1
|
Holeček M. Influence of Histidine Administration on Ammonia and Amino Acid Metabolism: A Review. Physiol Res 2020; 69:555-564. [DOI: 10.33549/physiolres.934449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Histidine (HIS) is an essential amino acid investigated for therapy of various diseases, used for tissue protection in transplantation and cardiac surgery, and as a supplement to increase muscle performance. The data presented in the review show that HIS administration may increase ammonia and affect the level of several amino acids. The most common are increased levels of alanine, glutamine, and glutamate and decreased levels of glycine and branched-chain amino acids (BCAA, valine, leucine, and isoleucine). The suggested pathogenic mechanisms include increased flux of HIS through HIS degradation pathway (increases in ammonia and glutamate), increased ammonia detoxification to glutamine and exchange of the BCAA with glutamine via L-transporter system in muscles (increase in glutamine and decrease in BCAA), and tetrahydrofolate depletion (decrease in glycine). Increased alanine concentration is explained by enhanced synthesis in extrahepatic tissues and impaired transamination in the liver. Increased ammonia and glutamine and decreased BCAA levels in HIS-treated subjects indicate that HIS supplementation is inappropriate in patients with liver injury. The studies investigating the possibilities to elevate carnosine (β-alanyl-L-histidine) content in muscles show positive effects of β-alanine and inconsistent effects of HIS supplementation. Several studies demonstrate HIS depletion due to enhanced availability of methionine, glutamine, or β-alanine.
Collapse
Affiliation(s)
- M Holeček
- Charles University, Faculty of Medicine in Hradec Králové, Šimkova 870, 500 03 Hradec Králové, Czech Republic. E-mail:
| |
Collapse
|
2
|
Holeček M. Histidine in Health and Disease: Metabolism, Physiological Importance, and Use as a Supplement. Nutrients 2020; 12:nu12030848. [PMID: 32235743 PMCID: PMC7146355 DOI: 10.3390/nu12030848] [Citation(s) in RCA: 197] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/19/2022] Open
Abstract
L-histidine (HIS) is an essential amino acid with unique roles in proton buffering, metal ion chelation, scavenging of reactive oxygen and nitrogen species, erythropoiesis, and the histaminergic system. Several HIS-rich proteins (e.g., haemoproteins, HIS-rich glycoproteins, histatins, HIS-rich calcium-binding protein, and filaggrin), HIS-containing dipeptides (particularly carnosine), and methyl- and sulphur-containing derivatives of HIS (3-methylhistidine, 1-methylhistidine, and ergothioneine) have specific functions. The unique chemical properties and physiological functions are the basis of the theoretical rationale to suggest HIS supplementation in a wide range of conditions. Several decades of experience have confirmed the effectiveness of HIS as a component of solutions used for organ preservation and myocardial protection in cardiac surgery. Further studies are needed to elucidate the effects of HIS supplementation on neurological disorders, atopic dermatitis, metabolic syndrome, diabetes, uraemic anaemia, ulcers, inflammatory bowel diseases, malignancies, and muscle performance during strenuous exercise. Signs of toxicity, mutagenic activity, and allergic reactions or peptic ulcers have not been reported, although HIS is a histamine precursor. Of concern should be findings of hepatic enlargement and increases in ammonia and glutamine and of decrease in branched-chain amino acids (valine, leucine, and isoleucine) in blood plasma indicating that HIS supplementation is inappropriate in patients with liver disease.
