1
|
Zhang F, Yan Y, Zhang J, Li L, Wang YW, Xia CY, Lian WW, Peng Y, Zheng J, He J, Xu JK, Zhang WK. Phytochemistry, synthesis, analytical methods, pharmacological activity, and pharmacokinetics of loganin: A comprehensive review. Phytother Res 2022; 36:2272-2299. [PMID: 35583806 DOI: 10.1002/ptr.7347] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/13/2021] [Accepted: 11/21/2021] [Indexed: 10/18/2022]
Abstract
Iridoid glycosides (IGs) are found in many medicinal and edible plants, such as Gardenia jasminoides, Cistanche tubulosa, Eucommia ulmoides, Rehmanniae Radix, Lonicera japonica, and Cornus officinalis. Loganin, an IG, is one of the main active ingredient of Cornus officinalis Sieb. et Zucc., which approved as a medicinal and edible plant in China. Loganin has been widely concerned due to its extensive pharmacological effects, including anti-diabetic, antiinflammatory, neuroprotective, and anti-tumor activities, etc. Studies have shown that these underlying mechanisms include anti-oxidation, antiinflammation and anti-apoptosis by regulating a variety of signaling pathways, such as STAT3/NF-κB, JAK/STAT3, TLR4/NF-κB, PI3K/Akt, MCP-1/CCR2, and RAGE/Nox4/p65 NF-κB signaling pathways. In order to better understand the research status of loganin and promote its application in human health, this paper systematically summarized the phytochemistry, analysis methods, synthesis, pharmacological properties and related mechanisms, and pharmacokinetics based on the research in the past decades.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, People's Republic of China.,Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Yu Yan
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Jia Zhang
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Li Li
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, People's Republic of China
| | - Yu-Wei Wang
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Cong-Yuan Xia
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Wen-Wen Lian
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Ying Peng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Jiang Zheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, People's Republic of China.,State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, People's Republic of China
| | - Jun He
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Jie-Kun Xu
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Wei-Ku Zhang
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, People's Republic of China
| |
Collapse
|
2
|
Muangrom W, Bacher M, Berger A, Valant-Vetschera K, Vajrodaya S, Schinnerl J. A novel tryptophan-derived alkaloid and other constituents from Guettarda speciosa (Rubiaceae: Cinchonoideae–Guettardeae). BIOCHEM SYST ECOL 2021. [DOI: 10.1016/j.bse.2021.104239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
3
|
Anti-Amyloidogenic and Cyclooxygenase Inhibitory Activity of Guettarda speciosa. Molecules 2019; 24:molecules24224112. [PMID: 31739473 PMCID: PMC6891569 DOI: 10.3390/molecules24224112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/05/2019] [Accepted: 11/11/2019] [Indexed: 02/07/2023] Open
Abstract
Guettarda speciosa is known in traditional folk medicine for treating cough, cold, sore throat, fever, wounds, epilepsy, and headaches. To discover the scientific pharmacological potential of G. speciosa, we explore its anti-inflammatory, cytotoxicity, and inhibition of amyloid-beta (Aβ) aggregation effects. Cyclooxygenase assay of the G. speciosa CHCl3 (GSC) extract and G. speciosa MeOH (GSM) extract are more selective to COX-1 inhibition with a 50% inhibitory concentration (IC50) of 3.56 μg/mL for the GSC extract and 4.98 μg/mL for the GSM extract. Neuroblastoma SH-SY5Y inhibition and thioflavin T assay amyloid-beta (Aβ) aggregate inhibition of the GSM and GSC extracts showed their potential therapeutic effects against Alzheimer's disease. The putative compounds from the LC-MS analysis could be responsible for the observed activities. The results suggest that G. speciosa possesses anti-inflammatory and anti-neurodegenerative properties and a promising lead as a source of pharmacologically active compounds.
Collapse
|
4
|
Cai YS, Wang C, Tian C, Sun WT, Chen L, Xiao D, Zhou SY, Qiu G, Yu J, Zhu K, Yang SP. Octahydro-Protoberberine and Protoemetine-Type Alkaloids from the Stems of Alangium salviifolium and Their Cytotoxicity. JOURNAL OF NATURAL PRODUCTS 2019; 82:2645-2652. [PMID: 31513408 DOI: 10.1021/acs.jnatprod.9b00670] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Two octahydro-protoberberine alkaloids, alangiifoliumines A (1) and B (2), and two new protoemetine derivatives, alangiifoliumines C (3) and D (4), together with 11 known compounds, have been isolated from the stems of Alangium salviifolium. While the structures of these compounds were elucidated by spectroscopic methods, the absolute configurations of the new alkaloids were determined by conformational analysis and time-dependent density functional theory-electronic circular dichroism spectra calculations on selected stereoisomers. Compounds 1 and 2 represent the first 5,8,8a,9,12,12a,13,13a-octahydro-protoberberine derivatives, in which the aromatic ring D was reduced to cyclohexene. All the compounds isolated were evaluated for their cytotoxic activity against three human cancer cell lines: A-549, HeLa, and SKOV-3. Alkaloids 1, 3, and 6-14 exhibited inhibitory effects against all three human cancer cell lines, with half-maximal inhibitory concentration (IC50) values in the range of 3 nM to 9.4 μM.
Collapse
Affiliation(s)
- You-Sheng Cai
- Institute of TCM and Natural Products, School of Pharmaceutical Sciences , Wuhan University , Wuhan 430071 , People's Republic of China
| | - Cong Wang
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for Food Safety and Pharmaceutical Analytical Chemistry, School of Chemistry and Chemical Engineering , Guangxi University for Nationalities , Nanning 530006 , People's Republic of China
| | - Congkui Tian
- Wuling Mountain Institute of Natural Medicine , Hubei Minzu University, Key Laboratory of Biological Resources Protection and Utilization of Hubei Province , Enshi 445000 , People's Republic of China
| | - Wen-Ting Sun
- Institute of TCM and Natural Products, School of Pharmaceutical Sciences , Wuhan University , Wuhan 430071 , People's Republic of China
| | - Ling Chen
- Institute of TCM and Natural Products, School of Pharmaceutical Sciences , Wuhan University , Wuhan 430071 , People's Republic of China
| | - Di Xiao
- Institute of TCM and Natural Products, School of Pharmaceutical Sciences , Wuhan University , Wuhan 430071 , People's Republic of China
| | - Si-Yuan Zhou
- Institute of TCM and Natural Products, School of Pharmaceutical Sciences , Wuhan University , Wuhan 430071 , People's Republic of China
| | - Guofu Qiu
- Institute of TCM and Natural Products, School of Pharmaceutical Sciences , Wuhan University , Wuhan 430071 , People's Republic of China
| | - Jianqing Yu
- Institute of TCM and Natural Products, School of Pharmaceutical Sciences , Wuhan University , Wuhan 430071 , People's Republic of China
| | - Kongkai Zhu
- School of Biological Science and Technology , University of Jinan , Jinan 250022 , People's Republic of China
| | - Sheng-Ping Yang
- Institute of TCM and Natural Products, School of Pharmaceutical Sciences , Wuhan University , Wuhan 430071 , People's Republic of China
| |
Collapse
|