1
|
Kodama T, Otani K, Okada M, Yamawaki H. Eukaryotic elongation factor 2 kinase inhibitor, A484954 inhibits perivascular sympathetic nerve stimulation-induced vasoconstriction in isolated renal artery. Eur J Pharmacol 2022; 926:175042. [DOI: 10.1016/j.ejphar.2022.175042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 11/27/2022]
|
2
|
Sastre E, Caracuel L, Prieto I, Llévenes P, Aller MÁ, Arias J, Balfagón G, Blanco-Rivero J. Decompensated liver cirrhosis and neural regulation of mesenteric vascular tone in rats: role of sympathetic, nitrergic and sensory innervations. Sci Rep 2016; 6:31076. [PMID: 27484028 PMCID: PMC4971476 DOI: 10.1038/srep31076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 07/14/2016] [Indexed: 02/08/2023] Open
Abstract
We evaluated the possible alterations produced by liver cholestasis (LC), a model of decompensated liver cirrhosis in sympathetic, sensory and nitrergic nerve function in rat superior mesenteric arteries (SMA). The vasoconstrictor response to electrical field stimulation (EFS) was greater in LC animals. Alpha-adrenoceptor antagonist phentolamine and P2 purinoceptor antagonist suramin decreased this response in LC animals more than in control animals. Both non-specific nitric oxide synthase (NOS) L-NAME and calcitonin gene related peptide (CGRP) (8-37) increased the vasoconstrictor response to EFS more strongly in LC than in control segments. Vasomotor responses to noradrenaline (NA) or CGRP were greater in LC segments, while NO analogue DEA-NO induced a similar vasodilation in both experimental groups. The release of NA was not modified, while those of ATP, nitrite and CGRP were increased in segments from LC. Alpha 1 adrenoceptor, Rho kinase (ROCK) 1 and 2 and total myosin phosphatase (MYPT) expressions were not modified, while alpha 2B adrenoceptor, nNOS expression and nNOS and MYPT phosphorylation were increased by LC. Together, these alterations might counteract the increased splanchnic vasodilation observed in the last phases of decompensated liver cirrhosis.
Collapse
Affiliation(s)
- Esther Sastre
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, España.,Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, España
| | - Laura Caracuel
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, España.,Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, España
| | - Isabel Prieto
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, España.,Departamento de Cirugía General y Digestiva, Hospital la Paz, Madrid, España
| | - Pablo Llévenes
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, España
| | - M Ángeles Aller
- Cátedra de Cirugía, Facultad de Medicina, Universidad Complutense de Madrid, España
| | - Jaime Arias
- Cátedra de Cirugía, Facultad de Medicina, Universidad Complutense de Madrid, España
| | - Gloria Balfagón
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, España.,Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, España
| | - Javier Blanco-Rivero
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, España.,Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, España
| |
Collapse
|
3
|
Sastre E, Caracuel L, Blanco-Rivero J, Callejo M, Xavier FE, Balfagón G. Biphasic Effect of Diabetes on Neuronal Nitric Oxide Release in Rat Mesenteric Arteries. PLoS One 2016; 11:e0156793. [PMID: 27272874 PMCID: PMC4896631 DOI: 10.1371/journal.pone.0156793] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/19/2016] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION We analysed possible time-dependent changes in nitrergic perivascular innervation function from diabetic rats and mechanisms implicated. MATERIALS AND METHODS In endothelium-denuded mesenteric arteries from control and four- (4W) and eight-week (8W) streptozotocin-induced diabetic rats the vasoconstriction to EFS (electrical field stimulation) was analysed before and after preincubation with L-NAME. Neuronal NO release was analysed in the absence and presence of L-arginine, tetrahydrobiopterine (BH4) and L-arginine plus BH4. Superoxide anion (O2-), peroxynitrite (ONOO-) and superoxide dismutase (SOD) activity were measured. Expressions of Cu-Zn SOD, nNOS, p-nNOS Ser1417, p-nNOS Ser847, and Arginase (Arg) I and II were analysed. RESULTS EFS response was enhanced at 4W, and to a lesser extent at 8W. L-NAME increased EFS response in control rats and at 8W, but not at 4W. NO release was decreased at 4W and restored at 8W. L-arginine or BH4 increased NO release at 4W, but not 8W. SOD activity and O2- generation were increased at both 4W and 8W. ONOO- decreased at 4W while increased at 8W. Cu-Zn SOD, nNOS and p-NOS Ser1417 expressions remained unmodified at 4W and 8W, whereas p-nNOS Ser847 was increased at 4W. ArgI was overexpressed at 4W, remaining unmodified at 8W. ArgII expression was similar in all groups. CONCLUSIONS Our results show a time-dependent effect of diabetes on neuronal NO release. At 4W, diabetes induced increased O2- generation, nNOS uncoupling and overexpression of ArgI and p-nNOS Ser847, resulting in decreased NO release. At 8W, NO release was restored, involving normalisation of ArgI and p-nNOS Ser847 expressions.
