1
|
Booth L, West C, Von Hoff D, Kirkwood JM, Dent P. GZ17-6.02 Interacts With [MEK1/2 and B-RAF Inhibitors] to Kill Melanoma Cells. Front Oncol 2021; 11:656453. [PMID: 33898322 PMCID: PMC8061416 DOI: 10.3389/fonc.2021.656453] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/12/2021] [Indexed: 12/14/2022] Open
Abstract
We defined the lethal interaction between the novel therapeutic GZ17-6.02 and the standard of care combination of the MEK1/2 inhibitor trametinib and the B-RAF inhibitor dabrafenib in PDX isolates of cutaneous melanoma expressing a mutant B-RAF V600E protein. GZ17-6.02 interacted with trametinib/dabrafenib in an additive fashion to kill melanoma cells. Regardless of prior vemurafenib resistance, the drugs when combined interacted to prolong ATM S1981/AMPK T172 and eIF2α S51 phosphorylation and prolong the reduced phosphorylation of JAK2 Y1007, STAT3 Y705 and STAT5 Y694. In vemurafenib-resistant cells GZ17-6.02 caused a prolonged reduction in mTORC1 S2448, mTORC2 S2481 and ULK1 S757 phosphorylation; regardless of vemurafenib resistance, GZ17-6.02 caused a prolonged elevation in CD95 and FAS-L expression. Knock down of eIF2α, Beclin1, ATG5, ATM, AMPKα, CD95 or FADD significantly reduced the ability of GZ17-6.02 to kill as a single agent or when combined with the kinase inhibitors. Expression of activated mTOR, activated STAT3, activated MEK1 or activated AKT significantly reduced the ability of GZ17-6.02 to kill as a single agent or when combined with kinase inhibitors; protective effects that were significantly less pronounced in cells treated with trametinib/dabrafenib. Regardless of vemurafenib resistance, the drugs alone or in combination all reduced the expression of PD-L1 and increased the levels of MHCA, which was linked to degradation of multiple HDAC proteins. Our findings support the use of GZ17-6.02 in combination with trametinib/dabrafenib in the treatment of melanomas expressing mutant B-RAF V600E proteins.
Collapse
Affiliation(s)
- Laurence Booth
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, United States
| | - Cameron West
- Genzada Pharmaceuticals, Sterling, KS, United States
| | - Daniel Von Hoff
- Translational Genomics Research Institute (TGEN), Phoenix, AZ, United States
| | - John M Kirkwood
- Melanoma and Skin Cancer Program, Hillman Cancer Research Pavilion Laboratory, University of Pittsburgh Cancer Institute, Pittsburgh, PA, United States
| | - Paul Dent
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
2
|
Booth L, West C, Hoff DV, Dent P. GZ17-6.02 and Doxorubicin Interact to Kill Sarcoma Cells via Autophagy and Death Receptor Signaling. Front Oncol 2020; 10:1331. [PMID: 32983965 PMCID: PMC7492267 DOI: 10.3389/fonc.2020.01331] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/25/2020] [Indexed: 12/14/2022] Open
Abstract
GZ17-6.02 (602) is presently under phase I clinical evaluation (NCT03775525). We defined the mechanisms by which it interacted with a standard of care therapeutic doxorubicin to kill sarcoma cells. Doxorubicin and 602 interacted to rapidly activate ATM and c-MET, inactivate mTOR, AKT, and p70 S6K, enhance the expression of Beclin1 and reduce the levels of K-RAS and N-RAS. This was followed later by the drugs interacting to reduce expression of MCL-1, BCL-XL, and HDAC6. Knock down of ATM prevented the drugs alone or in combination inactivating mTOR or activating ULK1. Knock down of c-MET significantly enhanced [doxorubicin + 602] lethality. Knock down of ATM and to a greater extent ULK1, Beclin1, or ATG5 significantly reduced killing by 602 alone or when combined with doxorubicin. Expression of an activated mTOR mutant suppressed killing, autophagosome formation and prevented autophagic flux. In the absence of Beclin1, knock down of CD95, or FADD, or over-expression of c-FLIP-s or BCL-XL abolished tumor cell killing. We conclude that 602 and doxorubicin interact to increase autophagosome formation and autophagic flux as well as causing elevated death receptor signaling resulting in mitochondrial dysfunction and tumor cell death.
