization (pH(o) 8.0) induced significant hyperpolarization in WKY but not in SHR. In conclusion, the larger depolarization and subsequent abnormal contractions after acidification in aortic myocytes in the setting of SHR hypertension are mainly attributable to the larger contribution of BK current to the total membrane conductance than in WKY aortas.
Collapse
MESH Headings
- Animals
- Aorta/metabolism
- Aorta/pathology
- Aorta/physiopathology
- Down-Regulation/physiology
- Electrophysiology
- Halothane/pharmacology
- Hydrogen-Ion Concentration
- Hypertension/pathology
- Hypertension/physiopathology
- Male
- Membrane Potentials/genetics
- Membrane Potentials/physiology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Myocardial Contraction/physiology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Nerve Tissue Proteins
- Potassium Channels, Calcium-Activated/genetics
- Potassium Channels, Calcium-Activated/metabolism
- Potassium Channels, Tandem Pore Domain/genetics
- Potassium Channels, Tandem Pore Domain/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred SHR
- Rats, Inbred WKY
Collapse
Affiliation(s)
- Hidekazu Kiyoshi
- Dept. of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Mizuhoku, Nagoya 467-8603, Japan
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Besse S, Tanguy S, Boucher F, Huraux C, Riou B, Swynghedauw B, de Leiris J. Protection of endothelial-derived vasorelaxation with cariporide, a sodium-proton exchanger inhibitor, after prolonged hypoxia and hypoxia–reoxygenation: Effect of age. Eur J Pharmacol 2006; 531:187-93. [PMID: 16436276 DOI: 10.1016/j.ejphar.2005.11.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Revised: 11/21/2005] [Accepted: 11/28/2005] [Indexed: 11/22/2022]
Abstract
Calcium overload during hypoxia and reoxygenation exerts deleterious effects in endothelial and smooth muscle cells but potential effects of sodium-proton exchanger (NHE) inhibitors have never been investigated in both adult and senescent vessels. Isolated aortic rings from adult and senescent rats were submitted to hypoxia (50 min) or to hypoxia/reoxygenation (20/30 min) without or with cariporide (10(-6) M) and aortic vasoreactivity was recorded. After hypoxia, relaxation to acetylcholine was preserved in adult rings treated with cariporide (-22.3% vs. -9.3% of baseline value in control and treated groups respectively, P<0.05) but not in senescents. Cariporide treatment restored relaxation to acetylcholine after hypoxia-reoxygenation in adult rings (-32.04% vs. -0.03% of baseline value in control and treated groups respectively, P<0.01) and to a lesser extent, in senescent rings (-30.8% vs. -24.4% of baseline value in control and treated groups respectively, P<0.01). These results suggested that hypoxia induced lower acidosis and/or involved other mechanisms of proton extrusion than NHE in senescent aorta. Improvement of endothelial function with cariporide after reoxygenation in senescent aorta, but in a lesser extent than in adult aorta, suggests a lower role of NHE in pH regulation and subsequent calcium overload during aging.
Collapse
Affiliation(s)
- Sophie Besse
- Laboratoire Croissance cellulaire, Réparation et Régénération Tissulaires, UMR CNRS 7149, Université Paris 12-Val de Marne, Créteil, France.
| | | | | | | | | | | | | |
Collapse
|
6
|
Rohra DK, Saito SY, Ohizumi Y. Low Extracellular Cl – Environment Attenuates Changes in Intracellular pH and Contraction following Extracellular Acidosis in Wistar Kyoto Rat Aorta. Pharmacology 2005; 75:30-6. [PMID: 15942273 DOI: 10.1159/000086152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Accepted: 04/07/2005] [Indexed: 11/19/2022]
Abstract
This study was conducted to investigate the influence of extracellular Cl- ([Cl-]o) on the intracellular pH (pHi) regulation and the contractile state of the isolated aorta from Wistar Kyoto (WKY) rats. Isometric tension recording and fluorometry techniques were utilized to measure contractile response and pHi in isolated aortic strips. Decreasing extracellular pH (pHo) from 7.4 to 6.5 produced a marked contraction, which was 75.8 +/- 5.6% of the 64.8 mmol/l KCl-induced contraction. The acidosis-induced contraction was significantly attenuated in low [Cl-]o solution, the magnitude of which was 56.0 +/- 3.0% of the 64.8 mmol/l KCl-induced contraction. Decreasing pHo of the normal solution to 6.5 rapidly decreased pHi in aortic smooth muscle cells and produced a corresponding contraction. When the pHo was decreased in low [Cl-]o solution, a rapid fall in pHi followed by reversal of pHi changes, in a time-dependent manner was observed, despite low pHo. Omission of HCO3- from the low [Cl-]o solution restored the contractile response to acidosis, which was comparable to that in normal solution. Similarly, following decrease in pHo to 6.5, no recovery of intracellular acidosis was observed. We conclude that low [Cl-]o environment causes activation of extracellular HCO3- -dependent pHi-regulating mechanism, that results in the rapid recovery of pHi following acidosis, and the attenuation of acidosis-induced contraction of WKY aorta.
