1
|
Jevtovic-Todorovic V, Todorovic SM. The Role of Neuroactive Steroids in Analgesia and Anesthesia: An Interesting Comeback? Biomolecules 2023; 13:1654. [PMID: 38002336 PMCID: PMC10669813 DOI: 10.3390/biom13111654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Published evidence over the past few decades suggests that general anesthetics could be neurotoxins especially when administered at the extremes of age. The reported pathology is not only at the morphological level when examined in very young and aged brains, given that, importantly, newly developing evidence suggests a variety of behavioral impairments. Since anesthesia is unavoidable in certain clinical settings, we should consider the development of new anesthetics. A promising and safe solution could be a new family of anesthetics referred to as neuroactive steroids. In this review, we summarize the currently available evidence regarding their anesthetic and analgesic properties.
Collapse
Affiliation(s)
- Vesna Jevtovic-Todorovic
- Department of Anesthesiology, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA;
| | | |
Collapse
|
2
|
Tat QL, Joksimovic SM, Krishnan K, Covey DF, Todorovic SM, Jevtovic-Todorovic V. Preemptive Analgesic Effect of Intrathecal Applications of Neuroactive Steroids in a Rodent Model of Post-Surgical Pain: Evidence for the Role of T-Type Calcium Channels. Cells 2020; 9:cells9122674. [PMID: 33322727 PMCID: PMC7763050 DOI: 10.3390/cells9122674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/30/2020] [Accepted: 12/10/2020] [Indexed: 12/02/2022] Open
Abstract
Preemptive management of post-incisional pain remains challenging. Here, we examined the role of preemptive use of neuroactive steroids with activity on low-voltage activated T-type Ca2+ channels (T-channels) and γ-aminobutyric acid A (GABAA) receptors in the development and maintenance of post-incisional pain. We use neuroactive steroids with distinct effects on GABAA receptors and/or T-channels: Alphaxalone (combined GABAergic agent and T-channel inhibitor), ECN (T-channel inhibitor), CDNC24 (GABAergic agent), and compared them with an established analgesic, morphine (an opioid agonist without known effect on either T-channels or GABAA receptors). Adult female rats sustained the skin and muscle incision on the plantar surface of the right paw. We injected the agents of choice intrathecally either before or after the development of post-incisional pain. The pain development was monitored by studying mechanical hypersensitivity. Alphaxalone and ECN, but not morphine, are effective in alleviating mechanical hyperalgesia when administered preemptively whereas morphine provides dose-dependent pain relief only when administered once the pain had developed. CDNC24 on the other hand did not offer any analgesic benefit. Neuroactive steroids that inhibit T-currents—Alphaxalone and ECN—unlike morphine, are effective preemptive analgesics that may offer a promising therapeutic approach to the treatment of post-incisional pain, especially mechanical hypersensitivity.
Collapse
Affiliation(s)
- Quy L. Tat
- Department of Anesthesiology, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA; (Q.L.T.); (S.M.J.); (S.M.T.)
| | - Srdjan M. Joksimovic
- Department of Anesthesiology, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA; (Q.L.T.); (S.M.J.); (S.M.T.)
| | - Kathiresan Krishnan
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA; (K.K.); (D.F.C.)
| | - Douglas F. Covey
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA; (K.K.); (D.F.C.)
- Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Slobodan M. Todorovic
- Department of Anesthesiology, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA; (Q.L.T.); (S.M.J.); (S.M.T.)
- Neuroscience Graduate Program, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Vesna Jevtovic-Todorovic
- Department of Anesthesiology, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA; (Q.L.T.); (S.M.J.); (S.M.T.)
- Correspondence: ; Tel.: +1-720-848-6723
| |
Collapse
|
3
|
Schneider T, Dibué M, Hescheler J. How "Pharmacoresistant" is Cav2.3, the Major Component of Voltage-Gated R-type Ca2+ Channels? Pharmaceuticals (Basel) 2013; 6:759-76. [PMID: 24276260 PMCID: PMC3816731 DOI: 10.3390/ph6060759] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/26/2013] [Accepted: 05/06/2013] [Indexed: 12/04/2022] Open
Abstract
Membrane-bound voltage-gated Ca2+ channels (VGCCs) are targets for specific signaling complexes, which regulate important processes like gene expression, neurotransmitter release and neuronal excitability. It is becoming increasingly evident that the so called “resistant” (R-type) VGCC Cav2.3 is critical in several physiologic and pathophysiologic processes in the central nervous system, vascular system and in endocrine systems. However its eponymous attribute of pharmacologic inertness initially made in depth investigation of the channel difficult. Although the identification of SNX-482 as a fairly specific inhibitor of Cav2.3 in the nanomolar range has enabled insights into the channels properties, availability of other pharmacologic modulators of Cav2.3 with different chemical, physical and biological properties are of great importance for future investigations. Therefore the literature was screened systematically for molecules that modulate Cav2.3 VGCCs.