Collapse
Affiliation(s)
- Esther Sastre
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación La Paz (IdIPAZ), Madrid, Spain
| | - Laura Caracuel
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación La Paz (IdIPAZ), Madrid, Spain
| | - Javier Blanco-Rivero
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación La Paz (IdIPAZ), Madrid, Spain
| | - María Callejo
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Fabiano E. Xavier
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - Gloria Balfagón
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación La Paz (IdIPAZ), Madrid, Spain
- * E-mail:
| |
Collapse
|
4
|
Aerobic exercise training increases nitrergic innervation function and decreases sympathetic innervation function in mesenteric artery from rats fed a high-fat diet. J Hypertens 2016; 33:1819-30; discussion 1830. [PMID: 26103124 DOI: 10.1097/hjh.0000000000000627] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION We investigated whether high-fat diet (HFD)-induced obesity was associated with modifications in mesenteric innervation function, the mechanisms involved, and the possible effects of aerobic exercise training on these changes. MATERIALS AND METHODS Male Wistar rats were divided into three groups: rats fed a standard diet (control group); rats fed a HFD (35% fat) for 8 weeks; and HFD rats submitted to aerobic exercise training (8 weeks, 5 times per week for 50 min). Segments of isolated mesenteric arteries were exposed to electric field stimulation (EFS) with or without phentolamine, suramin, or Nω nitro-L-arginine methyl ester. Noradrenaline, ATP, and nitric oxide release, and total and phosphorylated neuronal nitric oxide synthase (nNOS, P-nNOS) expression were also measured. RESULTS EFS contraction was greater in sedentary HFD than in control rats. Phentolamine reduced EFS contractions more markedly in HFD rats. Suramin decreased EFS contractions only in control rats. Phentolamine + suramin practically abolished EFS-induced contraction in control rats, whereas it did not modify it in the HFD rats. Noradrenaline release was greater and ATP was lower in HFD rats. Nω nitro-L-arginine methyl ester increased contractions to EFS only in segments from control rats. Nitric oxide release and nNOS and P-nNOS expressions were lower in arterial segments from HFD rats than from control rats. None of these changes in sedentary HFD rats was present in the trained HFD rats. CONCLUSIONS Enhanced sympathetic and diminished nitrergic components contributed to increased vasoconstrictor responses to EFS in sedentary HFD rats. All these changes were avoided by aerobic exercise training, suggesting that aerobic exercise could reduce peripheral vascular resistance in obesity.
Collapse
|
5
|
de Queiroz DB, Sastre E, Caracuel L, Callejo M, Xavier FE, Blanco-Rivero J, Balfagón G. Alterations in perivascular innervation function in mesenteric arteries from offspring of diabetic rats. Br J Pharmacol 2015; 172:4699-713. [PMID: 26177571 DOI: 10.1111/bph.13244] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 06/23/2015] [Accepted: 06/30/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE We have reported that exposure to a diabetic intrauterine environment during pregnancy increases blood pressure in adult offspring, but the mechanisms involved are not completely understood. This study was designed to analyse a possible role of perivascular sympathetic and nitrergic innervation in the superior mesenteric artery (SMA) in this effect. EXPERIMENTAL APPROACH Diabetes was induced in pregnant Wistar rats by a single injection of streptozotocin. Endothelium-denuded vascular rings from the offspring of control (O-CR) and diabetic rats (O-DR) were used. Vasomotor responses to electrical field stimulation (EFS), NA and the NO donor DEA-NO were studied. The expressions of neuronal NOS (nNOS) and phospho-nNOS (P-nNOS) and release of NA, ATP and NO were determined. Sympathetic and nitrergic nerve densities were analysed by immunofluorescence. KEY RESULTS Blood pressure was higher in O-DR animals. EFS-induced vasoconstriction was greater in O-DR animals. This response was decreased by phentolamine more in O-DR animals than their controls. L-NAME increased EFS-induced vasoconstriction more strongly in O-DR than in O-CR segments. Vasomotor responses to NA or DEA-NO were not modified. NA, ATP and NO release was increased in segments from O-DR. nNOS expression was not modified, whereas P-nNOS expression was increased in O-DR. Sympathetic and nitrergic nerve densities were similar in both experimental groups. CONCLUSIONS AND IMPLICATIONS The activity of sympathetic and nitrergic innervation is increased in SMA from O-DR animals. The net effect is an increase in EFS-induced contractions in these animals. These effects may contribute to the increased blood pressure observed in the offspring of diabetic rats.
