1
|
Devarasu N, Sudha GF. Dual-frequency bioelectrical phase angle to estimate the platelet count for the prognosis of dengue fever in Indian children. BIOMED ENG-BIOMED TE 2020; 65:417-428. [DOI: 10.1515/bmt-2018-0203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 08/30/2019] [Indexed: 11/15/2022]
Abstract
Abstract
A noninvasive investigation to ascertain the platelet (PLT) count was conducted on 44 hospitalized dengue hemorrhagic fever (DHF) subjects, male and female aged between 3 and 14 years using bioelectrical phase angle (BPhA). Among the 44 subjects, 30 subjects were confirmed to be non-structural protein-1 (NS1) positive at the time of admission, whose blood investigations such as hematocrit (HCT) level, PLT count, aspartate aminotransferase (AST) level and alanine aminotransferase (ALT) level were performed for the classification of risk as low-risk (LR) and high-risk (HR) DHF. It was found that the BPhA of the body reflects a linear correlation with the PLT count. To provide a better and more accurate estimate of PLT, a dual-frequency method is proposed to calculate the phase angle of the total body. The resistance at 5 kHz and reactance at 100 kHz were used to estimate the phase angle of the total body. The statistical analysis identified that the PLT count estimated using the proposed dual-frequency method shows a good correlation with the blood investigation results. In addition, statistical analysis of the proposed method on other fever subjects indicated a significant difference with DHF.
Collapse
Affiliation(s)
- Neelamegam Devarasu
- Department of Electronics and Communication Engineering , Pondicherry Engineering College , Puducherry 605014 , India
| | - Gnanou Florence Sudha
- Department of Electronics and Communication Engineering , Pondicherry Engineering College , Puducherry 605014 , India
| |
Collapse
|
2
|
Dutt AG, Verling M, Karlen W. Wearable bioimpedance for continuous and context-aware clinical monitoring. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:3985-3988. [PMID: 33018873 DOI: 10.1109/embc44109.2020.9175298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Bioimpedance monitoring provides a non-invasive, safe and affordable opportunity to monitor total body water for a wide range of clinical applications. However, the measurement is susceptible to variations in posture and movement. Existing devices do not account for these variations and are therefore unsuitable to perform continuous measurements to depict trend changes. We developed a wearable bioimpedance monitoring system with embedded real-time posture detection using a distributed accelerometer network. We tested the device on 14 healthy volunteers following a standardized protocol of posture change and evaluated the agreement with a commercial device. The impedance showed a high correlation (r>0.98), a bias of -4.5 Ω, and limits of agreement of -30 and 21 Ω. Context-awareness was achieved with an accuracy of 94.6% by classifying data from two accelerometers placed at the upper and lower leg. The calculated current consumption of the system was as low as 10 mA during continuous measurement operation, suggesting that the system can be used for continuous measurements over multiple days without charging. The proposed motion-aware design will enable the measurement of relevant bioimpedance parameters over long periods and support informed clinical decision making.
Collapse
|
3
|
Devarasu N, Sudha GF. Dual frequency bioelectrical impedance analysis to estimate hematocrit for prognosis of dengue fever in Indian children. ACTA ACUST UNITED AC 2019; 64:459-469. [DOI: 10.1515/bmt-2017-0174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 08/21/2018] [Indexed: 11/15/2022]
Abstract
Abstract
A noninvasive investigation to ascertain the hematocrit (HCT) or packed cell volume (PCV) was conducted on 44 hospitalized dengue hemorrhagic fever (DHF) subjects, male and female aged between 3 and 14 years using bioelectrical impedance analysis (BIA). Among the 44 subjects, 30 subjects were confirmed to be non-structural protein-1 (NS1) positive at the time of admission, whose blood investigations such as HCT level, platelet (PLT) count, aspartate aminotransferase (AST) level and alanine aminotransferase (ALT) level were taken for the classification of risk as low risk (LR) and high risk (HR) DHF. Electrical conductivity of blood reflects a linear correlation with HCT. To provide a better and more accurate estimate of HCT, a dual frequency method is proposed to calculate the conductivities of plasma and blood cells. The resistance at 100 kHz is used to estimate the conductivity of blood cells and the impedance at 5 kHz to estimate the conductivity of plasma. Statistical analysis reveals that the HCT estimated using the proposed dual frequency method shows a significant difference with a single frequency (50 kHz) estimate of HCT and also shows a good correlation with the blood investigation results. In addition, statistical analysis of the proposed method on different fever subjects indicates a significant difference with DHF.