Collapse
Affiliation(s)
- Toni Schneider
- Institute of Neurophysiology, University of Cologne, Robert-Koch-Str. 39, Cologne D-50931, Germany; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (T.S.); (M.D.); Tel.: +49-221-478-69446 (T.S.); Fax: +49-221-478-6965 (T.S.)
| | - Maxine Dibué
- Institute of Neurophysiology, University of Cologne, Robert-Koch-Str. 39, Cologne D-50931, Germany; E-Mail:
- Department for Neurosurgery, Medical Faculty, Heinrich Heine University, Moorenstraße 5, Duesseldorf D-40225, Germany & Center of Molecular Medicine, Cologne D-50931, Germany
- Authors to whom correspondence should be addressed; E-Mails: (T.S.); (M.D.); Tel.: +49-221-478-69446 (T.S.); Fax: +49-221-478-6965 (T.S.)
| | - Jürgen Hescheler
- Institute of Neurophysiology, University of Cologne, Robert-Koch-Str. 39, Cologne D-50931, Germany; E-Mail:
| |
Collapse
|
4
|
Shu HJ, Bracamontes J, Taylor A, Wu K, Eaton MM, Akk G, Manion B, Evers AS, Krishnan K, Covey DF, Zorumski CF, Steinbach JH, Mennerick S. Characteristics of concatemeric GABA(A) receptors containing α4/δ subunits expressed in Xenopus oocytes. Br J Pharmacol 2012; 165:2228-43. [PMID: 21950777 DOI: 10.1111/j.1476-5381.2011.01690.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND AND PURPOSE GABA(A) receptors mediate both synaptic and extrasynaptic actions of GABA. In several neuronal populations, α4 and δ subunits are key components of extrasynaptic GABA(A) receptors that strongly influence neuronal excitability and could mediate the effects of neuroactive agents including neurosteroids and ethanol. However, these receptors can be difficult to study in native cells and recombinant δ subunits can be difficult to express in heterologous systems. EXPERIMENTAL APPROACH We engineered concatemeric (fused) subunits to ensure δ and α4 subunit expression. We tested the pharmacology of the concatemeric receptors, compared with a common synaptic-like receptor subunit combination (α1 +β2 +γ2L), and with free-subunit α4/δ receptors, expressed in Xenopus oocytes. KEY RESULTS δ-β2 -α4 +β2-α4 cRNA co-injected into Xenopus oocytes resulted in GABA-gated currents with the expected pharmacological properties of α4/δ-containing receptors. Criteria included sensitivity to agonists of different efficacy, sensitivity to the allosteric activator pentobarbital, and modulation of agonist responses by DS2 (4-chloro-N-[2-(2-thienyl)imidazo[1,2-a]pyridine-3-yl benzamide; a δ-selective positive modulator), furosemide, and Zn(2+) . We used the concatemers to examine neurosteroid sensitivity of extrasynaptic-like, δ-containing receptors. We found no qualitative differences between extrasynaptic-like receptors and synaptic-like receptors in the actions of either negative or positive neurosteroid modulators of receptor function. Quantitative differences were explained by the partial agonist effects of the natural agonist GABA and by a mildly increased sensitivity to low steroid concentrations. CONCLUSIONS AND IMPLICATIONS The neurosteroid structure-activity profile for α4/δ-containing extrasynaptic receptors is unlikely to differ from that of synaptic-like receptors such as α1/β2/γ2-containing receptors.
Collapse
Affiliation(s)
- Hong-Jin Shu
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Handforth A, Homanics GE, Covey DF, Krishnan K, Lee JY, Sakimura K, Martin FC, Quesada A. T-type calcium channel antagonists suppress tremor in two mouse models of essential tremor. Neuropharmacology 2010; 59:380-7. [PMID: 20547167 DOI: 10.1016/j.neuropharm.2010.05.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 05/14/2010] [Accepted: 05/24/2010] [Indexed: 11/17/2022]
Abstract
Essential tremor is a common disorder that lacks molecular targets for therapeutic development. T-type calcium channel activation has been postulated to underlie rhythmicity in the olivo-cerebellar system that is implicated in essential tremor. We therefore tested whether compounds that antagonize T-type calcium channel currents suppress tremor in two mouse models that possess an essential tremor-like pharmacological response profile. Tremor was measured using digitized spectral motion power analysis with harmaline-induced tremor and in the GABA(A) receptor α1 subunit-null model. Mice were given ethosuximide, zonisamide, the neuroactive steroid (3β,5α,17β)-17-hydroxyestrane-3-carbonitrile (ECN), the 3,4-dihydroquinazoline derivative KYS05064, the mibefradil derivative NNC 55-0396, or vehicle. In non-sedating doses, each compound reduced harmaline-induced tremor by at least 50% (range of maximal suppression: 53-81%), and in the GABA(A) α1-null model by at least 70% (range 70-93%). Because the T-type calcium channel Cav3.1 is the dominant subtype expressed in the inferior olive, we assessed the tremor response of Cav3.1-deficient mice to harmaline, and found that null and heterozygote mice exhibit as much tremor as wild-type mice. In addition, ECN and NNC 55-0396 suppressed harmaline tremor as well in Cav3.1-null mice as in wild-type mice. The finding that five T-type calcium antagonists suppress tremor in two animal tremor models suggests that T-type calcium channels may be an appropriate target for essential tremor therapy development. It is uncertain whether medications developed to block only the Cav3.1 subtype would exhibit efficacy.
