1
|
Agbana HB, Rogier E, Lo A, Abukari Z, Jones S, Gyan B, Aidoo M, Amoah LE. Detecting asymptomatic carriage of Plasmodium falciparum in southern Ghana: utility of molecular and serological diagnostic tools. Malar J 2022; 21:57. [PMID: 35183178 PMCID: PMC8858553 DOI: 10.1186/s12936-022-04078-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 02/06/2022] [Indexed: 12/04/2022] Open
Abstract
Background Asymptomatic malaria infections can serve as potential reservoirs for malaria transmission. The density of parasites contained in these infections range from microscopic to submicroscopic densities, making the accurate detection of asymptomatic parasite carriage highly dependent on the sensitivity of the tools used for the diagnosis. This study sought to evaluate the sensitivities of a variety of molecular and serological diagnostic tools at determining the prevalence of asymptomatic Plasmodium falciparum parasite infections in two communities with varying malaria parasite prevalence. Methods Whole blood was collected from 194 afebrile participants aged between 6 and 70 years old living in a high (Obom) and a low (Asutsuare) malaria transmission setting of Ghana. Thick and thin blood smears, HRP2 based malaria rapid diagnostic test (RDT) and filter paper dried blood spots (DBS) were prepared from each blood sample. Genomic DNA was extracted from the remaining blood and used in Plasmodium specific photo-induced electron transfer polymerase chain reaction (PET-PCR) and Nested PCR, whilst the HRP2 antigen content of the DBS was estimated using a bead immunoassay. A comparison of malaria parasite prevalence as determined by each method was performed. Results Parasite prevalence in the high transmission site of Obom was estimated at 71.4%, 61.9%, 60%, 37.8% and 19.1% by Nested PCR, the HRP2 bead assay, PET-PCR, HRP2-RDT and microscopy respectively. Parasite prevalence in the low transmission site of Asutsuare was estimated at 50.1%, 11.2%, 5.6%, 0% and 2.2% by Nested PCR, the HRP2 bead assay, PET-PCR, RDT and microscopy, respectively. The diagnostic performance of Nested PCR, PET-PCR and the HRP2 bead assay was similar in Obom but in Asutsuare, Nested PCR had a significantly higher sensitivity than PET-PCR and the HRP2 bead assay, which had similar sensitivity. Conclusions Nested PCR exhibited the highest sensitivity by identifying the highest prevalence of asymptomatic P. falciparum in both the high and low parasite prevalence settings. However, parasite prevalence estimated by the HRP2 bead assay and PET-PCR had the highest level of inter-rater agreement relative to all the other tools tested and have the advantage of requiring fewer processing steps relative to Nested PCR and producing quantitative results. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-022-04078-w.
Collapse
|
2
|
Abba K, Kirkham AJ, Olliaro PL, Deeks JJ, Donegan S, Garner P, Takwoingi Y. Rapid diagnostic tests for diagnosing uncomplicated non-falciparum or Plasmodium vivax malaria in endemic countries. Cochrane Database Syst Rev 2014; 2014:CD011431. [PMID: 25519857 PMCID: PMC4453861 DOI: 10.1002/14651858.cd011431] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND In settings where both Plasmodium vivax and Plasmodium falciparum infection cause malaria, rapid diagnostic tests (RDTs) need to distinguish which species is causing the patients' symptoms, as different treatments are required. Older RDTs incorporated two test lines to distinguish malaria due to P. falciparum, from malaria due to any other Plasmodium species (non-falciparum). These RDTs can be classified according to which antibodies they use: Type 2 RDTs use HRP-2 (for P. falciparum) and aldolase (all species); Type 3 RDTs use HRP-2 (for P. falciparum) and pLDH (all species); Type 4 use pLDH (fromP. falciparum) and pLDH (all species).More recently, RDTs have been developed to distinguish P. vivax parasitaemia by utilizing a pLDH antibody specific to P. vivax. OBJECTIVES To assess the diagnostic accuracy of RDTs for detecting non-falciparum or P. vivax parasitaemia in people living in malaria-endemic areas who present to ambulatory healthcare facilities with symptoms suggestive of malaria, and to identify which types and brands of