Collapse
|
4
|
Devarasu N, Sudha GF. Investigation on the influence of the extracellular fluid to intracellular fluid ratio at dual frequencies for prognosis of dengue fever in Indian children. Biomed Phys Eng Express 2017. [DOI: 10.1088/2057-1976/aa5700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
5
|
Abstract
Dengue is widespread throughout the tropics and local spatial variation in dengue virus transmission is strongly influenced by rainfall, temperature, urbanization and distribution of the principal mosquito vector Aedes aegypti. Currently, endemic dengue virus transmission is reported in the Eastern Mediterranean, American, South-East Asian, Western Pacific and African regions, whereas sporadic local transmission has been reported in Europe and the United States as the result of virus introduction to areas where Ae. aegypti and Aedes albopictus, a secondary vector, occur. The global burden of the disease is not well known, but its epidemiological patterns are alarming for both human health and the global economy. Dengue has been identified as a disease of the future owing to trends toward increased urbanization, scarce water supplies and, possibly, environmental change. According to the WHO, dengue control is technically feasible with coordinated international technical and financial support for national programmes. This Primer provides a general overview on dengue, covering epidemiology, control, disease mechanisms, diagnosis, treatment and research priorities.
Collapse
Affiliation(s)
- Maria G Guzman
- Institute of Tropical Medicine 'Pedro Kouri', PAHO/WHO Collaborating Center for the Study of Dengue and its Vector, Autopista Novia del Mediodia, Km 6 1/2, Havana 11400, Cuba
| | - Duane J Gubler
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore
| | - Alienys Izquierdo
- Institute of Tropical Medicine 'Pedro Kouri', PAHO/WHO Collaborating Center for the Study of Dengue and its Vector, Autopista Novia del Mediodia, Km 6 1/2, Havana 11400, Cuba
| | - Eric Martinez
- Institute of Tropical Medicine 'Pedro Kouri', PAHO/WHO Collaborating Center for the Study of Dengue and its Vector, Autopista Novia del Mediodia, Km 6 1/2, Havana 11400, Cuba
| | - Scott B Halstead
- Department of Preventive Medicine and Biometrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
6
|
Khalil SF, Mohktar MS, Ibrahim F. Bioimpedance Vector Analysis in Diagnosing Severe and Non-Severe Dengue Patients. SENSORS 2016; 16:s16060911. [PMID: 27322285 PMCID: PMC4934337 DOI: 10.3390/s16060911] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 12/31/2022]
Abstract
Real-time monitoring and precise diagnosis of the severity of Dengue infection is needed for better decisions in disease management. The aim of this study is to use the Bioimpedance Vector Analysis (BIVA) method to differentiate between healthy subjects and severe and non-severe Dengue-infected patients. Bioimpedance was measured using a 50 KHz single-frequency bioimpedance analyzer. Data from 299 healthy subjects (124 males and 175 females) and 205 serologically confirmed Dengue patients (123 males and 82 females) were analyzed in this study. The obtained results show that the BIVA method was able to assess and classify the body fluid and cell mass condition between the healthy subjects and the Dengue-infected patients. The bioimpedance mean vectors (95% confidence ellipse) for healthy subjects, severe and non-severe Dengue-infected patients were illustrated. The vector is significantly shortened from healthy subjects to Dengue patients; for both genders the p-value is less than 0.0001. The mean vector of severe Dengue patients is significantly shortened compare to non-severe patients with a p-value of 0.0037 and 0.0023 for males and females, respectively. This study confirms that the BIVA method is a valid method in differentiating the healthy, severe and non-severe Dengue-infected subjects. All tests performed had a significance level with a p-value less than 0.05.
