1
|
Weisberg E, Nonami A, Chen Z, Nelson E, Chen Y, Liu F, Cho H, Zhang J, Sattler M, Mitsiades C, Wong KK, Liu Q, Gray NS, Griffin JD. Upregulation of IGF1R by mutant RAS in leukemia and potentiation of RAS signaling inhibitors by small-molecule inhibition of IGF1R. Clin Cancer Res 2014; 20:5483-95. [PMID: 25186968 DOI: 10.1158/1078-0432.ccr-14-0902] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Activating mutations in the RAS oncogene occur frequently in human leukemias. Direct targeting of RAS has proven to be challenging, although targeting of downstream RAS mediators, such as MEK, is currently being tested clinically. Given the complexity of RAS signaling, it is likely that combinations of targeted agents will be more effective than single agents. EXPERIMENTAL DESIGN A chemical screen using RAS-dependent leukemia cells was developed to identify compounds with unanticipated activity in the presence of an MEK inhibitor and led to identification of inhibitors of IGF1R. Results were validated using cell-based proliferation, apoptosis, cell-cycle, and gene knockdown assays; immunoprecipitation and immunoblotting; and a noninvasive in vivo bioluminescence model of acute myeloid leukemia (AML). RESULTS Mechanistically, IGF1R protein expression/activity was substantially increased in mutant RAS-expressing cells, and suppression of RAS led to decreases in IGF1R. Synergy between MEK and IGF1R inhibitors correlated with induction of apoptosis, inhibition of cell-cycle progression, and decreased phospho-S6 and phospho-4E-BP1. In vivo, NSG mice tail veins injected with OCI-AML3-luc+ cells showed significantly lower tumor burden following 1 week of daily oral administration of 50 mg/kg NVP-AEW541 (IGF1R inhibitor) combined with 25 mg/kg AZD6244 (MEK inhibitor), as compared with mice treated with either agent alone. Drug combination effects observed in cell-based assays were generalized to additional mutant RAS-positive neoplasms. CONCLUSIONS The finding that downstream inhibitors of RAS signaling and IGF1R inhibitors have synergistic activity warrants further clinical investigation of IGF1R and RAS signaling inhibition as a potential treatment strategy for RAS-driven malignancies.
Collapse
Affiliation(s)
- Ellen Weisberg
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
| | - Atsushi Nonami
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Zhao Chen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Erik Nelson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Yongfei Chen
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui, PR China
| | - Feiyang Liu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui, PR China
| | - HaeYeon Cho
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Jianming Zhang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Martin Sattler
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Constantine Mitsiades
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Kwok-Kin Wong
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Qingsong Liu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui, PR China
| | - Nathanael S Gray
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - James D Griffin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
2
|
Ahmadbeigi N, Soleimani M, Gheisari Y, Vasei M, Amanpour S, Bagherizadeh I, Shariati SAM, Azadmanesh K, Amini S, Shafiee A, Arabkari V, Nardi NB. Dormant phase and multinuclear cells: two key phenomena in early culture of murine bone marrow mesenchymal stem cells. Stem Cells Dev 2011; 20:1337-47. [PMID: 21083430 DOI: 10.1089/scd.2010.0266] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Special features of mesenchymal stem cells (MSCs) have made them a popular tool in cell therapy and tissue engineering. Although mouse animal models and murine MSCs are common tools in this field, our understanding of the effect of in vitro expansion on the behavior of these cells is poor and controversial. In addition, in comparison to human, isolation of MSCs from mouse has been reported to be more difficult and some unexplained features such as heterogeneity and slow growth rate in the culture of these cells have been observed. Here we followed mouse bone marrow MSCs for >1 year after isolation and examined the effect of expansion on changes in morphology, growth kinetics, plasticity, and chromosomal structure during in vitro culture. Shortly after isolation, the growth rate of the cells decreased until they stopped dividing and entered a dormant state. In this state the size of the cells increased and they became multinuclear. These large multinuclear cells then gave origin to small mononuclear cells, which after a while resumed proliferation and could be expanded immortally. The immortal cells had diminished plasticity and were aneuploid but could not form tumors in nude mice. These results suggest that mouse bone marrow MSCs bear several modifications when expanded in vitro, and therefore, the interpretation of the data obtained with these cells should be done more cautiously.
Collapse
Affiliation(s)
- Naser Ahmadbeigi
- Department of Stem Cell Biology and Department of Molecular Biology and Genetic Engineering, Stem Cell Technology Research Center, Tehran, Iran
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Armesilla-Diaz A, Elvira G, Silva A. p53 regulates the proliferation, differentiation and spontaneous transformation of mesenchymal stem cells. Exp Cell Res 2009; 315:3598-610. [PMID: 19686735 DOI: 10.1016/j.yexcr.2009.08.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 08/10/2009] [Accepted: 08/11/2009] [Indexed: 01/11/2023]
Abstract
Mesenchymal stem cells (MSC) have been extensively studied and gained wide popularity due to their therapeutic potential. Spontaneous transformation of MSC, from both human and murine origin, has been reported in many studies. MSC transformation depends on the culture conditions, the origin of the cells and the time on culture; however, the precise biological characteristics involved in this process have not been fully defined yet. In this study, we investigated the role of p53 in the biology and transformation of murine bone marrow (BM)-derived MSC. We demonstrate that the MSC derived from p53KO mice showed an augmented proliferation rate, a shorter doubling time and also morphologic and phenotypic changes, as compared to MSC derived from wild-type animals. Furthermore, the MSC devoid of p53 had an increased number of cells able to generate colonies. In addition, not only proliferation but also MSC differentiation is controlled by p53 since its absence modifies the speed of the process. Moreover, genomic instability, changes in the expression of c-myc and anchorage independent growth were also observed in p53KO MSC. In addition, the absence of p53 implicates the spontaneous transformation of MSC in long-term cultures. Our results reveal that p53 plays a central role in the biology of MSC.
Collapse
Affiliation(s)
- Alejandro Armesilla-Diaz
- Department of Cellular and Molecular Physiopathology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain.
| | | | | |
Collapse
|
4
|
Ochieng J, Pratap S, Khatua AK, Sakwe AM. Anchorage-independent growth of breast carcinoma cells is mediated by serum exosomes. Exp Cell Res 2009; 315:1875-88. [PMID: 19327352 DOI: 10.1016/j.yexcr.2009.03.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 03/13/2009] [Accepted: 03/13/2009] [Indexed: 12/13/2022]
Abstract
We hereby report studies that suggest a role for serum exosomes in the anchorage-independent growth (AIG) of tumor cells. In AIG assays, fetal bovine serum is one of the critical ingredients. We therefore purified exosomes from fetal bovine serum and examined their potential to promote growth of breast carcinoma cells in soft agar and Matrigel after reconstituting them into growth medium (EEM). In all the assays, viable colonies were formed only in the presence of exosomes. Some of the exosomal proteins we identified, have been documented by others and could be considered exosomal markers. Labeled purified exosomes were up-taken by the tumor cells, a process that could be competed out with excess unlabeled vesicles. Our data also suggested that once endocytosed by a cell, the exosomes could be recycled back to the conditioned medium from where they can be up-taken by other cells. We also demonstrated that low concentrations of exosomes activate MAP kinases, suggesting a mechanism by which they maintain the growth of the tumor cells in soft agar. Taken together, our data demonstrate that serum exosomes form a growth promoting platform for AIG of tumor cells and may open a new vista into cancer cell growth in vivo.
Collapse
Affiliation(s)
- Josiah Ochieng
- Department of Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA.
| | | | | | | |
Collapse
|