commercial test best detect non-falciparum and P. vivax malaria. SEARCH METHODS We undertook a comprehensive search of the following databases up to 31 December 2013: Cochrane Infectious Diseases Group Specialized Register; MEDLINE; EMBASE; MEDION; Science Citation Index; Web of Knowledge; African Index Medicus; LILACS; and IndMED. SELECTION CRITERIA Studies comparing RDTs with a reference standard (microscopy or polymerase chain reaction) in blood samples from a random or consecutive series of patients attending ambulatory health facilities with symptoms suggestive of malaria in non-falciparum endemic areas. DATA COLLECTION AND ANALYSIS For each study, two review authors independently extracted a standard set of data using a tailored data extraction form. We grouped comparisons by type of RDT (defined by the combinations of antibodies used), and combined in meta-analysis where appropriate. Average sensitivities and specificities are presented alongside 95% confidence intervals (95% CI). MAIN RESULTS We included 47 studies enrolling 22,862 participants. Patient characteristics, sampling methods and reference standard methods were poorly reported in most studies. RDTs detecting 'non-falciparum' parasitaemiaEleven studies evaluated Type 2 tests compared with microscopy, 25 evaluated Type 3 tests, and 11 evaluated Type 4 tests. In meta-analyses, average sensitivities and specificities were 78% (95% CI 73% to 82%) and 99% (95% CI 97% to 99%) for Type 2 tests, 78% (95% CI 69% to 84%) and 99% (95% CI 98% to 99%) for Type 3 tests, and 89% (95% CI 79% to 95%) and 98% (95% CI 97% to 99%) for Type 4 tests, respectively. Type 4 tests were more sensitive than both Type 2 (P = 0.01) and Type 3 tests (P = 0.03).Five studies compared Type 3 tests with PCR; in meta-analysis, the average sensitivity and specificity were 81% (95% CI 72% to 88%) and 99% (95% CI 97% to 99%) respectively. RDTs detecting P.vivax parasitaemiaEight studies compared pLDH tests to microscopy; the average sensitivity and specificity were 95% (95% CI 86% to 99%) and 99% (95% CI 99% to 100%), respectively. AUTHORS' CONCLUSIONS RDTs designed to detect P. vivax specifically, whether alone or as part of a mixed infection, appear to be more accurate than older tests designed to distinguish P. falciparum malaria from non-falciparum malaria. Compared to microscopy, these tests fail to detect around 5% ofP. vivax cases. This Cochrane Review, in combination with other published information about in vitro test performance and stability in the field, can assist policy-makers to choose between the available RDTs.
Collapse
Affiliation(s)
- Katharine Abba
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK.
| | | | | | | | | | | | | |
Collapse
|
3
|
Koita OA, Doumbo OK, Ouattara A, Tall LK, Konaré A, Diakité M, Diallo M, Sagara I, Masinde GL, Doumbo SN, Dolo A, Tounkara A, Traoré I, Krogstad DJ. False-negative rapid diagnostic tests for malaria and deletion of the histidine-rich repeat region of the hrp2 gene. Am J Trop Med Hyg 2012; 86:194-8. [PMID: 22302847 DOI: 10.4269/ajtmh.2012.10-0665] [Citation(s) in RCA: 204] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We identified 480 persons with positive thick smears for asexual Plasmodium falciparum parasites, of whom 454 had positive rapid diagnostic tests (RDTs) for the histidine-rich protein 2 (HRP2) product of the hrp2 gene and 26 had negative tests. Polymerase chain reaction (PCR) amplification for the histidine-rich repeat region of that gene was negative in one-half (10/22) of false-negative specimens available, consistent with spontaneous deletion. False-negative RDTs were found only in persons with asymptomatic infections, and multiplicities of infection (MOIs) were lower in persons with false-negative RDTs (both P < 0.001). These results show that parasites that fail to produce HRP2 can cause patent bloodstream infections and false-negative RDT results. The importance of these observations is likely to increase as malaria control improves, because lower MOIs are associated with false-negative RDTs and false-negative RDTs are more frequent in persons with asymptomatic infections. These findings suggest that the use of HRP2-based RDTs should be reconsidered.
