1
|
Roh J, Park EM, Lee H, Hwang JH, Kim HS, Park J, Kang HJ. Biological response of nonhuman primates to controlled levels of acute blood loss. Front Immunol 2024; 14:1286632. [PMID: 38268927 PMCID: PMC10806063 DOI: 10.3389/fimmu.2023.1286632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/18/2023] [Indexed: 01/26/2024] Open
Abstract
Introduction The global shortage of human blood for medical use has prompted the development of alternative blood sources. Nonhuman primates (NHPs) are commonly used owing to their physiological similarities to humans. The objective of the current study was to establish a controlled-blood-loss model in NHPs to explore their clinical and biological responses. Methods Blood was sequentially withdrawn from 10 cynomolgus monkeys (10, 14, 18, 22, and 25% of the total blood volume); their vital signs were monitored, and blood parameters were serially analyzed. Humoral mediators in the blood were measured using flow cytometry and enzyme-linked immunosorbent assays. Results In NHPs subjects to 25% blood loss and presenting with related clinical symptoms, the systolic blood pressure ratio on day 0 after bleeding was significantly lower than that of the animals from the other groups (median: 0.65 vs. 0.88, P = 0.0444). Red blood cell counts from day 0-14 and hematocrit levels from day 0-7 were markedly decreased relative to the baseline (P < 0.01). These parameters showed a direct correlation with the extent of blood loss. The levels of creatine phosphokinase, aspartate aminotransferase, and alanine aminotransferase exhibited increases in response to blood loss and had a stronger correlation with the hemoglobin ratio than the volume of blood loss. The levels of C3a and C4a, as well as interleukin (IL)-1α and IL-15, displayed a strong correlation, with no apparent association with blood loss. Conclusion The findings of the present study showed that only NHPs with 25% blood loss exhibited clinical decompensation and significant systolic blood pressure reduction without fatalities, suggesting that this level of blood loss is suitable for evaluating blood transfusion efficacy or other treatments in NHP models. In addition, the ratio of hemoglobin may serve as a more dependable marker for predicting clinical status than the actual volume of blood loss. Thus, our study could serve as a basis for future xenotransfusion research and to predict biological responses to massive blood loss in humans where controlled experiments cannot be ethically performed.
Collapse
Affiliation(s)
- Juhye Roh
- Department of Laboratory Medicine, Hallym University College of Medicine and Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
| | - Eun Mi Park
- Department of Laboratory Medicine, Hallym University College of Medicine and Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
| | - Haneulnari Lee
- Department of Laboratory Medicine, Hallym University College of Medicine and Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
| | - Jeong Ho Hwang
- Animal Model Research Group, Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongeup, Republic of Korea
| | - Hyung-Sun Kim
- Animal Model Research Group, Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongeup, Republic of Korea
| | - Jinyoung Park
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| | - Hee Jung Kang
- Department of Laboratory Medicine, Hallym University College of Medicine and Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
| |
Collapse
|
2
|
Wang X, Tsai T, Wei X, Zuo B, Davis E, Rehberger T, Hernandez S, Jochems EJ, Maxwell CV, Zhao J. Effect of Lactylate and Bacillus subtilis on Growth Performance, Peripheral Blood Cell Profile, and Gut Microbiota of Nursery Pigs. Microorganisms 2021; 9:microorganisms9040803. [PMID: 33920300 PMCID: PMC8070655 DOI: 10.3390/microorganisms9040803] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 12/19/2022] Open
Abstract
To evaluate the effects of lactylate and Bacillus subtilis on growth performance, complete blood cell count, and microbial changes, 264 weaning pigs were assigned to four treatments (1) control (Con) basal diets that met the nutrient requirement for each phase, (2) 0.2% lactylate (LA), (3) 0.05% Bacillus subtilis strains mixtures (BM), or (4) the combination of LA and BM (LA+BM) added to the control basal diet at their respective inclusion rates in each of the three phases. Dietary lactylate tended to increase weight gain, significantly increased feed intake, and reduced fecal total E. coli and enterotoxigenic E. coli counts during Phase 1. Pigs fed Bacillus subtilis had a greater gain to feed ratio (G:F) during Phases 1 and 2. Pigs fed lactylate had an increased peripheral absolute neutrophil count on D14 but a decreased eosinophil percentage. Pigs fed Bacillus subtilis had an elevated peripheral total white blood cell count at study completion. The addition of lactylate increased microbiota richness, reduced E. coli, and increased Prevotella, Christensenellaceae, and Succinivibrio. Bacillus subtilis supplementation-enriched f_Ruminococcaceae_unclassified and S24-7_ unclassified had positive relationships with feed efficiency. Collectively, these findings suggested that lactylate can be added to diets to balance gut microbiota and improve growth performance during the early postweaning period. The combination of lactylate and Bacillus subtilis strains exerted a synergic effect on the growth performance of nursery pigs.