Collapse
Affiliation(s)
- Dileep Kumar Rohra
- Department of Pharmaceutical Molecular Biology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Aramaki, Sendai, Japan.
| | | | | |
Collapse
|
7
|
Rohra DK, Sharif HM, Zubairi HS, Sarfraz K, Ghayur MN, Gilani AH. Acidosis-induced relaxation of human internal mammary artery is due to activation of ATP-sensitive potassium channels. Eur J Pharmacol 2005; 514:175-81. [PMID: 15910804 DOI: 10.1016/j.ejphar.2005.02.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Revised: 02/14/2005] [Accepted: 02/24/2005] [Indexed: 11/17/2022]
Abstract
Metabolic acidosis is associated with various clinical situations including diabetes mellitus and renal diseases. The aim of this study was to investigate the effects of acidosis on the resting as well as precontracted human left internal mammary artery. The vessels were obtained from the patients undergoing coronary artery bypass grafting surgery at The Aga Khan University Hospital, Karachi. Left internal mammary artery was cut into rings and isometric tension recording experiments were performed. Decrease in pH of the bathing solution from 7.4 to 6.8 had no effect on the resting tension of left internal mammary artery, whereas, acidic pH markedly relaxed the contractions to 24.8 mM KCl and 300 nM phenylephrine. Interestingly, when the KCl- or phenylephrine-contracted rings were treated with 3 microM glibenclamide; an inhibitor of ATP-sensitive potassium (K(ATP)) channels, the relaxant effect of acidosis was abolished. Similarly, acidosis failed to cause relaxation of 100 nM endothelin-1-induced contraction in Ca2+-free bathing solution or in the presence of a voltage-dependent Ca2+ channel inhibitor, verapamil (10 microM), whereas, endothelin-1-induced contraction was attenuated by acidosis in Ca2+-containing normal solution. From all these data, it is concluded that under the acidic pH conditions, opening of K(ATP) channels occurs; resulting in the hyperpolarization, decrease in Ca2+ influx via voltage-dependent Ca2+ channels and subsequent relaxation of human left internal mammary artery.
Collapse
Affiliation(s)
- Dileep Kumar Rohra
- Department of Biological and Biomedical Sciences, Faculty of Health Sciences, The Aga Khan University, Stadium Road, P.O. Box 3500, Karachi 74800, Pakistan.
| | | | | | | | | | | |
Collapse
|
8
|
Rohra DK, Yamakuni T, Ohizumi Y. Acidosis-induced protein tyrosine phosphorylation depends on Ca2+ influx via voltage-dependent Ca2+ channels in SHR aorta. Eur J Pharmacol 2005; 504:105-11. [PMID: 15507226 DOI: 10.1016/j.ejphar.2004.09.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Revised: 09/02/2004] [Accepted: 09/14/2004] [Indexed: 11/18/2022]
Abstract
The contractile response to acidosis in isolated aorta from spontaneously hypertensive rat (SHR) depends upon tyrosine phosphorylation of phosphatidylinositol 3 kinase (PI3-kinase) and Ca2+ influx via voltage-dependent Ca2+ channels (VDCC). In this study, verapamil, a VDCC inhibitor, was shown to markedly inhibit acidic pH-induced contraction, whereas the residual contraction in the presence of verapamil was unaffected by the PI3-kinase inhibitor, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one hydrochloride (LY-294002). Interestingly, the LY-294002-insensitive component of contraction was further inhibited by verapamil in the presence of LY-294002. Western blotting revealed that acidosis stimulated tyrosine phosphorylation of p85, which was abolished when tissues were pretreated with tyrphostin 23, a tyrosine kinase inhibitor, verapamil or EGTA. In fura-2-loaded aortic strips, acidosis induced a rise in intracellular Ca2+ ([Ca2+]i) that was partially inhibited by LY-294002. The residual increase in [Ca2+]i caused by acidosis in the presence of LY-294002 was abolished by verapamil. These findings suggest that acidosis-induced Ca2+ influx through VDCC is the upstream event leading to the tyrosine phosphorylation of PI3-kinase, which in turn contributes to the enhancement of Ca2+ entry to some extent in SHR aorta.