Collapse
Affiliation(s)
- Milan Holeček
- Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 38 Hradec Kralove, Czech Republic
| |
Collapse
|
3
|
Effects of histidine load on ammonia, amino acid, and adenine nucleotide concentrations in rats. Amino Acids 2019; 51:1667-1680. [PMID: 31712921 DOI: 10.1007/s00726-019-02803-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/03/2019] [Indexed: 12/31/2022]
Abstract
The unique capability of proton buffering is the rationale for using histidine (HIS) as a component of solutions for induction of cardiac arrest and myocardial protection in cardiac surgery. In humans, infusion of cardioplegic solution may increase blood plasma HIS from ~ 70 to ~ 21,000 µM. We examined the effects of a large intravenous dose of HIS on ammonia and amino acid concentrations and energy status of the body. Rats received 198 mM HIS intravenously (20 ml/kg) or vehicle. Samples of blood plasma, urine, liver, and soleus (SOL) and extensor digitorum longus (EDL) muscles were analysed at 2 or 24 h after treatment. At 2 h after HIS load, we found higher HIS concentration in all examined tissues, higher urea and ammonia concentrations in blood and urine, lower ATP content and higher AMP/ATP ratio in the liver and muscles, higher concentrations of almost all examined amino acids in urine, and lower glycine concentration in blood plasma, liver, and muscles when compared with controls. Changes in other amino acids were tissue dependent, markedly increased alanine and glutamate in the blood and the liver. At 24 h, the main findings were lower ATP concentrations in muscles, lower concentrations of branched-chain amino acids (BCAA; valine, leucine, and isoleucine) in blood plasma and muscles, and higher carnosine content in SOL when compared with controls. It is concluded that a load of large HIS dose results in increased ammonia levels and marked alterations in amino acid and energy metabolism. Pathogenesis is discussed in the article.
Collapse
|
4
|
Okusha Y, Hirai Y, Maezawa H, Hisadome K, Inoue N, Yamazaki Y, Funahashi M. Effects of intraperitoneally administered L-histidine on food intake, taste, and visceral sensation in rats. J Physiol Sci 2017; 67:467-474. [PMID: 27535568 PMCID: PMC10717302 DOI: 10.1007/s12576-016-0476-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 07/31/2016] [Indexed: 01/21/2023]
Abstract
To evaluate relative factors for anorectic effects of L-histidine, we performed behavioral experiments for measuring food and fluid intake, conditioned taste aversion (CTA), taste disturbance, and c-Fos immunoreactive (Fos-ir) cells before and after i.p. injection with L-histidine in rats. Animals were injected with saline (9 ml/kg, i.p.) for a control group, and saline (9 ml/kg, i.p.) containing L-histidine (0.75, 1.5, 2.0 g/kg) for a L-histidine group. Injection of L-histidine decreased the average value of food intake, and statistically significant anorectic effects were found in animals injected with 1.5 or 2.0 g/kg L-histidine but not with 0.75 g/kg L-histidine. Taste abnormalities were not detected in any of the groups. Animals injected with 2.0 g/kg L-histidine were revealed to present with nausea by the measurement of CTA. In this group, a significant increase in the number of Fos-ir cells was detected both in the area postrema and the nucleus tractus solitarius (NTS). In the 0.75 g/kg L-histidine group, a significant increase in the number of Fos-ir cells was detected only in the NTS. When the ventral gastric branch vagotomy was performed, recovery from anorexia became faster than the sham-operated group, however, vagotomized rats injected with 2.0 g/kg L-histidine still acquired CTA. These data indicate that acute anorectic effects induced by highly concentrated L-histidine are partly caused by induction of nausea and/or visceral discomfort accompanied by neuronal activities in the NTS and the area postrema. We suggest that acute and potent effects of L-histidine on food intake require substantial amount of L-histidine in the diet.
Collapse
Affiliation(s)
- Yuka Okusha
- Department of Gerodontology, Division of Oral Health Science, Hokkaido University, Graduate School of Dental Medicine, Kita 13, Nishi 7, Kita-ku, Sapporo, 060-8586, Japan
- Department of Dental Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Kita-ku, Shikata-cho, Okayama, 700-8525, Japan
- Department of Oral Physiology, Division of Oral Functional Sciences, Hokkaido University, Graduate School of Dental Medicine, Kita 13, Nishi 7, Kita-ku, Sapporo, 060-8586, Japan
| | - Yoshiyuki Hirai
- Department of Oral Physiology, Division of Oral Functional Sciences, Hokkaido University, Graduate School of Dental Medicine, Kita 13, Nishi 7, Kita-ku, Sapporo, 060-8586, Japan
| | - Hitoshi Maezawa
- Department of Oral Physiology, Division of Oral Functional Sciences, Hokkaido University, Graduate School of Dental Medicine, Kita 13, Nishi 7, Kita-ku, Sapporo, 060-8586, Japan
| | - Kazunari Hisadome
- Department of Oral Physiology, Division of Oral Functional Sciences, Hokkaido University, Graduate School of Dental Medicine, Kita 13, Nishi 7, Kita-ku, Sapporo, 060-8586, Japan
| | - Nobuo Inoue
- Department of Gerodontology, Division of Oral Health Science, Hokkaido University, Graduate School of Dental Medicine, Kita 13, Nishi 7, Kita-ku, Sapporo, 060-8586, Japan
| | - Yutaka Yamazaki
- Department of Gerodontology, Division of Oral Health Science, Hokkaido University, Graduate School of Dental Medicine, Kita 13, Nishi 7, Kita-ku, Sapporo, 060-8586, Japan
| | - Makoto Funahashi
- Department of Oral Physiology, Division of Oral Functional Sciences, Hokkaido University, Graduate School of Dental Medicine, Kita 13, Nishi 7, Kita-ku, Sapporo, 060-8586, Japan.