Collapse
Affiliation(s)
- Ousmane A Koita
- Mali-Tulane Tropical Medicine Research Center, Faculty of Medicine, Pharmacy, and Dentistry, University of Bamako, Bamako, Mali.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Merwyn S, Gopalan N, Singh AK, Rai GP, Agarwal GS. Monoclonal Antibodies Against Recombinant Histidine-Rich Protein 2 ofPlasmodium falciparumand Their Use in Malaria Diagnosis. Hybridoma (Larchmt) 2011; 30:519-24. [DOI: 10.1089/hyb.2011.0061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Samuel Merwyn
- Division of High Containment Facility, Defence Research and Development Establishment, Gwalior, Madhya Pradesh, India
| | - Natarajan Gopalan
- Bio-process Scale-up Facility, Defence Research and Development Establishment, Gwalior, Madhya Pradesh, India
| | - Anil Kumar Singh
- Bio-process Scale-up Facility, Defence Research and Development Establishment, Gwalior, Madhya Pradesh, India
| | - Ganga Prasad Rai
- Division of High Containment Facility, Defence Research and Development Establishment, Gwalior, Madhya Pradesh, India
| | - Gauri Shanker Agarwal
- Division of High Containment Facility, Defence Research and Development Establishment, Gwalior, Madhya Pradesh, India
| |
Collapse
|
5
|
Abba K, Deeks JJ, Olliaro PL, Naing C, Jackson SM, Takwoingi Y, Donegan S, Garner P. Rapid diagnostic tests for diagnosing uncomplicated P. falciparum malaria in endemic countries. Cochrane Database Syst Rev 2011; 2011:CD008122. [PMID: 21735422 PMCID: PMC6532563 DOI: 10.1002/14651858.cd008122.pub2] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Rapid diagnostic tests (RDTs) for Plasmodium falciparum malaria use antibodies to detect either HRP-2 antigen or pLDH antigen, and can improve access to diagnostics in developing countries. OBJECTIVES To assess the diagnostic accuracy of RDTs for detecting P. falciparum parasitaemia in persons living in endemic areas who present to ambulatory healthcare facilities with symptoms suggestive of malaria by type and brand. SEARCH STRATEGY We undertook a comprehensive search of the following databases: Cochrane Infectious Diseases Group Specialized Register; MEDLINE; EMBASE; MEDION; Science Citation Index; Web of Knowledge; African Index Medicus; LILACS; IndMED; to January 14, 2010. SELECTION CRITERIA Studies comparing RDTs with a reference standard (microscopy or polymerase chain reaction) in blood samples from a random or consecutive series of patients attending ambulatory health facilities with symptoms suggestive of malaria in P. falciparum endemic areas. DATA COLLECTION AND ANALYSIS For each study, a standard set of data was extracted independently by two authors, using a tailored data extraction form. Comparisons were grouped hierarchically by target antigen, and type and brand of RDT, and combined in meta-analysis where appropriate. MAIN RESULTS We identified 74 unique studies as eligible for this review and categorized them according to the antigens they detected. Types 1 to 3 include HRP-2 (from P. falciparum) either by itself or with other antigens. Types 4 and 5 included pLDH (from P. falciparum) either by itself or with other antigens. In comparisons with microscopy, we identified 71 evaluations of Type 1 tests, eight evaluations of Type 2 tests and five evaluations of Type 3 tests. In meta-analyses, average sensitivities and specificities (95% CI) were 94.8% (93.1% to 96.1%) and 95.2% (93.2% to 96.7%) for Type 1 tests, 96.0% (94.0% to 97.3%) and 95.3% (87.3% to 98.3%) for Type 2 tests, and 99.5% (71.0% to 100.0%) and 90.6% (80.5% to 95.7%) for Type 3 tests, respectively. Overall for HRP-2, the meta-analytical average sensitivity and specificity (95% CI) were 95.0% (93.5% to 96.2%) and 95.2% (93.4% to 99.4%), respectively. For pLDH antibody-based RDTs verified with microscopy, we identified 17 evaluations of Type 4 RDTs and three evaluations of Type 5 RDTs. In meta-analyses, average sensitivity for Type 4 tests was 91.5% (84.7% to 95.3%) and average specificity was 98.7% (96.9% to 99.5%). For Type 5 tests, average sensitivity was 98.4% (95.1% to 99.5%) and average specificity was 97.5% (93.5% to 99.1%). Overall for pLDH, the meta-analytical average sensitivity and specificity (95% CI) were 93.2% (88.0% to 96.2%) and 98.5% (96.7% to 99.4%), respectively. For both categories of test, there was substantial heterogeneity in study results. Quality of the microscopy reference standard could only be assessed in 40% of studies due to inadequate reporting, but results did not seem to be influenced by the reporting quality.Overall, HRP-2 antibody-based tests (such as the Type 1 tests) tended to be more sensitive and were significantly less specific than pLDH-based tests (such as the Type 4 tests). If the point estimates for Type 1 and Type 4 tests are applied to a hypothetical cohort of 1000 patients where 30% of those presenting with symptoms have P. falciparum, Type 1 tests will miss 16 cases, and Type 4 tests will miss 26 cases. The number of people wrongly diagnosed with P. falciparum would be 34 with Type 1 tests, and nine with Type 4 tests. AUTHORS' CONCLUSIONS The sensitivity and specificity of all RDTs is such that they can replace or extend the access of diagnostic services for uncomplicated P. falciparum malaria. HRP-2 antibody types may be more sensitive but are less specific than pLDH antibody-based tests, but the differences are small. The HRP-2 antigen persists even after effective treatment and so is not useful for detecting treatment failures.
