1
|
Degradation Kinetics and Mechanism of a β-Lactam Antibiotic Intermediate, 6-Aminopenicillanic Acid, in a New Integrated Production Process. J Pharm Sci 2016; 105:139-46. [DOI: 10.1016/j.xphs.2015.11.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/03/2015] [Accepted: 11/10/2015] [Indexed: 11/20/2022]
|
2
|
In vivo kinetic analysis of the penicillin biosynthesis pathway using PAA stimulus response experiments. Metab Eng 2015; 32:155-173. [DOI: 10.1016/j.ymben.2015.09.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 09/22/2015] [Accepted: 09/26/2015] [Indexed: 11/18/2022]
|
3
|
Comparison of the secondary metabolites in Penicillium chrysogenum between pilot and industrial penicillin G fermentations. Appl Microbiol Biotechnol 2010; 89:1193-202. [DOI: 10.1007/s00253-010-2910-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 09/05/2010] [Accepted: 09/14/2010] [Indexed: 11/25/2022]
|
4
|
Merrouche R, Bouras N, Coppel Y, Mathieu F, Monje MC, Sabaou N, Lebrihi A. Dithiolopyrrolone antibiotic formation induced by adding valeric acid to the culture broth of Saccharothrix algeriensis. JOURNAL OF NATURAL PRODUCTS 2010; 73:1164-1166. [PMID: 20507156 DOI: 10.1021/np900808u] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Three new antibiotics were isolated from the fermentation broth of Saccharothrix algeriensis NRRL B-24137 and characterized as the dithiolopyrrolone derivatives valerylpyrrothine (1), isovalerylpyrrothine (2), and formylpyrrothine (3) as well as the known antibiotic aureothricin. The production of the dithiolopyrrolone derivatives was induced by adding valeric acid to the culture medium. The compounds exhibited moderate antimicrobial activity in vitro.
Collapse
Affiliation(s)
- Rabiâa Merrouche
- Laboratoire de Recherche sur les Produits Bioactifs et la Valorisation de la Biomasse (LPBVB), Ecole Normale Superieure de Kouba, B.P. 92, 16050 Kouba, Alger, Algeria
| | | | | | | | | | | | | |
Collapse
|
5
|
Roa Engel CA, Straathof AJJ, van Gulik WM, van de Sandt EJAX, van der Does T, van der Wielen LAM. Conceptual Process Design of Integrated Fermentation, Deacylation, and Crystallization in the Production of β-Lactam Antibiotics. Ind Eng Chem Res 2009. [DOI: 10.1021/ie801335r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Carol A. Roa Engel
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands, and DSM Biotechnology Center, P. O. Box 1, 2600 MA Delft, The Netherlands
| | - Adrie J. J. Straathof
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands, and DSM Biotechnology Center, P. O. Box 1, 2600 MA Delft, The Netherlands
| | - Walter M. van Gulik
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands, and DSM Biotechnology Center, P. O. Box 1, 2600 MA Delft, The Netherlands
| | - Emile J. A. X. van de Sandt
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands, and DSM Biotechnology Center, P. O. Box 1, 2600 MA Delft, The Netherlands
| | - Thom van der Does
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands, and DSM Biotechnology Center, P. O. Box 1, 2600 MA Delft, The Netherlands
| | - Luuk A. M. van der Wielen
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands, and DSM Biotechnology Center, P. O. Box 1, 2600 MA Delft, The Netherlands
| |
Collapse
|
6
|
|
7
|
Seifar RM, Zhao Z, van Dam J, van Winden W, van Gulik W, Heijnen JJ. Quantitative analysis of metabolites in complex biological samples using ion-pair reversed-phase liquid chromatography-isotope dilution tandem mass spectrometry. J Chromatogr A 2008; 1187:103-10. [PMID: 18295225 DOI: 10.1016/j.chroma.2008.02.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 01/25/2008] [Accepted: 02/05/2008] [Indexed: 10/22/2022]
Abstract
A rapid, sensitive and selective ion-pair reversed-phase liquid chromatography-electrospray ionization isotope dilution tandem mass spectrometry (IP-LC-ESI-ID-MS/MS) was developed for quantitative analysis of free intracellular metabolites in cell cultures. As an application a group of compounds involved in penicillin biosynthesis pathway of Penicillium chrysogenum cells, such as penicillin G (PenG), 6-aminopenicillanic acid (6-APA), benzylpenicilloic acid (PIO), ortho-hydroxyphenyl acetic acid (o-OH-PAA), phenylacetic acid (PAA), 6-oxopipeidine-2-carboxylic acid (OPC), 8-hydroxypenicillic acid (8-HPA), L-alpha-(delta-aminoadipyl)-L-alpha-cystenyl-D-alpha-valine (ACV) and isopenicillin N (IPN) were chosen. (13)C-labeled analogs of the metabolites were added to the sample solutions as internal standards (I.S.). Sample mixtures were analyzed without any sample pretreatment. No extraction recovery check was needed because I.S. was added to the cell samples before extraction process. The method showed excellent precision (relative standard deviation (RSD)<or=11%, except for PIO and 8-HPA) in present of interferences from sample matrix. Limits of quantification (LOQs) for all metabolites were below 1 microM level.