Collapse
Affiliation(s)
- Laurence Booth
- Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, United States
| | - Cameron West
- Genzada Pharmaceuticals, Sterling, KS, United States
| | - Daniel Von Hoff
- Translational Genomics Research Institute (TGEN), Phoenix, AZ, United States
| | - Paul Dent
- Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
3
|
Barreto G, Madureira D, Capani F, Aon-Bertolino L, Saraceno E, Alvarez-Giraldez LD. The role of catechols and free radicals in benzene toxicity: an oxidative DNA damage pathway. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2009; 50:771-80. [PMID: 19449395 DOI: 10.1002/em.20500] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Benzene is a widespread volatile compound and an environmental contaminant. Since it causes important toxic effects in workers exposed to low levels, long-term exposure to this compound has been extensively studied. Leukemia, blood disorders, bone marrow depression, and some types of cancer are directly related to benzene-initiated toxicity. Bioactivation of benzene can lead to the formation of hazardous metabolites such as phenol, hydroquinone, and catechol. Catechol forms semiquinones and reactive quinones that are presumed to play an important role in the generation of reactive oxygen species (ROS). ROS formation can directly induce single and double strand breaks in the DNA, oxidized nucleotides, and hyper-recombination, and consequently produces deleterious genetic changes. In this review, we have addressed the cytotoxic effects of benzene and its main metabolite, catechol, focusing on the oxidative pathway and further DNA damage.
Collapse
|
4
|
Guerrini A, Sacchetti G, Rossi D, Paganetto G, Muzzoli M, Andreotti E, Tognolini M, Maldonado ME, Bruni R. Bioactivities of Piper aduncum L. and Piper obliquum Ruiz & Pavon (Piperaceae) essential oils from Eastern Ecuador. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2009; 27:39-48. [PMID: 21783920 DOI: 10.1016/j.etap.2008.08.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 07/25/2008] [Accepted: 08/08/2008] [Indexed: 05/31/2023]
Abstract
Essential oils from aerial parts of Piper aduncum (Matico) and Piper obliquum (Anis del Oriente) of ecuadorian origin were analyzed by GC-FID, GC-MS, (13)C NMR and their biological and pharmacological activities were assessed. Chemical composition proved to be unusually different from previous reports for safrole-rich P. obliquum (45.8%), while P. aduncum main constituent was dillapiol (45.9%). No genotoxic activity was found in the Ames/Salmonella typhimurium (TA98 and TA100) assay, either with or without S9 activation. Mutagen-protective properties, evaluated using sodium azide, 2-nitrofluorene and 2-aminoanthracene as mutagens/promutagens, was observed against promutagen 2-aminoanthracene, likely in consequence of microsomial deactivation. Antimicrobial assays have been performed on Gram+/Gram- bacteria, dermatophyte and phytopathogenic fungi and best results were provided by P. aduncum against fungal strains with complete inhibition at 500μg/ml. Preliminary analgesic and antithrombotic activities evidenced the absence of the former in hot plate and edema assays and a limited antiplatelet action against three different agonists (ADP, AA and U46619). Both oils have a very limited antioxidant capacity.
Collapse
Affiliation(s)
- Alessandra Guerrini
- Dip. di Biologia ed Evoluzione, Sez. Risorse Agrotecnologiche e Farmaceutiche AgriUnife, Università degli Studi di Ferrara, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Picada JN, Roesler R, Henriques JAP. Genotoxic, neurotoxic and neuroprotective activities of apomorphine and its oxidized derivative 8-oxo-apomorphine. Braz J Med Biol Res 2005; 38:477-86. [PMID: 15962173 DOI: 10.1590/s0100-879x2005000400001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Apomorphine is a dopamine receptor agonist proposed to be a neuroprotective agent in the treatment of patients with Parkinson's disease. Both in vivo and in vitro studies have shown that apomorphine displays both antioxidant and pro-oxidant actions, and might have either neuroprotective or neurotoxic effects on the central nervous system. Some of the neurotoxic effects of apomorphine are mediated by its oxidation derivatives. In the present review, we discuss recent studies from our laboratory in which the molecular, cellular and neurobehavioral effects of apomorphine and its oxidized derivative, 8-oxo-apomorphine-semiquinone (8-OASQ), were evaluated in different experimental models, i.e., in vitro genotoxicity in Salmonella/microsome assay and WP2 Mutoxitest, sensitivity assay in Saccharomyces cerevisiae, neurobehavioral procedures (inhibition avoidance task, open field behavior, and habituation) in rats, stereotyped behavior in mice, and Comet assay and oxidative stress analyses in mouse brain. Our results show that apomorphine and 8-OASQ induce differential mutagenic, neurochemical and neurobehavioral effects. 8-OASQ displays cytotoxic effects and oxidative and frameshift mutagenic activities, while apomorphine shows antimutagenic and antioxidant effects in vitro. 8-OASQ induces a significant increase of DNA damage in mouse brain tissue. Both apomorphine and 8-OASQ impair memory for aversive training in rats, although the two drugs showed a different dose-response pattern. 8-OASQ fails to induce stereotyped behaviors in mice. The implications of these findings are discussed in the light of evidence from studies by other groups. We propose that the neuroprotective and neurotoxic effects of dopamine agonists might be mediated, in part, by their oxidized metabolites.