Collapse
Affiliation(s)
- Katharine Abba
- Liverpool School of Tropical MedicineInternational Health GroupPembroke PlaceLiverpoolMerseysideUKL3 5QA
| | - Jonathan J Deeks
- University of BirminghamPublic Health, Epidemiology and BiostatisticsEdgbastonBirminghamUKB15 2TT
| | - Piero L Olliaro
- World Health OrganizationUNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (TDR)1211 Geneva 27GenevaSwitzerland
| | - Cho‐Min Naing
- International Medical UniversityDivision of Community MedicineNo.126 Jalan 19/155BBukit JalilKuala LumpurMalaysia57000
| | - Sally M Jackson
- Liverpool School of Tropical MedicineInternational Health GroupPembroke PlaceLiverpoolMerseysideUKL3 5QA
| | - Yemisi Takwoingi
- University of BirminghamPublic Health, Epidemiology and BiostatisticsEdgbastonBirminghamUKB15 2TT
| | - Sarah Donegan
- Liverpool School of Tropical MedicineInternational Health GroupPembroke PlaceLiverpoolMerseysideUKL3 5QA
| | - Paul Garner
- Liverpool School of Tropical MedicineInternational Health GroupPembroke PlaceLiverpoolMerseysideUKL3 5QA
| | | |
Collapse
|
6
|
Nkrumah B, Acquah SEK, Ibrahim L, May J, Brattig N, Tannich E, Nguah SB, Adu-Sarkodie Y, Huenger F. Comparative evaluation of two rapid field tests for malaria diagnosis: Partec Rapid Malaria Test® and Binax Now® Malaria Rapid Diagnostic Test. BMC Infect Dis 2011; 11:143. [PMID: 21605401 PMCID: PMC3118144 DOI: 10.1186/1471-2334-11-143] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 05/23/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND About 90% of all malaria deaths in sub-Saharan Africa occur in children under five years. Fast and reliable diagnosis of malaria requires confirmation of the presence of malaria parasites in the blood of patients with fever or history suggestive of malaria; hence a prompt and accurate diagnosis of malaria is the key to effective disease management. Confirmation of malaria infection requires the availability of a rapid, sensitive, and specific testing at an affordable cost. We compared two recent methods (the novel Partec Rapid Malaria Test® (PT) and the Binax Now® Malaria Rapid Diagnostic Test (BN RDT) with the conventional Giemsa stain microscopy (GM) for the diagnosis of malaria among children in a clinical laboratory of a hospital in a rural endemic area of Ghana. METHODS Blood samples were collected from 263 children admitted with fever or a history of fever to the pediatric clinic of the Agogo Presbyterian Hospital. The three different test methods PT, BN RDT and GM were performed independently by well trained and competent laboratory staff to assess the presence of malaria parasites. Results were analyzed and compared using GM as the reference standard. RESULTS In 107 (40.7%) of 263 study participants, Plasmodium sp. was detected by GM. PT and BN RDT showed positive results in 111 (42.2%) and 114 (43.4%), respectively. Compared to GM reference standard, the sensitivities of the PT and BN RDT were 100% (95% CI: 96.6-100) and 97.2% (95% CI: 92.0-99.4), respectively, specificities were 97.4% (95% CI: 93.6-99.3) and 93.6% (95% CI: 88.5-96.9), respectively. There was a strong agreement (kappa) between the applied test methods (GM vs PT: 0.97; p < 0.001 and GM vs BN RDT: 0.90; p < 0.001). The average turnaround time per tests was 17 minutes. CONCLUSION In this study two rapid malaria tests, PT and BN RDT, demonstrated a good quality of their performance compared to conventional GM. Both methods require little training, have short turnaround times, are applicable as well as affordable and can therefore be considered as alternative diagnostic tools in malaria endemic areas. The species of Plasmodium cannot be identified.