Collapse
Affiliation(s)
- D B de Queiroz
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - E Sastre
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación La Paz (IdIPAZ), Madrid, Spain
| | - L Caracuel
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación La Paz (IdIPAZ), Madrid, Spain
| | - M Callejo
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - F E Xavier
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - J Blanco-Rivero
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación La Paz (IdIPAZ), Madrid, Spain
| | - G Balfagón
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación La Paz (IdIPAZ), Madrid, Spain
| |
Collapse
|
6
|
Aerobic exercise training increases neuronal nitric oxide release and bioavailability and decreases noradrenaline release in mesenteric artery from spontaneously hypertensive rats. J Hypertens 2013; 31:916-26. [PMID: 23429663 DOI: 10.1097/hjh.0b013e32835f749c] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To study the effect of aerobic exercise training on sympathetic, nitrergic and sensory innervation function in superior mesenteric artery from spontaneously hypertensive rats (SHRs). METHODS De-endothelized vascular rings from sedentary and trained SHRs (treadmill 12 weeks) were used. Vasomotor responses to electrical field stimulation (EFS), noradrenaline, nitric oxide donor DEA-NO and calcitonin gene-related peptide (CGRP) were studied. Neuronal nitric oxide synthase (nNOS) expression and nitric oxide, superoxide anions (O(2.-)), noradrenaline and CGRP levels were also determined. RESULTS Aerobic exercise training decreased vasoconstrictor response to EFS but increased noradrenaline response. Phentolamine decreased while N(ω)-nitro-(L)-arginine methyl ester ((L)-NAME) increased the response to EFS; the effect of both drugs was greater in trained animals. Training also decreased noradrenaline release and O(2.-) production and increased nNOS expression, nitric oxide release and the vasodilator response to DEA-NO. The O(2.-) scavenger tempol increased DEA-NO-induced vasodilation only in sedentary rats. The EFS-induced contraction was increased to a similar extent in both experimental groups by preincubation with CGRP (8-37). CGRP release and vasodilator response were not modified by training. CONCLUSION Aerobic exercise training decreases contractile response to EFS in mesenteric artery from SHRs. This effect is the net result of decreased noradrenaline release, increased sensitivity to the vasoconstrictive effects of noradrenaline and increased neuronal nitric oxide release and bioavailability. These modifications might contribute to the beneficial effects of aerobic exercise training on blood pressure.
Collapse
|
7
|
Breast feeding increases vasoconstriction induced by electrical field stimulation in rat mesenteric artery. Role of neuronal nitric oxide and ATP. PLoS One 2013; 8:e53802. [PMID: 23342008 PMCID: PMC3544726 DOI: 10.1371/journal.pone.0053802] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 12/06/2012] [Indexed: 12/25/2022] Open
Abstract
Objectives The aim of this study was to investigate in rat mesenteric artery whether breast feeding (BF) affects the vasomotor response induced by electrical field stimulation (EFS), participation by different innervations in the EFS-induced response and the mechanism/s underlying these possible modifications. Methods Experiments were performed in female Sprague-Dawley rats (3 months old), divided into three groups: Control (in oestrous phase), mothers after 21 days of BF, and mothers that had recovered their oestral cycle (After BF, in oestrous phase). Vasomotor response to EFS, noradrenaline (NA) and nitric oxide (NO) donor DEA-NO were studied. Neuronal NO synthase (nNOS) and phosphorylated nNOS (P-nNOS) protein expression were analysed and NO, superoxide anion (O2.–), NA and ATP releases were also determined. Results EFS-induced contraction was higher in the BF group, and was recovered after BF. 1 µmol/L phentolamine decreased the response to EFS similarly in control and BF rats. NA vasoconstriction and release were similar in both experimental groups. ATP release was higher in segments from BF rats. 0.1 mmol/L L-NAME increased the response to EFS in both control and BF rats, but more so in control animals. BF decreased NO release and did not modify O2.– production. Vasodilator response to DEA-NO was similar in both groups, while nNOS and P-nNOS expressions were decreased in segments from BF animals. Conclusion Breast feeding increases EFS-induced contraction in mesenteric arteries, mainly through the decrease of neuronal NO release mediated by decreased nNOS and P-nNOS expression. Sympathetic function is increased through the increased ATP release in BF rats.