Collapse
Affiliation(s)
- Adrian Handforth
- Neurology Service (W127), Veterans Affairs Greater Los Angeles Healthcare System, 11301 Wilshire Blvd, Los Angeles, CA 90073, USA.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Zheng P. Neuroactive steroid regulation of neurotransmitter release in the CNS: Action, mechanism and possible significance. Prog Neurobiol 2009; 89:134-52. [DOI: 10.1016/j.pneurobio.2009.07.001] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 03/11/2009] [Accepted: 07/02/2009] [Indexed: 12/31/2022]
|
7
|
Abstract
Membrane-initiated cellular responses to steroids include modulation of ion channel activities via signal transduction pathways. However, the molecular mechanisms involved in nongenomic actions remain only partially understood. Our research has focused on the rapid effects of 1alpha,25(OH)(2) Vitamin D(3) [1,25D] on L-type Ca(2+) [L-Ca] and DIDS-sensitive Cl(-) channels in osteoblasts. Physiological nanomolar concentrations of hormonally active 1,25D promote rapid (1-5 min) potentiation of outward Cl(-) currents in osteosarcoma ROS 17/2.8 cells and mouse primary osteoblasts. In addition, 1,25D increases inward barium currents through L-Ca channels at low depolarizing potentials within seconds in a fashion similar to the 1,4-dihydropyridine [DHP] agonist Bay K8644. We found that second messenger cAMP is involved in 1,25D potentiation of Cl(-) and Ca(2+) channels. Nongenomic 1,25D effects on ion channel activities in osteoblasts appear to involve different mechanisms that include a possible direct interaction with the L-Ca channel molecule, on one hand, and signaling through the cAMP pathway, on the other. Rapid 1,25D actions on Cl(-) and Ca(2+) currents seem to couple to secretory activities in osteoblasts, thus contributing to bone mass formation.
Collapse
Affiliation(s)
- Laura P Zanello
- Department of Biochemistry, University of California, Riverside, 92521, USA.
| | | |
Collapse
|
8
|
McNaughton NC, Green PJ, Randall AD. Inhibition of human alpha1E subunit-mediated ca2+ channels by the antipsychotic agent chlorpromazine. ACTA PHYSIOLOGICA SCANDINAVICA 2001; 173:401-8. [PMID: 11903132 DOI: 10.1046/j.1365-201x.2001.00914.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chlorpromazine is a neuroleptic antipsychotic agent with a long history of clinical use. Its primary mode of action is thought to be through modulation of monoaminergic inter-neuronal communication; however, its side-effect profile indicates substantial activities in other systems. Recent work has begun to uncover actions of this compound on ion channels. In this light we have investigated the actions of chlorpromazine on the recombinant alpha1E subunit-encoded voltage-sensitive Ca2+ channel (VSCC) that is believed to encode drug-resistant R-type currents found in neurones and other cells. Chlorpromazine produced a dose-dependent antagonism of these channels that was reversed on drug removal. The mean IC50 was close to 10 microM. At this concentration, the level of antagonism observed was dependent on the membrane potential, with greater inhibition being observed at more negative test potentials. Furthermore, chlorpromazine induced substantial changes in the steady-state inactivation properties of alpha1Ebeta3-mediated currents, although it was not seen to elicit a corresponding change in inactivation kinetics. These results are discussed with regard to the possible clinical mechanisms of chlorpromazine actions.
Collapse
Affiliation(s)
- N C McNaughton
- Neuroscience Research, GlaxoSmithKline Pharmaceuticals, Harlow, UK
| | | | | |
Collapse
|
9
|
McNaughton NC, Warre R, Cooper DG, Nasir S, Ranson JL, Randall A. Potent inhibition of a recombinant low voltage-activated Ca(2+) channel by SB-209712. Eur J Pharmacol 2000; 407:53-60. [PMID: 11050290 DOI: 10.1016/s0014-2999(00)00740-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
T-type Ca(2+) currents were recorded in 2 mM Ca(2+) from HEK293 cells stably expressing the low voltage-activated Ca(2+) channel sub-unit alpha(1I). These currents were inhibited by the known Ca(2+) channel antagonist mibefradil with an IC(50) close to 1 microM. SB-209712 (1,6,bis¿1-[4-(3-phenylpropyl)piperidinyl]¿hexane), a compound originally developed as a high voltage-activated Ca(2+) channel blocker, proved to be a more potent T-type channel antagonist, exhibiting an IC(50) in the region of 500 nM. The antagonism produced by SB-209712 was reversed following drug removal and the observed antagonism exhibited little or no voltage-dependence with respect to either holding or test potential. These data indicate that SB-209712 is amongst the most potent known non-peptide T-type channel antagonists and thus may have some use in understanding the role of these channels in cellular function.
Collapse
Affiliation(s)
- N C McNaughton
- Department of Neuroscience Research, SmithKline Beecham Pharmaceuticals, NFSP (North) Third Avenue, Essex, CM19 5AW, Harlow, UK
| | | | | | | | | | | |
Collapse
|