Collapse
Affiliation(s)
- Bernard Nkrumah
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi, Ghana
| | - Samuel EK Acquah
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi, Ghana
| | - Lukeman Ibrahim
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi, Ghana
| | - Juergen May
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Norbert Brattig
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Egbert Tannich
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Samuel Blay Nguah
- Child Health Department, Komfo Anokye Teaching Hospital, Kumasi, Ghana
| | - Yaw Adu-Sarkodie
- Department of Clinical Microbiology, School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Frank Huenger
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi, Ghana
- Institute for Transfusion Medicine, Laboratory Medicine and Medical Microbiology, Dortmund, Germany
| |
Collapse
|
7
|
|
8
|
Community case management of fever due to malaria and pneumonia in children under five in Zambia: a cluster randomized controlled trial. PLoS Med 2010; 7:e1000340. [PMID: 20877714 PMCID: PMC2943441 DOI: 10.1371/journal.pmed.1000340] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 08/12/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Pneumonia and malaria, two of the leading causes of morbidity and mortality among children under five in Zambia, often have overlapping clinical manifestations. Zambia is piloting the use of artemether-lumefantrine (AL) by community health workers (CHWs) to treat uncomplicated malaria. Valid concerns about potential overuse of AL could be addressed by the use of malaria rapid diagnostics employed at the community level. Currently, CHWs in Zambia evaluate and treat children with suspected malaria in rural areas, but they refer children with suspected pneumonia to the nearest health facility. This study was designed to assess the effectiveness and feasibility of using CHWs to manage nonsevere pneumonia and uncomplicated malaria with the aid of rapid diagnostic tests (RDTs). METHODS AND FINDINGS Community health posts staffed by CHWs were matched and randomly allocated to intervention and control arms. Children between the ages of 6 months and 5 years were managed according to the study protocol, as follows. Intervention CHWs performed RDTs, treated test-positive children with AL, and treated those with nonsevere pneumonia (increased respiratory rate) with amoxicillin. Control CHWs did not perform RDTs, treated all febrile children with AL, and referred those with signs of pneumonia to the health facility, as per Ministry of Health policy. The primary outcomes were the use of AL in children with fever and early and appropriate treatment with antibiotics for nonsevere pneumonia. A total of 3,125 children with fever and/or difficult/fast breathing were managed over a 12-month period. In the intervention arm, 27.5% (265/963) of children with fever received AL compared to 99.1% (2066/2084) of control children (risk ratio 0.23, 95% confidence interval 0.14-0.38). For children classified with nonsevere pneumonia, 68.2% (247/362) in the intervention arm and 13.3% (22/203) in the control arm received early and appropriate treatment (risk ratio 5.32, 95% confidence interval 2.19-8.94). There were two deaths in the intervention and one in the control arm. CONCLUSIONS The potential for CHWs to use RDTs, AL, and amoxicillin to manage both malaria and pneumonia at the community level is promising and might reduce overuse of AL, as well as provide early and appropriate treatment to children with nonsevere pneumonia. TRIAL REGISTRATION ClinicalTrials.govNCT00513500
Collapse
|
9
|
A large proportion of P. falciparum isolates in the Amazon region of Peru lack pfhrp2 and pfhrp3: implications for malaria rapid diagnostic tests. PLoS One 2010; 5:e8091. [PMID: 20111602 PMCID: PMC2810332 DOI: 10.1371/journal.pone.0008091] [Citation(s) in RCA: 337] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Accepted: 11/06/2009] [Indexed: 11/30/2022] Open
Abstract
Background Malaria rapid diagnostic tests (RDTs) offer significant potential to improve the diagnosis of malaria, and are playing an increasing role in malaria case management, control and elimination. Peru, along with other South American countries, is moving to introduce malaria RDTs as components of malaria control programmes supported by the Global Fund for AIDS, TB and malaria. The selection of the most suitable malaria RDTs is critical to the success of the programmes. Methods Eight of nine microscopy positive P. falciparum samples collected in Iquitos, Peru tested negative or weak positive using HRP2-detecting RDTs. These samples were tested for the presence of pfhrp2 and pfhrp3 and their flanking genes by PCR, as well as the presence of HRP proteins by ELISA. To investigate for geographic extent of HRP-deleted parasites and their temporal occurrence a retrospective study was undertaken on 148 microscopy positive P. falciparum samples collected in different areas of the Amazon region of Peru. Findings Eight of the nine isolates lacked the pfhrp2 and/or pfhrp3 genes and one or both flanking genes, and the absence of HRP was confirmed by ELISA. The retrospective study showed that 61 (41%) and 103 (70%) of the 148 samples lacked the pfhrp2 or pfhrp3 genes respectively, with 32 (21.6%) samples lacking both hrp genes. Conclusions This is the first documentation of P. falciparum field isolates lacking pfhrp2 and/or pfhrp3. The high frequency and wide distribution of different parasites lacking pfhrp2 and/or pfhrp3 in widely dispersed areas in the Peruvian Amazon implies that malaria RDTs targeting HRP2 will fail to detect a high proportion of P. falciparum in malaria-endemic areas of Peru and should not be used. RDTs detecting parasite LDH or aldolase and quality microscopy should be use for malaria diagnosis in this region. There is an urgent need for investigation of the abundance and geographic distribution of these parasites in Peru and neighbouring countries.