Collapse
|
8
|
Effects of lipopolysaccharide on the neuronal control of mesenteric vascular tone in rats: mechanisms involved. Shock 2012; 38:328-34. [PMID: 22744306 DOI: 10.1097/shk.0b013e31826240ba] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The aim of the present study was to investigate the effects of lipopolysaccharide (LPS) on the contractile response induced by electrical field stimulation (EFS) in rat mesenteric segments, as well as the mechanisms involved. Effects of LPS incubation for 2 or 5 h were studied in mesenteric segments from male Wistar rats. Vasomotor responses to EFS, nitric oxide (NO) donor DEA-NO, and noradrenaline (NA) were studied. Phosphorylated neuronal NO synthase protein expression was analyzed, and NO, superoxide anion (O2·), and peroxynitrite releases were also determined. Lipopolysaccharide increased EFS-induced vasoconstriction at 2 h. This increase was lower after 5-h preincubation. N-nitro-L-arginine methyl ester increased vasoconstrictor response only in control segments. Vasodilator response to DEA-NO was increased by LPS after 5-h preincubation and was decreased by O2· scavenger tempol. Basal NO release was increased by LPS. Electrical field stimulation-induced NO release was reduced by LPS compared with control conditions. Lipopolysaccharide exposure increased both O2· and peroxynitrite release. Vasoconstriction to exogenous NA was markedly increased by LPS compared with control conditions after 2-h incubation and remained unchanged after 5-h incubation. Short-term exposure of rat mesenteric arteries to LPS produced a time-dependent enhanced contractile response to EFS. The early phase (2 h) was associated to a reduction in NO from neuronal NO synthase and an enhanced response to NA. After 5 h of LPS exposure, this enhancement was reduced, because of restoration of the adrenergic component and maintenance of the nitrergic reduction.
Collapse
|
9
|
Blanco-Rivero J, de las Heras N, Martín-Fernández B, Cachofeiro V, Lahera V, Balfagón G. Rosuvastatin restored adrenergic and nitrergic function in mesenteric arteries from obese rats. Br J Pharmacol 2011; 162:271-85. [PMID: 20840472 DOI: 10.1111/j.1476-5381.2010.01030.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE We investigated whether high-fat diet (HFD)-induced obesity was associated with changed function of components of the mesenteric innervation (adrenergic, sensory and nitrergic), the mechanisms involved and the possible effects of rosuvastatin on these changes. EXPERIMENTAL APPROACH Male Wistar rats were divided into three groups. (i) rats fed a standard diet (control group); (ii) rats fed a HFD (33.5% fat) for 7 weeks; and (iii) rats fed a HFD and treated with rosuvastatin (15 mg·kg(-1) ·day(-1) ) for 7 weeks. Segments of isolated mesenteric arteries were exposed to electric field stimulation (EFS) with or without tetrodotoxin, phentolamine, 7-nitroindazole (7NI) or N(ω) nitro-L-arginine methyl ester (L-NAME). Noradrenaline, ATP and NO release, and nNOS expression were also measured. KEY RESULTS EFS induced a greater frequency-dependent contraction in obese than in control rats. In HFD rats, phentolamine reduced contractions elicited by EFS, but noradrenaline release was greater and ATP release decreased. L-NAME and 7NI increased contractions to EFS in segments from control rats, but not in those from HFD rats. NO release and nNOS expression were lower in arterial segments from HFD rats than in control rats. All these changes in HFD rats were reversed by treatment with rosuvastatin. CONCLUSIONS AND IMPLICATIONS Neural control of mesenteric vasomotor tone was altered in HFD rats. Enhanced adrenergic and diminished nitrergic components both contributed to increased vasoconstrictor responses to EFS. All these changes were reversed by rosuvastatin, indicating novel mechanisms of statins in neural regulation of vascular tone.
