1
|
Wang X, Zhang Y, Chi K, Ji Y, Zhang K, Li P, Fu Z, Wang X, Cui S, Shen W, Cai G, Chen X, Zhu H, Hong Q. IGFBP2 induces podocyte apoptosis promoted by mitochondrial damage via integrin α5/FAK in diabetic kidney disease. Apoptosis 2024; 29:1109-1125. [PMID: 38796567 DOI: 10.1007/s10495-024-01974-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2024] [Indexed: 05/28/2024]
Abstract
Podocyte apoptosis or loss is the pivotal pathological characteristic of diabetic kidney disease (DKD). Insulin-like growth factor-binding protein 2 (IGFBP2) have a proinflammatory and proapoptotic effect on diseases. Previous studies have shown that serum IGFBP2 level significantly increased in DKD patients, but the precise mechanisms remain unclear. Here, we found that IGFBP2 levels obviously increased under a diabetic state and high glucose stimuli. Deficiency of IGFBP2 attenuated the urine protein, renal pathological injury and glomeruli hypertrophy of DKD mice induced by STZ, and knockdown or deletion of IGFBP2 alleviated podocytes apoptosis induced by high concentration of glucose or in DKD mouse. Furthermore, IGFBP2 facilitated apoptosis, which was characterized by increase in inflammation and oxidative stress, by binding with integrin α5 (ITGA5) of podocytes, and then activating the phosphorylation of focal adhesion kinase (FAK)-mediated mitochondrial injury, including membrane potential decreasing, ROS production increasing. Moreover, ITGA5 knockdown or FAK inhibition attenuated the podocyte apoptosis caused by high glucose or IGFBP2 overexpression. Taken together, these findings unveiled the insight mechanism that IGFBP2 increased podocyte apoptosis by mitochondrial injury via ITGA5/FAK phosphorylation pathway in DKD progression, and provided the potential therapeutic strategies for diabetic kidney disease.
Collapse
Affiliation(s)
- Xiaochen Wang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Yifan Zhang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Kun Chi
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Yuwei Ji
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Keying Zhang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Ping Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Zhangning Fu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Xu Wang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Shaoyuan Cui
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Wanjun Shen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Hanyu Zhu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China.
| | - Quan Hong
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China.
| |
Collapse
|
2
|
The Roles of Insulin-Like Growth Factors in Mesenchymal Stem Cell Niche. Stem Cells Int 2017; 2017:9453108. [PMID: 28298931 PMCID: PMC5337393 DOI: 10.1155/2017/9453108] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 12/22/2016] [Accepted: 01/18/2017] [Indexed: 12/12/2022] Open
Abstract
Many tissues contain adult mesenchymal stem cells (MSCs), which may be used in tissue regeneration therapies. However, the MSC availability in most tissues is limited which demands expansion in vitro following isolation. Like many developing cells, the state of MSCs is affected by the surrounding microenvironment, and mimicking this natural microenvironment that supports multipotent or differentiated state in vivo is essential to understand for the successful use of MSC in regenerative therapies. Many researchers are, therefore, optimizing cell culture conditions in vitro by altering growth factors, extracellular matrices, chemicals, oxygen tension, and surrounding pH to enhance stem cells self-renewal or differentiation. Insulin-like growth factors (IGFs) system has been demonstrated to play an important role in stem cell biology to either promote proliferation and self-renewal or enhance differentiation onset and outcome, depending on the cell culture conditions. In this review, we will describe the importance of IGFs, IGF-1 and IGF-2, in development and in the MSC niche and how they affect the pluripotency or differentiation towards multiple lineages of the three germ layers.
Collapse
|
3
|
Trindade F, Ferreira R, Amado F, Vitorino R. Biofluid proteases profiling in diabetes mellitus. Adv Clin Chem 2015; 69:161-207. [PMID: 25934362 DOI: 10.1016/bs.acc.2014.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The investigation of protease relevance in biologic systems beyond catabolism of proteins and peptides to amino acids has stimulated interest as to their role in the pathogenesis of several disorders including diabetes mellitus (DM). Evaluation of proteases and the assessment of their activity in biofluids are fundamental to elucidate these proteolytic systems in DM and its related complications. In contrast to traditional immunoassay or substrate based approaches that targeted specific proteases and their inhibitors, the field of degradomics has provided a comprehensive approach to study these enzymes. Although the degradome contains over 500 proteases, very few have been associated with DM and its micro- and macrovascular complications. In this paper, we review these proteases and their respective inhibitors with emphasis on DM. It is likely that future research will expand these initial studies and look to develop high throughput automated technologies to identify and characterize biofluid proteases of diagnostic and prognostic value in other pathologies.