Collapse
Affiliation(s)
- Xiaofan Wang
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA; (X.W.); (T.T.); (X.W.); (B.Z.); (C.V.M.)
| | - Tsungcheng Tsai
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA; (X.W.); (T.T.); (X.W.); (B.Z.); (C.V.M.)
| | - Xiaoyuan Wei
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA; (X.W.); (T.T.); (X.W.); (B.Z.); (C.V.M.)
| | - Bin Zuo
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA; (X.W.); (T.T.); (X.W.); (B.Z.); (C.V.M.)
| | - Ellen Davis
- Arm & Hammer Animal and Food Production, Church & Dwight, Inc., Waukesha, WI 53186, USA; (E.D.); (T.R.); (S.H.)
| | - Tom Rehberger
- Arm & Hammer Animal and Food Production, Church & Dwight, Inc., Waukesha, WI 53186, USA; (E.D.); (T.R.); (S.H.)
| | - Samantha Hernandez
- Arm & Hammer Animal and Food Production, Church & Dwight, Inc., Waukesha, WI 53186, USA; (E.D.); (T.R.); (S.H.)
| | | | - Charles V. Maxwell
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA; (X.W.); (T.T.); (X.W.); (B.Z.); (C.V.M.)
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA; (X.W.); (T.T.); (X.W.); (B.Z.); (C.V.M.)
- Correspondence:
| |
Collapse
|
3
|
Raturi M, Kusum A. The evolution of xenotransfusions through the ages. Transfus Clin Biol 2020; 28:92-93. [PMID: 33080419 DOI: 10.1016/j.tracli.2020.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/06/2020] [Indexed: 11/27/2022]
Affiliation(s)
- M Raturi
- Department of Immunohematology and Blood Transfusion, Himalayan Institute of Medical Sciences, Swami Rama Himalayan University, Swami Ram Nagar, Jolly Grant Dehradun, 248016 Uttarakhand, India.
| | - A Kusum
- Anuradha Kusum, Professor and Head, Department of Pathology, Himalayan Institute of Medical Sciences, Swami Rama Himalayan University, Swami Ram Nagar, Jolly Grant Dehradun, 248016 Uttarakhand, India
| |
Collapse
|
4
|
Faghih MM, Sharp MK. Modeling and prediction of flow-induced hemolysis: a review. Biomech Model Mechanobiol 2019; 18:845-881. [DOI: 10.1007/s10237-019-01137-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 02/26/2019] [Indexed: 01/30/2023]
|
5
|
Smood B, Hara H, Schoel LJ, Cooper DKC. Genetically-engineered pigs as sources for clinical red blood cell transfusion: What pathobiological barriers need to be overcome? Blood Rev 2019; 35:7-17. [PMID: 30711308 DOI: 10.1016/j.blre.2019.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/02/2019] [Accepted: 01/25/2019] [Indexed: 12/27/2022]
Abstract
An alternative to human red blood cells (RBCs) for clinical transfusion would be advantageous, particularly in situations of massive acute blood loss (where availability and compatibility are limited) or chronic hematologic diseases requiring frequent transfusions (resulting in alloimmunization). Ideally, any alternative must be neither immunogenic nor pathogenic, but readily available, inexpensive, and physiologically effective. Pig RBCs (pRBCs) provide a promising alternative due to their several similarities with human RBCs, and our increasing ability to genetically-modify pigs to reduce cellular immunogenicity. We briefly summarize the history of xenotransfusion, the progress that has been made in recent years, and the remaining barriers. These barriers include prevention of (i) human natural antibody binding to pRBCs, (ii) their phagocytosis by macrophages, and (iii) the T cell adaptive immune response (in the absence of exogenous immunosuppressive therapy). Although techniques of genetic engineering have advanced in recent years, novel methods to introduce human transgenes into pRBCs (which do not have nuclei) will need to be developed before clinical trials can be initiated.