Collapse
Affiliation(s)
- Sami F Khalil
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
- Centre for Innovation in Medical Engineering (CIME), Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
- Department of Biomedical Engineering, College of Engineering, Sudan University of Science and Technology, 407 Khartoum, Sudan.
| | - Mas S Mohktar
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
- Centre for Innovation in Medical Engineering (CIME), Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Fatimah Ibrahim
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
- Centre for Innovation in Medical Engineering (CIME), Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
7
|
Ibrahim F, Thio THG, Faisal T, Neuman M. The application of biomedical engineering techniques to the diagnosis and management of tropical diseases: a review. SENSORS 2015; 15:6947-95. [PMID: 25806872 PMCID: PMC4435123 DOI: 10.3390/s150306947] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 12/05/2014] [Accepted: 01/07/2015] [Indexed: 11/18/2022]
Abstract
This paper reviews a number of biomedical engineering approaches to help aid in the detection and treatment of tropical diseases such as dengue, malaria, cholera, schistosomiasis, lymphatic filariasis, ebola, leprosy, leishmaniasis, and American trypanosomiasis (Chagas). Many different forms of non-invasive approaches such as ultrasound, echocardiography and electrocardiography, bioelectrical impedance, optical detection, simplified and rapid serological tests such as lab-on-chip and micro-/nano-fluidic platforms and medical support systems such as artificial intelligence clinical support systems are discussed. The paper also reviewed the novel clinical diagnosis and management systems using artificial intelligence and bioelectrical impedance techniques for dengue clinical applications.
Collapse
Affiliation(s)
- Fatimah Ibrahim
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
- Centre for Innovation in Medical Engineering (CIME), Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Tzer Hwai Gilbert Thio
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
- Centre for Innovation in Medical Engineering (CIME), Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
- Faculty of Science, Technology, Engineering and Mathematics, INTI International University, 71800 Nilai, Negeri Sembilan, Malaysia.
| | - Tarig Faisal
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
- Centre for Innovation in Medical Engineering (CIME), Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
- Faculty-Electronics Engineering, Ruwais College, Higher Colleges of Technology, Ruwais, P.O Box 12389, UAE.
| | - Michael Neuman
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA.
| |
Collapse
|
8
|
Srikiatkhachorn A, Kelley JF. Endothelial cells in dengue hemorrhagic fever. Antiviral Res 2014; 109:160-70. [PMID: 25025934 PMCID: PMC4148486 DOI: 10.1016/j.antiviral.2014.07.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 05/27/2014] [Accepted: 07/04/2014] [Indexed: 12/11/2022]
Abstract
Therapies to prevent or reverse endothelial dysfunction and vascular leak found in dengue hemorrhagic fever (DHF) have not been identified. In this review we summarize dengue viruses and the spectrum of human disease and highlight evidence of endothelial cell dysfunction in DHF based on studies in patients and mouse and tissue culture models. Evidence suggests that both virus antigen and host immune response, can cause endothelial cell dysfunction and weaken endothelial barrier integrity. We suggest possible therapeutic interventions and highlight how therapies targeting altered endothelial function might be evaluated in animal models and in patients with DHF.
Collapse
Affiliation(s)
- Anon Srikiatkhachorn
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | - James F Kelley
- Faculty of Tropical Medicine, Department of Microbiology and Immunology, Mahidol University, Bangkok, Thailand; Department of Tropical Medicine, Medical Microbiology and Pharmacology, University of Hawaii, USA
| |
Collapse
|
9
|
Soller B, Srikiatkachorn A, Zou F, Rothman AL, Yoon IK, Gibbons RV, Kalayanarooj S, Thomas SJ, Green S. Preliminary evaluation of near infrared spectroscopy as a method to detect plasma leakage in children with dengue hemorrhagic fever. BMC Infect Dis 2014; 14:396. [PMID: 25033831 PMCID: PMC4223418 DOI: 10.1186/1471-2334-14-396] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 06/30/2014] [Indexed: 11/26/2022] Open
Abstract
Background Dengue viral infections are prevalent in the tropical and sub-tropical regions of the world, resulting in substantial morbidity and mortality. Clinical manifestations range from a self-limited fever to a potential life-threatening plasma leakage syndrome (dengue hemorrhagic fever). The objective of this study was to assess the utility of near infrared spectroscopy (NIRS) measurements of muscle oxygen saturation (SmO2) as a possible continuous measure to detect plasma leakage in children with dengue. Methods Children ages 6 months to 15 years of age admitted with suspected dengue were enrolled from the dengue ward at Queen Sirikit National Institute for Child Health. Children were monitored daily until discharge. NIRS data were collected continuously using a prototype CareGuide Oximeter 1100 with sensors placed on the deltoid or thigh. Daily ultrasound of the chest and a right lateral decubitus chest x-ray the day after defervescence were performed to detect and quantitate plasma leakage in the pleural cavity. Results NIRS data were obtained from 19 children with laboratory-confirmed dengue. Average minimum SmO2 decreased for all subjects prior to defervescence. Average minimum SmO2 subsequently increased in children with no ultrasound evidence of pleural effusion but remained low in children with pleural effusion following defervescence. Average minimum SmO2 was inversely correlated with pleural space fluid volume. ROC analysis revealed a cut-off value for SmO2 which yielded high specificity and sensitivity. Conclusions SmO2 measured using NIRS may be a useful guide for real-time and non-invasive identification of plasma leakage in children with dengue. Further investigation of the utility of NIRS measurements for prediction and management of severe dengue syndromes is warranted.