Collapse
Affiliation(s)
- Reza M Seifar
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, 67 Julianalaan, 2628 BC Delft, The Netherlands.
| | | | | | | | | | | |
Collapse
|
8
|
Chuang GS, Chiou MS, Ho PY, Li HY. Computational Multiple Steady States of the Penicillin G Acylase-Catalyzed Hydrolysis in an Isothermal CFSTR. Eng Life Sci 2005. [DOI: 10.1002/elsc.200520096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
9
|
Robin J, Bonneau S, Schipper D, Noorman H, Nielsen J. Influence of the adipate and dissolved oxygen concentrations on the beta-lactam production during continuous cultivations of a Penicillium chrysogenum strain expressing the expandase gene from Streptomyces clavuligerus. Metab Eng 2003; 5:42-8. [PMID: 12749843 DOI: 10.1016/s1096-7176(03)00006-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The influence of adipate concentration and dissolved oxygen on production of adipoyl-7-aminodeacetoxycephalosporanic acid (ad-7-ADCA) by a recombinant strain of Penicillium chrysogenum expressing the expandase gene from Streptomyces clavuligerus was studied in glucose-limited continuous cultures. Operating conditions were maintained constant but the adipate and dissolved oxygen concentrations (DOC) were varied separately in a range from 1 to 37.5gl(-1) and from 2% to 125% air saturation (%AS), respectively. The total beta-lactams specific productivity, r(ptotal), was not significantly changed for adipate concentrations from 5 to 25gl(-1), but the flux towards an unknown by-product decreased as the adipate concentration increased. Investigations at different DOC showed that r(ptotal) was stable around 18 micro molgDW(-1)h(-1) for DOC being in the range from 15 to 125%AS. When DOC was decreased from 15 to 7%AS, r(ptotal) increased to 25 micro molgDW(-1)h(-1), mainly due to a two-fold increase in the adipoyl-6-aminopenicillanic acid (ad-6-APA) specific productivity.
Collapse
Affiliation(s)
- J Robin
- Center for Process Biotechnology, Technical University of Denmark, BioCentrum-DTU, Building 223, Room 208, DK-2800, Lyngby, Denmark
| | | | | | | | | |
Collapse
|
10
|
Abstract
Metabolic engineering has become a rational alternative to classical strain improvement in optimisation of beta-lactam production. In metabolic engineering directed genetic modification are introduced to improve the cellular properties of the production strains. This has resulted in substantial increases in the existing beta-lactam production processes. Furthermore, pathway extension, by heterologous expression of novel genes in well-characterised strains, has led to introduction of new fermentation processes that replace environmentally damaging chemical methods. This minireview discusses the recent developments in metabolic engineering and the applications of this approach for improving beta-lactam production.
Collapse
Affiliation(s)
- Jette Thykaer
- Center for Process Biotechnology, BioCentrum, Technical University of Denmark, Building 223, DK-2800, Lyngby, Denmark
| | | |
Collapse
|
11
|
High exogenous concentrations of phenoxyacetic acid are crucial for a high penicillin V productivity in Penicillium chrysogenum. Microbiology (Reading) 1998; 144:2001-2006. [DOI: 10.1099/00221287-144-7-2001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A high-penicillin-yielding strain of Penicillium chrysogenum was grown in continuous culture on a chemically defined medium with glucose as the growth-limiting component. The cultivations were operated at a constant dilution rate of 0.05 h-1 and the feed concentration of the penicillin V sidechain precursor phenoxyacetic acid was varied between 0 and 6.5 g l-1. Subsequent formation of penicillin V and by-products related to the penicillin biosynthetic pathway was monitored at steady state. It was established that the concentration of phenoxyacetic acid in the growth medium had to be kept high to obtain a high productivity of penicillin V. The specific production rate of penicillin V as a function of the phenoxyacetic acid concentration followed Michaelis--Menten-type kinetics, from which an overall apparent Km value of 42 mM for the incorporation of intracellular phenoxyacetic acid into penicillin V could be obtained. High phenoxyacetic acid concentrations tended to lower the formation of the by-products 6-aminopenicillanic acid and 8-hydroxypenillic acid. Furthermore the undesirable loss of the pathway intermediate isopenicillin N into the extracellular medium was lowered, whereas the opposite effect was observed for the pathway intermediate δ-(L-α-aminoadipyl)-L-cysteinyl-D-valine and the by-product 6-oxo-piperidine-2-carboxylic acid, the δ-lactam form of α-aminoadipic acid.
Collapse
|