Collapse
|
10
|
|
11
|
|
12
|
Affiliation(s)
- David Bell
- Malaria, and other Vector-borne and Parasitic Diseases, World Health Organization-Regional Office for the Western Pacific, PO Box 2932, Manila, Philippines.
| | | |
Collapse
|
13
|
Lee N, Baker J, Andrews KT, Gatton ML, Bell D, Cheng Q, McCarthy J. Effect of sequence variation in Plasmodium falciparum histidine- rich protein 2 on binding of specific monoclonal antibodies: Implications for rapid diagnostic tests for malaria. J Clin Microbiol 2006; 44:2773-8. [PMID: 16891491 PMCID: PMC1594627 DOI: 10.1128/jcm.02557-05] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability to accurately diagnose malaria infections, particularly in settings where laboratory facilities are not well developed, is of key importance in the control of this disease. Rapid diagnostic tests (RDTs) offer great potential to address this need. Reports of significant variation in the field performance of RDTs based on the detection of Plasmodium falciparum histidine-rich protein 2 (HRP2) (PfHRP2) and of significant sequence polymorphism in PfHRP2 led us to evaluate the binding of four HRP2-specific monoclonal antibodies (MABs) to parasite proteins from geographically distinct P. falciparum isolates, define the epitopes recognized by these MABs, and relate the copy number of the epitopes to MAB reactivity. We observed a significant difference in the reactivity of the same MAB to different isolates and between different MABs tested with single isolates. When the target epitopes of three of the MABs were determined and mapped onto the peptide sequences of the field isolates, significant variability in the frequency of these epitopes was observed. These findings support the role of sequence variation as an explanation for variations in the performance of HRP2-based RDTs and point toward possible approaches to improve their diagnostic sensitivities.
Collapse
Affiliation(s)
- Nelson Lee
- Australian Centre for International and Tropical Health and Nutrition, Queensland Institute of Medical Research and School of Population Health, University of Queensland, Queensland, Australia
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Accurate diagnostic tests have a key role in patient management and the control of most infectious diseases. Unfortunately, in many developing countries, clinical care is often critically compromised by the lack of regulatory controls on the quality of these tests. The information available on the performance of a diagnostic test can be biased or flawed because of failings in the design of the studies which assessed the performance characteristics of the test. As a result, diagnostic tests are sold and used in much of the developing world without evidence of effectiveness. Misdiagnosis leading to failure to treat a serious infection or wasting expensive treatment on people who are not infected remains a serious obstacle to health.
Collapse
Affiliation(s)
- Rosanna W Peeling
- UNICEF/UNDP/ World Bank/WHO Special Programme for Research & Training in Tropical Diseases (TDR), World Health Organization, 20 Avenue Appia, CH-1211 Geneva 27, Switzerland.
| | | | | |
Collapse
|
15
|
Bell D, Wongsrichanalai C, Barnwell JW. Ensuring quality and access for malaria diagnosis: how can it be achieved? Nat Rev Microbiol 2006; 4:S7-20. [PMID: 17003770 DOI: 10.1038/nrmicro1525] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The replacement of conventional antimalarial drugs with high-cost, artemisinin-based alternatives has created a gap in the successful management of malaria. This gap reflects an increased need for accurate disease diagnosis that cannot be met by traditional microscopy techniques. The recent introduction of rapid diagnostic tests (RDTs) has the potential to meet this need, but successful RDT implementation has been curtailed by poor product performance, inadequate methods to determine the quality of products and a lack of emphasis and capacity to deal with these issues. Economics and a desire for improved case management will result in the rapid growth of RDT use in the coming years. However, for their potential to be realized, it is crucial that high-quality RDT products that perform reliably and accurately under field conditions are made available. In achieving this goal, the shift from symptom-based diagnosis to parasite-based management of malaria can bring significant improvements to tropical fever management, rather than represent a further burden on poor, malaria-endemic populations and their overstretched health services.