Collapse
Affiliation(s)
- Benjamin Smood
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hidetaka Hara
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Leah J Schoel
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David K C Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
6
|
Ramis G, Martínez-Alarcon L, Quereda JJ, Mrowiec A, Funes C, Ríos A, Ramírez P, Muñoz A, Majado MJ. Non-ABO blood group systems phenotyping in non-human primates for blood banking laboratory and xenotransplantation. Lab Anim 2013; 47:100-5. [PMID: 23563364 DOI: 10.1177/0023677213475439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Some biomedical research procedures, such as organ xenotransplantation, usually require intensive hemotherapy. Knowledge of the whole phenotype of blood donor and graft could be useful in the field of xenotransplantation. Human and simian-type categories of blood groups have been established and they can be tested by standard methods used for human blood grouping. The aim of this work was to study the incidence of non-ABO blood group systems in different species of non-human primates, which are employed in biomedical research. The phenotype of Rh, Lewis, Kidd, Kell, MNSs, Lutheran, P and Duffy antigens was investigated in olive baboon (n = 48), chacma baboon (n = 9), Guinea baboon (n = 14), Rhesus macaque (n = 38) and squirrel monkey (n = 30) by using commercial microtyping cards. Kell, Lutheran, Kidd and Duffy antigens have been detected in all species, Rh in squirrel monkey, MNSs in rhesus macaque and squirrel monkey, and Lewis in baboon and rhesus macaque. There were differences in frequency and haemagglutination scores between species regardless of their gender and age. The main differences were found in squirrel monkey when compared with baboons and macaques. This typing system provides a tool to assess the presence of antigens in animals used for experimental procedures, such as xenotransplantation and xenotransfusion.
Collapse
Affiliation(s)
- G Ramis
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de Murcia, Campus de Espinardo, 30.100 Murcia, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Cooper DKC, Ayares D. The immense potential of xenotransplantation in surgery. Int J Surg 2010; 9:122-9. [PMID: 21059418 DOI: 10.1016/j.ijsu.2010.11.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 11/02/2010] [Indexed: 01/28/2023]
Abstract
There is a limited availability of deceased human organs and cells for the purposes of clinical transplantation. Genetically-engineered pigs may provide an alternative source. Although several immune barriers need to be overcome, considerable progress has been made in experimental models in recent years, largely through the increasing availability of pigs with new genetic modifications. Pig heterotopic heart graft survival in nonhuman primates has extended for 8 months, with orthotopic grafts supporting life for almost 2 months. Life-supporting kidney transplants have functioned for almost 3 months. The current barriers are related to coagulation dysfunction between pig and primate that results in thrombotic microangiopathy and/or a consumptive coagulopathy, which may in part be related to molecular incompatibilities in the coagulation systems of pigs and primates. Current efforts are concentrated on genetically-modifying the organ- or islet-source pigs by the introduction of 'anticoagulant' or 'anti-thrombotic' genes to provide protection from the recipient coagulation cascade and platelet activation. Progress with pig islet xenotransplantation has been particularly encouraging with complete control of glycemia in diabetic monkeys extending in one case for >12 months. Other areas where experimental data suggest the possibility of early clinical trials are corneal xenotransplantation and pig neuronal cell xenotransplantation, for example, in patients with Parkinson's disease. With the speed of advances in genetic engineering increasing steadily, it is almost certain that the remaining problems will be overcome within the foreseeable future, and clinical allotransplantation will eventually become of historical interest only.