Collapse
Affiliation(s)
- Fábio Trindade
- QOPNA, Mass Spectrometry Center, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Rita Ferreira
- QOPNA, Mass Spectrometry Center, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Francisco Amado
- QOPNA, Mass Spectrometry Center, Department of Chemistry, University of Aveiro, Aveiro, Portugal; School of Health Sciences, University of Aveiro, Aveiro, Portugal
| | - Rui Vitorino
- QOPNA, Mass Spectrometry Center, Department of Chemistry, University of Aveiro, Aveiro, Portugal; Institute for Research in Biomedicine, iBiMED, Health Sciences Program, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
4
|
Narayanan RP, Fu B, Heald AH, Siddals KW, Oliver RL, Hudson JE, Payton A, Anderson SG, White A, Ollier WER, Gibson JM. IGFBP2 is a biomarker for predicting longitudinal deterioration in renal function in type 2 diabetes. Endocr Connect 2012; 1:95-102. [PMID: 23781310 PMCID: PMC3681324 DOI: 10.1530/ec-12-0053] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 09/19/2012] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Insulin-like growth factors are implicated in the development of diabetic nephropathy. IGF-binding protein 2 (IGFBP2) and IGF2 are expressed in the kidney, but their associations with diabetic nephropathy are unclear. We therefore tested the hypothesis that circulating levels of IGF2 and IGFBP2 predict longitudinal renal function in individuals with type 2 diabetes. DESIGN AND METHODS IGFBP2 and IGF2 measurements were performed in 436 individuals (263 males) with type 2 diabetes. Linear mixed-effect regression analysis was used to model the relationship between plasma IGFBP2 concentration and longitudinal changes in estimated glomerular filtration rate (eGFR) over an 8-year period. Analyses were also performed for IGF1, IGF2, IGFBP1 and IGFBP3 concentrations as predictors of longitudinal renal outcomes. RESULTS High IGFBP2 concentration at baseline was associated with a decreased eGFR over an 8-year period (β=-0.02, (95% confidence interval -0.03 to -0.01), P<0.001). High IGFBP1, IGFBP2 and IGFBP3 were also associated with low baseline eGFR concentration. CONCLUSION This study demonstrates that IGFBP2 is a predictor of longitudinal deterioration of renal function in type 2 diabetes.
Collapse
Affiliation(s)
- Ram P Narayanan
- Vascular Research GroupThe University of ManchesterManchester, M13 9PTUK
- Correspondence should be addressed to R P Narayanan B-202, Clinical Sciences Building, Salford Royal NHS Foundation Trust, Stott Lane, Salford M6 8HD, UK Email
| | - Bo Fu
- School of Community Based Medicine, The University of ManchesterManchester, M13 9PTUK
| | - Adrian H Heald
- Vascular Research GroupThe University of ManchesterManchester, M13 9PTUK
| | - Kirk W Siddals
- Vascular Research GroupThe University of ManchesterManchester, M13 9PTUK
| | - Robert L Oliver
- Vascular Research GroupThe University of ManchesterManchester, M13 9PTUK
| | - Julie E Hudson
- Vascular Research GroupThe University of ManchesterManchester, M13 9PTUK
| | - Antony Payton
- Centre for Integrated Genomic Medical Research, The University of ManchesterManchester, M13 9PTUK
| | - Simon G Anderson
- Cardiovascular Research GroupThe University of ManchesterManchester, M13 9PTUK
| | - Anne White
- Endocrinology and Diabetes, Faculty of Medical, Human and Life SciencesThe University of ManchesterManchester, M13 9PTUK
| | - William E R Ollier
- Centre for Integrated Genomic Medical Research, The University of ManchesterManchester, M13 9PTUK
- Salford R&D, Salford Royal Hospital NHS Foundation TrustSalford, M6 8HDUK
| | - J Martin Gibson
- Vascular Research GroupThe University of ManchesterManchester, M13 9PTUK
- Department of Endocrinology and DiabetesSalford Royal Hospital NHS Foundation TrustSalford, M6 8HDUK
| |
Collapse
|
5
|
Davis LK, Rodgers BD, Kelley KM. Angiotensin II- and glucose-stimulated extracellular matrix production: mediation by the insulin-like growth factor (IGF) axis in a murine mesangial cell line. Endocrine 2008; 33:32-9. [PMID: 18392786 PMCID: PMC2684556 DOI: 10.1007/s12020-008-9055-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 01/22/2008] [Accepted: 03/06/2008] [Indexed: 02/05/2023]
Abstract
In diabetic nephropathy, glomerular mesangial cells exhibit aberrant anabolic activity that includes excessive production of extracellular matrix (ECM) proteins, leading to crowding of filtration surface areas and possible renal failure. In the present study, a murine mesangial cell line (MES-13 cells) was studied to determine the roles of the renin-angiotensin system (RAS) and the insulin-like growth factor (IGF) axis in the anabolic response to elevated glucose levels. Culture of MES-13 cells in medium containing supra-physiological glucose concentrations (>5.5 mmol/l) resulted in increased production of ECM proteins including laminin, fibronectin, and heparan sulfate proteoglycan with concurrent increases in IGF-binding protein (IGFBP)-2 production. These responses were blocked by the angiotensin receptor antagonists saralasin and losartan, while exogenous angiotensin II (Ang II) treatment directly stimulated increases in ECM and IGFBP-2. In all experiments, IGFBP-2 levels were correlated with anabolic activity implicating IGFBP-2 as a possible mediator in cellular responses to high glucose and Ang II. Such mediation appears to involve IGFBP-2 modulation of IGF-I signaling, since all responses to high glucose or Ang II were blocked by immuno-neutralization of IGF-I. These data suggest alterations in the IGF axis as key mechanisms underlying nephropathic responses of mesangial cells to Ang II and high glucose.
Collapse
Affiliation(s)
- Lori K. Davis
- Endocrinology Laboratory, Department of Biological Sciences, California State University, Long Beach, Long Beach, CA 90840, USA, e-mail:
| | - Buel D. Rodgers
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Kevin M. Kelley
- Endocrinology Laboratory, Department of Biological Sciences, California State University, Long Beach, Long Beach, CA 90840, USA, e-mail:
| |
Collapse
|