Collapse
Affiliation(s)
- Javier Blanco-Rivero
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
10
|
Blanco-Rivero J, Aras-López R, Del Campo L, Sagredo A, Balfagón G, Ferrer M. Orchidectomy increases beta-adrenoceptor activation-mediated neuronal nitric oxide and noradrenaline release in rat mesenteric artery. Neuroendocrinology 2006; 84:378-85. [PMID: 17230011 DOI: 10.1159/000098820] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Accepted: 12/08/2006] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS A previous study has demonstrated that endogenous male sex hormones do not alter neuronal nitric oxide (NO) release in rat mesenteric artery. However, the regulatory role of endogenous male sex hormones on noradrenaline (NA) release in rat mesenteric artery is not known. The present study was designed to analyze whether endogenous male sex hormones influence the NA release induced by electrical field stimulation (EFS), as well as the possible modification in NA and neuronal NO release by presynaptic beta-adrenoceptor activation. METHODS For this purpose, mesenteric arteries from control and orchidectomized male Sprague-Dawley rats were used. Basal and EFS-induced neuronal NO and NA release, as well as the contractile effect induced by EFS, was measured. RESULTS Basal and EFS-induced neuronal NO and NA release were similar in arteries from control and orchidectomized rats. The beta-adrenoceptor agonist clenbuterol did not modify EFS-induced neuronal NO and NA release in arteries from control rats. In contrast, in arteries from orchidectomized animals, clenbuterol increased both neuronal NO and NA release; this increase was prevented by incubation with the beta-adrenoceptor antagonist propranolol. However, the contractile response elicited by EFS was not modified by clenbuterol in either group of rats. CONCLUSIONS These results show that orchidectomy does not alter the EFS-induced NA release. What is more, activation of presynaptic beta-adrenoceptors does not modify EFS-induced NA and neuronal NO release in arteries from control rats although it increases the release of both neurotransmitters in arteries from orchidectomized rats. Despite these modifications, the EFS-induced contractile response is preserved in arteries from orchidectomized rats.
Collapse
Affiliation(s)
- J Blanco-Rivero
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
11
|
Blanco-Rivero J, Balfagón G, Ferrer M. Male castration increases neuronal nitric oxide synthase activity in the rat mesenteric artery through protein kinase C activation. J Vasc Res 2005; 42:526-34. [PMID: 16174988 DOI: 10.1159/000088342] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2005] [Accepted: 08/04/2005] [Indexed: 11/19/2022] Open
Abstract
The objective of the present study was to assess the effect of endogenous male sex hormones on the activity of protein kinase C (PKC), as well as the regulatory effect of this kinase on the neuronal nitric oxide (NO) release induced by electrical field stimulation (EFS; 200 mA; 0.3 ms; 1-16 Hz). For this purpose, superior mesenteric arteries from control and orchidectomized male Sprague-Dawley rats were used. PKC activity was greater in arteries from orchidectomized than control rats. Basal and EFS-induced NO release was similar in arteries from both groups despite the lower nNOS expression in arteries from orchidectomized rats. Phorbol 12,13-dibutyrate (PDBu), a PKC activator, EFS-induced NO release was higher in arteries from control compared to orchidectomized rats. Calphostin C, a non-selective PKC inhibitor, or Gö6976, a PKC inhibitor partially selective for conventional isoforms,abolished the EFS-induced NO release in arteries from control animals, while it was decreased in arteries from orchidectomized animals. The PKCzeta pseudosubstrate inhibitor decreased EFS-induced NO release equally in both groups. The NO synthase (NOS) inhibitor Nomega-nitro-L-arginine-methyl ester (L-NAME) enhanced the EFS-elicited contractions in arteries from both groups. Calphostin C increased the contractions elicited by EFS in arteries from control and orchidectomized rats. This increase was further enhanced by calphostin C plus L-NAME only in orchidectomized rats. PDBu reduced EFS-induced contraction in arteries from controls but did not affect it in orchidectomized rats. The further addition of L-NAME increased the responses in both types of arteries. These results show that PKC activity is enhanced in mesenteric arteries from orchidectomized rats, which may be the responsible for the greater nNOS activity in these arteries. Conventional and atypical PKCzeta isoforms positively regulate nNOS activity in arteries from both control and orchidectomized rats, but the contribution of conventional PKC isoforms to enhanced nNOS activity seems to be greater in arteries from orchidectomized rats.