| |
Collapse
|
5
|
Yu J, Tang YY, Wang RR, Lou GD, Hu TT, Hou WW, Yue JX, Ohtsu H, Shi LY, Zhang SH, Chen Z. A critical time window for the analgesic effect of central histamine in the partial sciatic ligation model of neuropathic pain. J Neuroinflammation 2016; 13:163. [PMID: 27342775 PMCID: PMC4921020 DOI: 10.1186/s12974-016-0637-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 06/21/2016] [Indexed: 12/30/2022] Open
Abstract
Background It is known that histamine participates in pain modulation. However, the effect of central histamine on neuropathic pain is not fully understood. Here, we report a critical time window for the analgesic effect of central histamine in the partial sciatic nerve ligation model of neuropathic pain. Methods Neuropathic pain was induced by partial sciatic nerve ligation (PSL) in rats, wild-type (C57BL/6J) mice and HDC−/− (histidine decarboxylase gene knockout) and IL-1R−/− (interleukin-1 receptor gene knockout) mice. Histidine, a precursor of histamine that can increase the central histamine levels, was administered intraperitoneally (i.p.). Histidine decarboxylase (HDC) enzyme inhibitor α-fluoromethylhistidine was administered intracerebroventricularly (i.c.v.). Histamine H1 receptor antagonist mepyramine and H2 receptor antagonist cimetidine were given intrathecally (i.t.) and intracisternally (i.c.). Withdrawal thresholds to tactile and heat stimuli were measured with a set of von Frey hairs and infrared laser, respectively. Immunohistochemistry and Western blot were carried out to evaluate the morphology of microglia and IL-1β production, respectively. Results Histidine (100 mg/kg, i.p.) administered throughout days 0–3, 0–7, or 0–14 postoperatively (PO) alleviated mechanical allodynia and thermal hyperalgesia in the hindpaw following PSL in rats. Intrathecal histamine reversed PSL-induced thermal hyperalgesia in a dose-dependent manner and intracisternal histamine alleviated both mechanical allodynia and thermal hyperalgesia. Moreover, α-fluoromethylhistidine (i.c.v.) abrogated the analgesic effect of histidine. However, histidine treatment initiated later than the first postoperative day (treatment periods included days 2–3, 4–7, and 8–14 PO) did not show an analgesic effect. In addition, histidine treatment initiated immediately, but not 3 days after PSL, inhibited microglial activation and IL-1β upregulation in the lumbar spinal cord, in parallel with its effects on behavioral hypersensitivity. Moreover, the inhibitory effects on pain hypersensitivity and spinal microglial activation were absent in HDC−/− mice and IL-1R−/− mice. H1 receptor antagonist mepyramine (200 ng/rat i.t. or i.c.), but not H2 receptor antagonist cimetidine (200, 500 ng/rat i.t. or 500 ng/rat i.c.), blocked the effects of histidine on pain behavior and spinal microglia. Conclusions These results demonstrate that central histamine is analgesic within a critical time window in the PSL model of neuropathic pain via histamine H1 receptors. This effect may partly relate to the inhibition of microglial activation and IL-1β production in the spinal cord following nerve injury. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0637-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jie Yu
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China.,College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Ying-Ying Tang
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Ran-Ran Wang
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Guo-Dong Lou
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Ting-Ting Hu
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Wei-Wei Hou
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Jia-Xing Yue
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Hiroshi Ohtsu
- Department of Engineering, School of Medicine, Tohoku University, Aoba-ku, Sendai, 980-8775, Japan
| | - Li-Yun Shi
- Department of Basic Medical Science, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Shi-Hong Zhang
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| | - Zhong Chen
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China. .,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
6
|