Collapse
Affiliation(s)
- J N Picada
- Curso de Farmácia, Universidade Luterana do Brasil, Canoas, RS, Brasil
| | | | | |
Collapse
|
6
|
Moreira JCF, Dal-Pizzol F, Bonatto F, da Silva EG, Flores DG, Picada JN, Roesler R, Henriques JAP. Oxidative damage in brains of mice treated with apomorphine and its oxidized derivative. Brain Res 2004; 992:246-51. [PMID: 14625063 DOI: 10.1016/j.brainres.2003.08.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Increasing evidence suggests that some of the neurobiological and neurotoxic actions of apomorphine and other dopamine receptor agonists might be mediated by their oxidation derivatives. The aim of the present study was to evaluate the effects of apomorphine and its oxidation derivative, 8-oxo-apomorphine-semiquinone (8-OASQ), on oxidative stress parameters and antioxidant enzyme activity. Adult male CF-1 mice were treated with a systemic injection of apomorphine (0.4, 4.0 or 40.0 mg/kg) or 8-OASQ (0.4, 4.0 or 40.0 mg/kg). Animals were sacrificed by decapitation 24 h after treatment, and the forebrains were collected for analysis of thiobarbituric acid reactive species, protein carbonyls, the total radical-trapping antioxidant parameter, catalase and superoxide dismutase. These treatments did not induce lipid peroxidation at any dose tested. In contrast, apomorphine induced an increase in protein carbonylation and a decrease in total radical-trapping antioxidant parameter at all doses tested. 8-OASQ induced an increase in protein carbonylation and a decrease in total radical-trapping antioxidant parameter only at the higher dose tested. All apomorphine doses tested induced an increase in catalase, but not superoxide dismutase activities. In contrast, 8-OASQ induced a dose-dependent increase in CAT activity. The results suggest that apomorphine and its oxidation product, 8-OASQ, induce differential effects on CNS oxidative parameters.
Collapse
Affiliation(s)
- José Cláudio F Moreira
- Department of Biochemistry, ICBS, Federal University of Rio Grande do Sul (UFRGS), 90035-003, Porto Alegre, RS, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
|
8
|
Picada JN, Flores DG, Zettler CG, Marroni NP, Roesler R, Henriques JAP. DNA damage in brain cells of mice treated with an oxidized form of apomorphine. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2003; 114:80-5. [PMID: 12782396 DOI: 10.1016/s0169-328x(03)00127-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We investigated whether systemic injection of apomorphine and its oxidation derivative 8-oxo-apomorphine-semiquinone (8-OASQ) could induce DNA damage in mice brain, using the single-cell gel assay. 8-OASQ induced DNA damage in the brains at 1 and 3 h, but not at 24 h after treatment whereas apomorphine induced a slight increase in brain DNA damage frequency at 3 h after treatment, suggesting that both drugs display genotoxic activity in brain tissue.
Collapse
Affiliation(s)
- Jaqueline Nascimento Picada
- GENOTOX-Genotoxicity Laboratory, Center for Biotechnology, and Department of Biophysics, Institute of Biosciences, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, 91501-970, RS, Porto Alegre, Brazil
| | | | | | | | | | | |
Collapse
|
9
|
Picada JN, Schröder N, Izquierdo I, Henriques JAP, Roesler R. Differential neurobehavioral deficits induced by apomorphine and its oxidation product, 8-oxo-apomorphine-semiquinone, in rats. Eur J Pharmacol 2002; 443:105-11. [PMID: 12044799 DOI: 10.1016/s0014-2999(02)01553-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Apomorphine is a potent dopamine receptor agonist, which has been used in the therapy of Parkinson's disease. It has been proposed that apomorphine and other dopamine receptor agonists might induce neurotoxicity mediated by their quinone and semiquinone oxidation derivatives. The aim of the present study was to evaluate the possible neurobehavioral effects of apomorphine and its oxidation derivative, 8-oxo-apomorphine-semiquinone (8-OASQ). Adult female Wistar rats were treated with a systemic injection of apomorphine (0.05 or 0.5 mg/kg) or 8-OASQ (0.05 or 0.5 mg/kg) 20 min before behavioral testing. Apomorphine and 8-OASQ induced differential impairing effects on short- and long-term retention of an inhibitory avoidance task. Apomorphine, but not 8-OASQ, dose-dependently impaired habituation to a novel environment. The memory-impairing effects could not be attributed to reduced nociception or other nonspecific behavioral alterations, since neither apomorphine nor 8-OASQ affected footshock reactivity or behavior during exploration of an open field. The results suggest that oxidation products of dopamine or dopamine receptor agonists might induce cognitive deficits.
Collapse
Affiliation(s)
- Jaqueline N Picada
- GENOTOX-Genotoxicity Laboratory, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), 91501-970, Pôrto Alegre RS, Brazil
| | | | | | | | | |
Collapse
|