Collapse
Affiliation(s)
- Javier Blanco-Rivero
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | |
Collapse
|
12
|
Martín MDC, Balfagón G, Minoves N, Blanco-Rivero J, Ferrer M. Androgen deprivation increases neuronal nitric oxide metabolism and its vasodilator effect in rat mesenteric arteries. Nitric Oxide 2005; 12:163-76. [PMID: 15875321 DOI: 10.1016/j.niox.2005.02.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study examines the effects of male sex hormones on the vasoconstrictor response to electrical field stimulation (EFS), as well as neuronal NO modulation of this response. For this purpose, denuded superior mesenteric artery from orchidectomized and control male Sprague-Dawley rats was used. EFS induced similar frequency-dependent contractions in segments from both groups. The NO synthase (NOS) inhibitor N(omega)-nitro-L-arginine methyl ester strengthened EFS-elicited contractions more in arteries from orchidectomized than from control male rats. The expression of nNOS was more pronounced in segments from control than from orchidectomized animals. Basal and EFS-induced NO release was similar in segments from both groups. In noradrenaline (NA)-precontracted segments, sodium nitroprusside (SNP) induced a concentration-dependent relaxation, that was greater in segments from orchidectomized than control male rats. 8-Bromo-cGMP induced a similar concentration-dependent relaxation in NA-precontracted segments from either group, and the cGMP levels induced by SNP were also similar in the two groups. Superoxide dismutase (SOD), a superoxide anion scavenger, did not modify the relaxation in segments from control male rats. In contrast, SOD enhanced the relaxation induced by SNP in segments from orchidectomized rats, and the effect was reversed by preincubation with SOD plus catalase. The generation of superoxide anion and of peroxynitrite was greater in segments from orchidectomized than control rats. In NA-precontracted segments from control or orchidectomized rats, exogenous peroxynitrite and H(2)O(2) induced a concentration-dependent relaxation. These results suggest that EFS induces a similar nNOS-derived NO release in segments from orchidectomized and control male rats, despite the decrease in nNOS expression in orchidectomized rats. The NO metabolism is higher in segments from orchidectomized male rats due to the increases in anion superoxide generation and peroxynitrite formation. The vasodilator effects of the peroxynitrite and H(2)O(2)0 generated from the NO metabolism are what enhance the functional role of the nNOS-derived NO release in the orchidectomized rats.
Collapse
Affiliation(s)
- M del Carmen Martín
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| | | | | | | | | |
Collapse
|
13
|
Ferrer M, Salaices M, Sánchez M, Balfagón G. Different effects of acute clenbuterol on vasomotor response in mesenteric arteries from young and old spontaneously hypertensive rats. Eur J Pharmacol 2003; 466:289-99. [PMID: 12694812 DOI: 10.1016/s0014-2999(03)01554-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We analysed the influence of aging on the acute effect of clenbuterol, a beta(2)-adrenoceptor agonist, on the vasoconstrictor response induced by electrical field stimulation in mesenteric arteries from young and old spontaneously hypertensive rats (SHRs). Clenbuterol increased the contraction elicited by electrical field stimulation in arteries from both groups, and this was prevented by propranolol. N(G)-nitro-L-arginine methyl ester (L-NAME) also increased the electrical field stimulation-elicited contractions in arteries from both age groups. However, pretreatment with capsaicin increased the electrical field stimulation-induced contractions in young SHRs, but did not modify it in old SHRs. In segments from young SHRs, the treatment with the calcitonin gene-related peptide (CGRP) receptor antagonist, CGRP-(8-37), induced an increase in the electrical field stimulation-induced vasoconstrictor response that was not modified by the subsequent addition of capsaicin. Addition of clenbuterol to L-NAME-treated segments from both groups further increased the response to electrical field stimulation. In segments from young SHRs, clenbuterol failed to increase the electrical field stimulation-induced response in the capsaicin-treated segments, but the response was increased by the subsequent addition of L-NAME. The addition of L-NAME to the clenbuterol-treated segments from old SHRs did not modify the enhanced electrical field stimulation response. Electrical field stimulation induced a similar tritium release in arteries from young and old SHRs preincubated with [3H]noradrenaline. In arteries from young SHRs, isoproterenol increased this release and the increase was abolished by propranolol. Clenbuterol increased the stimulated tritium overflow and exogenous noradrenaline response only in segments from old SHRs, and both effects were abolished by propranolol. To summarize and conclude, clenbuterol increased the electrical field stimulation-induced contraction in segments from both age groups. In young SHRs, clenbuterol seems to inhibit CGRP release, while in old SHRs, it increases the release of and response to noradrenaline and decreases neuronal nitric oxide (NO) release.