Collapse
Affiliation(s)
- David Bell
- Malaria, and other Vector-borne and Parasitic Diseases, World Health Organization Regional Office for the Western Pacific, P.O. Box 2932, Manila, Philippines.
| | | | | |
Collapse
|
16
|
Bell D, Wongsrichanalai C, Barnwell JW. Ensuring quality and access for malaria diagnosis: how can it be achieved? Nat Rev Microbiol 2006; 4:682-95. [PMID: 16912713 DOI: 10.1038/nrmicro1474] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The replacement of conventional antimalarial drugs with high-cost, artemisinin-based alternatives has created a gap in the successful management of malaria. This gap reflects an increased need for accurate disease diagnosis that cannot be met by traditional microscopy techniques. The recent introduction of rapid diagnostic tests (RDTs) has the potential to meet this need, but successful RDT implementation has been curtailed by poor product performance, inadequate methods to determine the quality of products and a lack of emphasis and capacity to deal with these issues. Economics and a desire for improved case management will result in the rapid growth of RDT use in the coming years. However, for their potential to be realized, it is crucial that high-quality RDT products that perform reliably and accurately under field conditions are made available. In achieving this goal, the shift from symptom-based diagnosis to parasite-based management of malaria can bring significant improvements to tropical fever management, rather than represent a further burden on poor, malaria-endemic populations and their overstretched health services.
Collapse
Affiliation(s)
- David Bell
- Malaria, other Vector-borne and Parasitic Diseases, World Health Organization-Regional Office for the Western Pacific, P.O. Box 2932, Manila, Philippines.
| | | | | |
Collapse
|
17
|
Azazy AA. Performance and accuracy of an immunodiagnostic antigen detection test in diagnosing Plasmodium falciparum among Yemeni patients. Ann Saudi Med 2004; 24:50-1. [PMID: 15310018 PMCID: PMC6147830 DOI: 10.5144/0256-4947.2004.50] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Ahmed Abdulwaly Azazy
- Department of Medical Parasitology, Faculty of Medicine and Health Sciences, Sana'a University, Sana'a, Yemen
| |
Collapse
|
18
|
Singh N, Shukla M. An assessment of the usefulness of a rapid immuno-chromatographic test, "Determine trade mark malaria pf" in evaluation of intervention measures in forest villages of central India. BMC Infect Dis 2001; 1:10. [PMID: 11532200 PMCID: PMC48149 DOI: 10.1186/1471-2334-1-10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2001] [Accepted: 08/14/2001] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plasmodium falciparum malaria, is a major health problem in forested tribal belt of central India. Rapid and accurate methods are needed for the diagnosis of P. falciparum. We performed a blinded evaluation of the recently introduced Determine trade mark malaria pf test (Abbott, Laboratories, Japan) compared with microscopy and splenomegaly in children in epidemic prone areas of district Mandla to assess the impact of intervention measures. METHODS Children aged 2-10 yrs with and without fever were examined for spleen enlargement by medical specialist by establishing a mobile field clinic. From these children thick blood smears were prepared from finger prick and read by a technician. Simultaneously, rapid tests were performed by a field lab attendant. The figures for specificity, sensitivity and predictive values were calculated using microscopy as gold standard. RESULTS In all 349 children were examined. The sensitivity and specificity for Determine rapid diagnostic test were 91 and 80% respectively. The positive predictive values (PPV), negative predictive values (NPV) and accuracy of the test were respectively 79, 91 and 85%. On the contrary, the sensitivity and specificity of spleen in detecting malaria infection were 57 and 74 % respectively with PPV of 73%, NPV 59 % and an accuracy of 65%. CONCLUSIONS Determine trade mark malaria rapid diagnostic test is easier and quicker to perform and has other advantages over microscopy in not requiring prior training of personnel or quality control. Thus, highlighting the usefulness of a rapid antigen test in assessing prevailing malaria situation in remote areas.