The role of histaminergic H1 and H3 receptors in food intake: a mechanism for atypical antipsychotic-induced weight gain? Prog Neuropsychopharmacol Biol Psychiatry 2010; 34:1-4. [PMID: 19922755 DOI: 10.1016/j.pnpbp.2009.11.009] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2009] [Revised: 11/10/2009] [Accepted: 11/11/2009] [Indexed: 11/21/2022]
Abstract
Atypical antipsychotics such as olanzapine and clozapine are effective at treating the multiple domains of schizophrenia, with a low risk of extra-pyramidal side-effects. However a major downfall to their use is metabolic side-effects particularly weight gain/obesity, which occurs by unknown mechanisms. The present paper explores the potential candidature of histaminergic neurotransmission in the mechanisms of atypical antipsychotic-induced weight gain, with a focus on the histaminergic H1 and H3 receptors. Olanzapine and clozapine have a high affinity for the H1 receptor, and meta-analyses show a strong correlation between risk of weight gain and H1 receptor affinity. In addition, olanzapine treatment decreases H1 receptor binding and mRNA expression in the rat hypothalamus. Furthermore, a complex role is emerging for the histamine H3 receptor in the control of hunger. The H3 receptor is a pre-synaptic autoreceptor that inhibits the synthesis and release of histamine, and a heteroreceptor that inhibits other neurotransmitters such as serotonin (5-HT), noradrenaline (NA) and acetylcholine (ACh), which are also implicated in the regulation of food intake. Thus, the H3 receptor is in a prime position to regulate food intake, both through its control of histamine and its influence on other feeding pathways. We proposed that a mechanism for atypical antipsychotic-induced weight gain may be partly through the H3 receptor, as a drug-induced decrease in H1 receptor activity may decrease histamine tone through the H3 autoreceptors, compounding the weight gain problem. In addition, atypical antipsychotics may affect food intake by influencing 5-HT, NA and ACh release via interactions with the H3 heteroreceptor.
Collapse
|
7
|
Madsen TG, Trout DR, Cieslar SRL, Purdie NG, Nielsen MO, Cant JP. The histamine H1 receptor is not involved in local control of mammary blood flow in dairy cows. J Dairy Sci 2008; 91:2461-8. [PMID: 18487669 DOI: 10.3168/jds.2007-0845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Low concentrations of the essential amino acid histidine in circulation have been shown to increase mammary blood flow and it has been suggested that this effect is mediated by histamine. The hypotheses tested in this experiment were that interstitial histamine concentrations in the mammary gland are related to arterial His concentrations and that mammary blood flow is reduced by extracellular histamine via H(1) receptors. The hypotheses were tested by infusing saline or chlorpheniramine, a blocker of the H(1) histamine receptor, into the arterial supply of the mammary glands of lactating cows infused with 44 g/h of amino acid mixtures with or without His for 10 h. Infusates were administered in a 2 x 2 factorial arrangement within a 4 x 4 Latin square to 4 multiparous Holstein cows in mid lactation. Exclusion of His from the infusate decreased protein content in milk from the infused udder half from 3.98 to 3.77%, and increased arterial alpha-aminonitrogen concentration from 3.2 to 3.4 mM. Neither the decreased arterial His concentration nor the H(1) blocker affected plasma flow to the infused udder half. We conclude that histamine is not involved in the regulation of mammary blood flow. The H(1) blocker decreased milk production in the infused udder half from 4.6 to 3.5 kg without affecting protein, fat, and lactose percentages, suggesting an inhibition of milk ejection. Cows on chlorpheniramine ate less feed during the infusion than saline-infused cows, which resulted in lower arterial concentrations and mammary uptakes of acetate. The efficiency of plasma triacylglycerol uptake across the mammary glands was decreased by chlorpheniramine but net uptake of long-chain fatty acids was not affected. The mechanism by which an amino acid deficiency influences mammary blood flow does not involve histamine signaling through the H(1) receptor and remains unidentified.
Collapse
Affiliation(s)
- T G Madsen
- Department of Basic Animal and Veterinary Sciences, The Faculty of Life Sciences, Copenhagen University, DK-1870 Frederiksberg C, Denmark
| | | | | | | | | | | |
Collapse
|