Collapse
Affiliation(s)
- Mercedes Ferrer
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma, C/Arzobispo Morcillo 4, 28029 Madrid, Spain
| | | | | | | |
Collapse
|
14
|
Baines A, Ho P. Glucose stimulates O2 consumption, NOS, and Na/H exchange in diabetic rat proximal tubules. Am J Physiol Renal Physiol 2002; 283:F286-93. [PMID: 12110512 DOI: 10.1152/ajprenal.00330.2001] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Endothelial nitric oxide synthase (NOS) and neuronal NOS protein increased in proximal tubules of acidotic diabetic rats 3-5 wk after streptozotocin injection. NOS activity (citrulline production) was similar in nondiabetic and diabetic tubules incubated with low glucose (5 mM glucose + 20 mM mannitol); but after 30 min with high glucose (25 mM), Ca-sensitive citrulline production had increased 23% in diabetic tubules. Glucose concentration did not influence citrulline production in nondiabetic tubules. High glucose increased carboxy-2-phenyl-4,4,5,5,-tetramethylimidazoline 1-oxyl-3-oxide (cpt10)-scavenged NO sevenfold in a suspension of diabetic tubules but did not alter NO in nondiabetic tubules. Diabetes increased ouabain-sensitive 86Rb uptake (141 +/- 9 vs. 122 +/- 6 nmol x min(-1) x mg(-1)) and oligomycin-sensitive O2 consumption (QO2; 16.0 +/- 1.7 vs. 11.3 +/- 0.7 nmol x min(-1) x mg(-1)). Ethylisopropyl amiloride-inhibitable QO2 (6.5 +/- 0.6 vs. 2.4 +/- 0.3 nmol x min(-1) x mg(-1)) accounted for increased oligomycin-sensitive QO2 in diabetic tubules. N(G)-monomethyl-L-arginine methyl ester (L-NAME) inhibited most of the increase in 86Rb uptake and QO2 in diabetic tubules. L-NAME had little effect on nondiabetic tubules. Inhibition of QO2 by ethylisopropyl amiloride and L-NAME was only 5-8% additive. Uncontrolled diabetes for 3-5 wk increases NOS protein in proximal tubules and makes NOS activity sensitive to glucose concentration. Under these conditions, NO stimulates Na-K-ATPase and QO2 in proximal tubules.
Collapse
Affiliation(s)
- Andrew Baines
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada M5G 1L5.
| | | |
Collapse
|
15
|
Miranda FJ, Alabadí JA, Lloréns S, Ruiz de Apodaca RF, Centeno JM, Alborch E. Experimental diabetes induces hyperreactivity of rabbit renal artery to 5-hydroxytryptamine. Eur J Pharmacol 2002; 439:121-7. [PMID: 11937101 DOI: 10.1016/s0014-2999(02)01438-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The influence of diabetes on the response of isolated rabbit renal arteries to 5-hydroxytryptamine (5-HT) was examined. 5-HT induced a concentration-related contraction that was higher in arteries from diabetic rabbits than in arteries from control rabbits. Endothelium removal did not significantly modify 5-HT contractions in arteries from control rabbits but enhanced the response to 5-HT in arteries from diabetic rabbits. Incubation with N(G)-nitro-L-arginine (L-NA) enhanced contractions to 5-HT in arteries from control and diabetic rabbits. In arteries with endothelium, this L-NA enhancement was lower in diabetic rabbits than in control rabbits. In arteries without endothelium, incubation with L-NA enhanced the maximal contractions to 5-HT in control rabbits but did not in diabetic rabbits. Indomethacin inhibited 5-HT-induced contraction of arteries from control rabbits and enhanced the maximal contraction to 5-HT of arteries from diabetic rabbits. In summary, diabetes enhances contractile response of rabbit renal artery to 5-HT. In control animals, this response is regulated by both endothelial and non-endothelial (neuronal) nitric oxide (NO) and by a vasoconstrictor prostanoid. Diabetes impairs the release of non-endothelial NO and the vasoconstrictor prostanoid.