Collapse
Affiliation(s)
- Dileep Kumar Rohra
- Department of Pharmaceutical Molecular Biology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | | | | |
Collapse
|
9
|
Rohra DK, Saito SY, Ohizumi Y. Mechanism of acidic pH-induced contraction in spontaneously hypertensive rat aorta: role of Ca2+release from the sarcoplasmic reticulum. ACTA ACUST UNITED AC 2003; 179:273-80. [PMID: 14616243 DOI: 10.1046/j.0001-6772.2003.01174.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIM This study was conducted to investigate the mechanism of acidic pH-induced contraction (APIC) with regard to Ca2+ handling using isometric tension recording experiments. RESULTS Decreasing extracellular pH from 7.4 to 6.5 produced a marked and sustained contraction of spontaneously hypertensive rat (SHR) aorta, that was 128.7 +/- 2.0% of the 64.8 mm KCl-induced contraction. Verapamil, an inhibitor of voltage-dependent Ca2+ channels (VDCC) significantly inhibited the APIC. In Ca2+-deficient solution, sustained contraction induced by acidic pH was abolished completely, while a transient contraction was still observed suggesting the release of Ca2+ from intracellular site. Ryanodine (1 microm), a ryanodine receptor blocker, and 10 microm cyclopiazonic acid (CPA; a sarco/endoplasmic reticulum Ca2+ ATPase inhibitor) abolished the transient contraction induced by acidosis. In normal Ca2+-containing solution, ryanodine significantly decreased the rate of rise as well as maximum level of APIC. Interestingly, ryanodine and CPA showed an additive inhibitory effect with verapamil and the combined treatment of ryanodine or CPA with verapamil nearly abolished the APIC. CONCLUSIONS It is concluded that acidic pH induces Ca2+ release from ryanodine/CPA-sensitive store of sarcoplasmic reticulum in SHR aorta. This Ca2+ plays an important role in the facilitation of the rate of rise of APIC, as well as contributing to the sustained contraction via a mechanism which is independent of Ca2+ influx through VDCC.
Collapse
Affiliation(s)
- D K Rohra
- Department of Pharmaceutical Molecular Biology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai, Japan
| | | | | |
Collapse
|
10
|
Rohra DK, Saito SY, Ohizumi Y. Strain-specific effects of acidic pH on contractile state of aortas from Wistar and Wistar Kyoto rats. Eur J Pharmacol 2003; 476:123-30. [PMID: 12969757 DOI: 10.1016/s0014-2999(03)02129-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effects of acidosis were investigated on the resting and precontracted aortas from Wistar and Wistar Kyoto (WKY) rats. Decrease in pH from 7.4 to 6.5, having no effect on the resting tension of Wistar aorta, induced a marked contraction of WKY aorta. Acidic pH markedly relaxed the contraction to 300 nM phenylephrine in Wistar aorta, whereas in WKY aorta, it produced a biphasic response, an initial relaxation followed by potentiation of the contraction. In aortas loaded with fura 2-AM, phenylephrine caused an increase in intracellular Ca2+ ([Ca2+]i) and a contraction in both Wistar and WKY rats. pH 6.5 produced a decrease in [Ca2+]i to a near-basal level and almost abolished the phenylephrine-induced contraction in Wistar rat aorta. However, in WKY aorta, a biphasic response, an initial decline and later a recovery of [Ca2+]i level, was observed. Interestingly, at similar sustained [Ca2+]i, the contractile response to phenylephrine in WKY aorta was potentiated under acidic pH conditions. Acidic pH-induced inhibition of the contraction to phenylephrine was unaffected by iberiotoxin, 4-aminopyridine, and glibenclamide (Ca2+-activated, delayed rectifier and ATP-sensitive K+ channel inhibitors, respectively), in aortas from both Wistar and WKY. Decrease in extracellular pH was associated with a rapid fall in intracellular pH (pHi) and the intracellular acidification profile was not different in both strains. All these results show that acidic pH induces strain-specific inhibitory and excitatory effects on the contractile state of aortas from Wistar and WKY rats, respectively. The sustained and transient relaxant responses to acidic pH in Wistar and WKY aortas, respectively, are due to decrease in [Ca2+]i levels, but this decrease in [Ca2+]i is independent of the activation of K+ channels.
Collapse
Affiliation(s)
- Dileep Kumar Rohra
- Department of Pharmaceutical Molecular Biology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Aramaki, Aoba, Sendai 980-8578, Japan
| | | | | |
Collapse
|