Collapse
Affiliation(s)
- Babs Soller
- Reflectance Medical, Inc,, 116 Flanders Rd, Suite 1000, Westborough, MA 01581, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Khalil SF, Mohktar MS, Ibrahim F. The theory and fundamentals of bioimpedance analysis in clinical status monitoring and diagnosis of diseases. SENSORS 2014; 14:10895-928. [PMID: 24949644 PMCID: PMC4118362 DOI: 10.3390/s140610895] [Citation(s) in RCA: 300] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 12/13/2022]
Abstract
Bioimpedance analysis is a noninvasive, low cost and a commonly used approach for body composition measurements and assessment of clinical condition. There are a variety of methods applied for interpretation of measured bioimpedance data and a wide range of utilizations of bioimpedance in body composition estimation and evaluation of clinical status. This paper reviews the main concepts of bioimpedance measurement techniques including the frequency based, the allocation based, bioimpedance vector analysis and the real time bioimpedance analysis systems. Commonly used prediction equations for body composition assessment and influence of anthropometric measurements, gender, ethnic groups, postures, measurements protocols and electrode artifacts in estimated values are also discussed. In addition, this paper also contributes to the deliberations of bioimpedance analysis assessment of abnormal loss in lean body mass and unbalanced shift in body fluids and to the summary of diagnostic usage in different kinds of conditions such as cardiac, pulmonary, renal, and neural and infection diseases.
Collapse
Affiliation(s)
- Sami F Khalil
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Mas S Mohktar
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Fatimah Ibrahim
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
11
|
Body water distribution and risk of cardiovascular morbidity and mortality in a healthy population: a prospective cohort study. PLoS One 2014; 9:e87466. [PMID: 24498327 PMCID: PMC3911994 DOI: 10.1371/journal.pone.0087466] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 12/27/2013] [Indexed: 01/10/2023] Open
Abstract
Background Early alterations in the cardiovascular structure and function may change normal body water distribution. The resulting fluid shifts may thus serve as an early marker for cardiovascular disease. However, studies examining this in healthy populations are absent. Objective This study examined the association between the proportion of total body water that is extracellular water and subsequent development of non-fatal or fatal cardiovascular disease in a healthy population. Method Bioelectrical impedance spectroscopy is an easy-to-use, non-invasive and relatively inexpensive technique to evaluate changes in body water distribution. A random subset (n = 2120) of Danes aged 41-71 years, examined in 1993–1994 for body water distribution by bioelectrical impedance spectroscopy was included. Cox-proportional hazard models and linear splines were performed. The ratio between resistance estimates from an infinite-frequency and from no-frequency (R∞/R0) was used as a surrogate measure of ratio between extracellular water and total body water. The outcome was 13.5 years of follow-up for cardiovascular morbidity and mortality. Results A high proportion of total body water that is extracellular water was associated with increased risk of incident cardiovascular disease. A threshold effect was evident, with greatly increased risk of cardiovascular morbidity and mortality above R∞/R0 = 0.68. Below the threshold there seemed to be no additional benefit of having a low ratio. Conclusion Our findings suggest that non-clinically evident oedema, measured as an increased proportion of total body water that is extracellular, above a threshold of 0.68, may be an early marker of pre-clinical cardiovascular disease. This simple, safe, cheap and easily obtainable measure of R∞/R0 from bioelectrical impedance may help the early identification of these otherwise clinically healthy individuals who are at an increased risk of future cardiovascular disease. However, more studies are needed before it can be concluded that bioelectrical impedance spectroscopy improves clinical risk prediction.