Collapse
Affiliation(s)
- Francisco J Miranda
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Valencia, Avda. Vicente Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain.
| | | | | | | | | | | |
Collapse
|
16
|
Moreno C, López A, Llinás MT, Rodríguez F, López-Farré A, Nava E, Salazar FJ. Changes in NOS activity and protein expression during acute and prolonged ANG II administration. Am J Physiol Regul Integr Comp Physiol 2002; 282:R31-7. [PMID: 11742820 DOI: 10.1152/ajpregu.2002.282.1.r31] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to assess the effects of acute or prolonged increases of ANG II on nitric oxide synthase (NOS) activities and protein expression in mesenteric resistance vessels, left ventricle, renal cortex, and renal medulla. The response of NOS activities to ANG II is compared with that induced by phenylephrine. ANG II or phenylephrine were infused over either 3 h or 3 days to conscious rats. NOS activity was examined by measuring the rate of conversion of L-[14C]arginine to L-[14C]citrulline. Protein levels of endothelial (e) and neuronal (n) NOS were determined by Western blot analysis. Arterial pressure (AP) increased (P < 0.05) during acute and prolonged ANG II infusion. Ca2+-dependent NOS activity values (pmol of citrulline x min(-1) x g wet wt(-1)) for control rats were 21 +/- 9 in mesenteric arteries, 13 +/- 7 in left ventricle, 14 +/- 8 in renal cortex, and 411 +/- 70 in renal medulla. Acute ANG II infusion increased (P < 0.05) Ca2+-dependent NOS activity in renal cortex and renal medulla (81 +/- 18 and 611 +/- 48, respectively), but no differences were found in mesenteric arteries and left ventricle with respect to control rats. In contrast to the renal changes in NOS activity, acute ANG II infusion did not modify eNOS or nNOS expression in any of the tissues examined. Prolonged ANG II infusion increased (P < 0.05) Ca2+-dependent NOS activity in mesenteric arteries (70 +/- 17), renal cortex (104 +/- 31), and left ventricle (49 +/- 8) and did not elicit changes in renal medulla. After a prolonged ANG II infusion, eNOS and nNOS levels increased in all tissues examined with the exception of eNOS in the mesenteric arteries and nNOS in the left ventricle, which were not altered. Acute and prolonged phenylephrine infusion elevated AP to a similar extent as ANG II but only elicited significant increments of Ca2+-dependent NOS activity in renal cortex. These data indicate that acute and prolonged elevations in ANG II upregulate Ca2+-dependent NOS activity and protein expression in different tissues related to the control of blood pressure. However, these ANG II effects are heterogeneous with respect to the tissue implicated, the time course of the stimulation, and the NOS isoform involved. Phenylephrine only induces a significant elevation of Ca2+-dependent NOS activity in renal cortex.
Collapse
Affiliation(s)
- Carol Moreno
- Department of Physiology, University of Murcia School of Medicine, E-30100 Murcia, Spain
| | | | | | | | | | | | | |
Collapse
|
17
|
Ferrer M, Alonso MJ, Salaices M, Marín J, Balfagón G. Increase in neurogenic nitric oxide metabolism by endothelin-1 in mesenteric arteries from hypertensive rats. J Cardiovasc Pharmacol 2000; 36:541-7. [PMID: 11065212 DOI: 10.1097/00005344-200011000-00001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We investigated, in mesenteric arteries from hypertensive rats (SHRs), the possible changes in neurogenic nitric oxide (NO) release produced by endothelin-1 (ET-1), and the mechanisms involved in this process. The contractile response induced by electrical field stimulation (EFS; 200 mA, 0.3 ms, 1-16 Hz, for 30 s) in deendotheliumized mesenteric segments was abolished by tetrodotoxin and phentolamine. The NO synthase inhibitor N(G)-nitro-L-arginine (L-NAME, 10 microM) increased the contractions caused by EFS. ET-1 enhanced the contraction induced by EFS, which was unaltered by the subsequent addition of L-NAME. The ETA antagonist-receptor BQ-123 (1 microM) inhibited the effect of ET-1 on EFS response, whereas the ETB antagonist-receptor BQ-788 (3 microM) partially blocked it, and the subsequent addition of L-NAME restored the contractile response in both cases. SOD (25 unit/ml) decreased the response to EFS, and the subsequent addition of L-NAME increased this response. ET-1 did not modify the decrease in EFS response induced by SOD, and the addition of L-NAME increased the response. None of these drugs altered the response to exogenous noradrenaline (NA) or basal tone except SOD, which increased the basal tone, an effect blocked by phentolamine (1 microM). In arteries preincubated with [3H]NA, ET-1 did not modify the tritium efflux evoked by EFS, which was diminished by SOD. ET-1 did not alter basal tritium efflux, whereas SOD significantly increased the efflux. These results suggest that EFS of SHR mesenteric arteries releases neurogenic NO, the metabolism of which is increased in the presence of ET-1 by the generation of superoxide anions.
Collapse
Affiliation(s)
- M Ferrer
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma, Madrid, Spain
| | | | | | | | | |
Collapse
|