Collapse
Affiliation(s)
- Neeru Singh
- Malaria Research Centre (Field Station) Medical College Building, Jabalpur (M.P), India
| | - Manmohan Shukla
- Malaria Research Centre (Field Station) Medical College Building, Jabalpur (M.P), India
| |
Collapse
|
19
|
Aslan G, Ulukanligil M, Seyrek A, Erel O. Diagnostic performance characteristics of rapid dipstick test for Plasmodium vivax malaria. Mem Inst Oswaldo Cruz 2001; 96:683-6. [PMID: 11500771 DOI: 10.1590/s0074-02762001000500018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We compared the diagnostic performance characteristics of newly developed method, the rapid dipstick test, which provides colorimetric determination by developing antibody to the lactate dehydrogenase enzyme of parasites, with conventional standard thick-blood film examination. For the rapid test, OptiMAL commercial kits were used. The results were also evaluated with clinical findings from patients. The parasites were determined by microscopic examination of thick-blood films from 81 patients with vivax malaria from southeastern Anatolia, Turkey. The OptiMAL test results were found to be negative in five patients who were diagnosed clinically and through thick-film testing as having vivax malaria. There was no false positivity observed with the OptiMAL test. We concluded that this rapid malaria test has a lower level of sensitivity than the classical thick-blood-film test for malaria, but that these methods have equal specificity.
Collapse
Affiliation(s)
- G Aslan
- Research Hospital, Department of Microbiology and Parasitology, Medical Faculty, Mersin University, 33070 Zeytinlibahce, Mersin, Turkey.
| | | | | | | |
Collapse
|
20
|
Abstract
The past decade was a milestone in the development of malaria diagnostic technology. Today, a variety of simplified and rapid malaria diagnostic devices, collectively referred to as 'dipsticks', is available. This paper discusses the potential roles of these devices, and obstacles to their use, in supporting malaria control strategies.
Collapse
Affiliation(s)
- C Wongsrichanalai
- Armed Forces Research Institute of Medical Sciences, 315/6 Rajvithi Road, Bangkok 10400, Thailand.
| |
Collapse
|
21
|
Leke RF, Djokam RR, Mbu R, Leke RJ, Fogako J, Megnekou R, Metenou S, Sama G, Zhou Y, Cadigan T, Parra M, Taylor DW. Detection of the Plasmodium falciparum antigen histidine-rich protein 2 in blood of pregnant women: implications for diagnosing placental malaria. J Clin Microbiol 1999; 37:2992-6. [PMID: 10449488 PMCID: PMC85431 DOI: 10.1128/jcm.37.9.2992-2996.1999] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/1999] [Accepted: 06/07/1999] [Indexed: 11/20/2022] Open
Abstract
Pregnant women have an increased susceptibility to infection by Plasmodium falciparum. Parasites may be present in the placenta yet not detectable in peripheral blood smears by routine light microscopy. In order to determine how frequently misdiagnosis occurs, peripheral blood and placental samples were collected from 1,077 Cameroonian women at the time of giving birth and examined for the presence of malarial parasites by using light microscopy. Results showed that 20.1% of the women who had placental malaria were peripheral blood smear negative. Thus, malarial infection was not detected by microscopic examination of peripheral blood smears from approximately one out of five malaria-infected women. Since P. falciparum parasites secrete histidine-rich protein 2 (HRP-2), we sought to determine if detecting HRP-2 in either peripheral plasma or whole blood might be used to diagnose the presence of parasites "hidden" in the placenta. Samples of peripheral plasma from 127 women with different levels of placental malarial infection were assayed by HRP-2-specific enzyme-linked immunosorbent assay. HRP-2 was detected in 88% of the women with placental malaria who tested negative by blood smear. Additionally, whole blood was obtained from 181 women and tested for HRP-2 with a rapid, chromatographic strip test (ICT). The ICT test accurately detected malarial infection in 89.1% of P. falciparum-infected women. Furthermore, 94% of women with malaria were accurately diagnosed by using a combination of microscopy and the ICT test. Thus, detection of HRP-2 in conjunction with microscopy should improve diagnosis of malaria in pregnant women.
Collapse
Affiliation(s)
- R F Leke
- Faculty of Medicine and Biomedical Sciences, The Biotechnology Center, University of Yaounde 1, Yaounde, Cameroon
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|