Collapse
|
12
|
Ibrahim F, Ooi KF, Ismail NA, Taib MN, Wan Abas WAB. Analysis of water compartment in dengue patients. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2007; 2005:4130-3. [PMID: 17281142 DOI: 10.1109/iembs.2005.1615372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
This paper describes the water compartments in healthy subjects and dengue patients on the day of defervescence of fever using bioelectrical impedance analysis. A total of 223 healthy subjects (65 males and 158 females) and 210 dengue patients (119 males and 91 females) in Hospital Universiti Kebangsaan Malaysia (HUKM), were studied. The ages for healthy subjects vary between 14 and 60 years old with mean age of 26.05 years while the ages for the dengue patients vary between 12 and 83 years old with mean age of 30.14 years. The parameters of water compartments investigated were total body water (TBW), extracellular water (ECW) and intracellular water (ICW). There were significant difference between healthy subjects and dengue patients for both male (p<0.05) and female (p<0.001) beginning on fever day 0 till fever day 4. The mean TBW and ECW values of dengue patients obtained were found to be higher than the normal healthy subjects while the mean ICW was lower. The mean TBW and ICW for male were higher than female while the mean ECW for male was lower than female for healthy subjects and dengue patients.
Collapse
Affiliation(s)
- F Ibrahim
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia. (phone: 603-7967-4581; fax: 603-7967-4579; email )
| | | | | | | | | |
Collapse
|
13
|
Jarvis JN, Planche T, Bicanic T, Dzeing-Ella A, Kombila M, Issifou S, Borrmann S, Kremsner PG, Krishna S. Lactic Acidosis in Gabonese Children with Severe Malaria Is Unrelated to Dehydration. Clin Infect Dis 2006; 42:1719-25. [PMID: 16705578 DOI: 10.1086/504329] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Accepted: 02/18/2006] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Hyperlactatemia is an important and common complication of severe malaria. We investigated changes in fluid compartment volumes in patients with severe malaria and control patients with the use of bioimpedence analysis. METHODS We estimated extracellular water and total body water volumes in a total of 180 children: 56 with severe malaria, 94 with moderate malaria, 24 with respiratory tract infection, and 6 with severe diarrhea. RESULTS There was a mean (+/-SD) decrease in total body water volume of 17+/-24 mL/kg (or 3% of total body water volume) in patients with severe malaria. This compares with a mean (+/-SD) decrease in total body water volume of 33+/-28 mL/kg (or 6% of total body water volume) in patients with severe diarrhea. There was no increase in extracellular water volume in patients with severe malaria, suggesting no significant intravascular volume depletion in patients with severe malaria. There was no relationship between lactatemia and any changes in fluid compartment volumes. CONCLUSIONS The changes in fluid volumes that were observed are unlikely to be of physiological significance in the pathophysiology of severe malaria.
Collapse
Affiliation(s)
- J N Jarvis
- Department of Cellular and Molecular Medicine, Infectious Diseases, St. George's Hospital Medical School, London, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Ibrahim F, Ismail NA, Taib MN, Wan Abas WAB. Modeling of hemoglobin in dengue fever and dengue hemorrhagic fever using bioelectrical impedance. Physiol Meas 2005; 25:607-15. [PMID: 15253113 DOI: 10.1088/0967-3334/25/3/002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This paper describes a model for predicting hemoglobin (Hb) by using bioelectrical impedance analysis (BIA) in dengue patients in the Hospital Universiti Kebangsaan Malaysia (HUKM). Bioelectrical impedance measurements were conducted on 83 (47 males and 36 females) serologically confirmed dengue fever (DF) and dengue hemorrhagic fever (DHF) patients during their hospitalization. The predictive equation for Hb was derived using multivariate analysis. We investigated all the parameters in BIA, patients' symptom and demographic data. In this developed model, four predictors (reactance (XC), sex, weight and vomiting) were found to be the best predictive factors for modeling Hb in dengue patients. However, the model can only explain approximately 42% of the variation in Hb status, thus single frequency bio-impedance stand-alone technique is insufficient to monitor Hb for the DF and DHF patients. Further investigation using multi-frequency BIA is recommended in modeling Hb to achieve the most parsimonious model.
Collapse
Affiliation(s)
- F Ibrahim
- Department of Biomedical Engineering, Faculty of Engineering. University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | | | | | | |
Collapse
|