Collapse
Affiliation(s)
- David K C Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, BST W1543, 200 Lothrop Street, Pittsburgh, PA 15261, USA.
| | | |
Collapse
|
8
|
Cooper DK, Hara H, Yazer M. Genetically Engineered Pigs as a Source for Clinical Red Blood Cell Transfusion. Clin Lab Med 2010; 30:365-80. [DOI: 10.1016/j.cll.2010.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Long C, Hara H, Pawlikowski Z, Koike N, d'Arville T, Yeh P, Ezzelarab M, Ayares D, Yazer M, Cooper DKC. Genetically engineered pig red blood cells for clinical transfusion: initial in vitro studies. Transfusion 2009; 49:2418-29. [PMID: 19624491 DOI: 10.1111/j.1537-2995.2009.02306.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Pigs are a potential source of red blood cells (RBCs) and could resolve the shortage of human blood for transfusion. This study investigated in vitro the compatibility of genetically engineered pig RBCs (pRBCs) with the human innate immune response. STUDY DESIGN AND METHODS Human volunteers of all ABO blood types were sources of sera and those of O blood type were sources of circulating monocytes/macrophages. RBCs from ABO-compatible (ABO-C) and ABO-incompatible (ABO-I) humans and wild-type (WT) and alpha-1,3-galactosyltransferase gene-knockout (GTKO) pigs were tested for hemagglutination, immunoglobulin (Ig)M/IgG antibody binding, and complement-dependent cytotoxicity (CDC) using human sera. Phagocytosis of RBCs by human monocyte-derived macrophages was measured by coculture in the absence or presence of pooled human O serum. RESULTS RBCs showed significant differences (p < 0.01) with regard to hemagglutination, IgM and IgG binding, and CDC (ABO-C < GTKO < ABO-I < WT). In the absence of pooled human O serum (antibodies), there was no phagocytosis of any RBCs; in the presence of serum (antibodies), phagocytosis of ABO-I RBCs was greater than of WT (p < 0.01), which in turn was greater than of GTKO RBCs (p < 0.05). CONCLUSIONS GTKO RBCs were significantly more compatible than ABO-I and WT RBCs, but were not comparable to ABO-C combinations. In the presence of antibody, human monocyte-derived macrophages phagocytosed ABO-I RBC/sera combinations more efficiently than pRBCs. These observations contribute to our ultimate goal of using genetically engineered pRBCs for clinical blood transfusion. However, pigs will require other modifications or manipulations if they are to become suitable for human transfusion.
Collapse
Affiliation(s)
- Cassandra Long
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Starzl Biomedical Science Tower, W1540, 200 Lothrop Street, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
BACKGROUND The use of porcine red blood cells has recently been proposed as a possible solution to the shortage of blood for human transfusion. OBJECTIVES The purpose of this paper is to compare some ethical issues regarding xenotransfusion (XTF) with those relating to xenotransplantation (XT) of organs, tissues and cells. MATERIALS AND METHODS Various ethical concerns and viewpoints relating to XTF are discussed. RESULTS The main ethical obstacles to XT do not apply to XTF. It is much more ethically acceptable to raise pigs for regular blood collection as it doesn't damage the health of the animal. Porcine endogenous retrovirus infection, the major concern associated with XT, does not apply to XTF, since red blood cells have no DNA and have a very short lifespan. Clinical trials will be possible in humans once XTF has been demonstrated to be effective and harmless in non-human primates. Transgenesis is acceptable for pig blood donors because only a limited number of genes are involved, and these animals will never enter into the livestock gene pool or the food chain. CONCLUSION Because the need for blood is less pressing than that for organs, tissues or cells, the use of animal blood for human transfusion is not an absolute necessity. However, it represents a real opportunity. The ability to gain access to an unlimited quantity of blood is a reasonable justification for XTF. Because its technical and ethical hurdles are less stringent, XTF could be the first large-scale clinical application of XT.
Collapse
Affiliation(s)
- Françoise A Roux
- Department of Cellular and Molecular Immuno-Endocrinology, INRA, Nantes School of Veterinary Medicine, Atlanpole, La Chantrerie, Nantes, France
| | | | | |
Collapse
|
11
|
Abstract
The first blood transfusions in humans were xenotransfusions, carried out by Jean-Baptiste Denis beginning in 1667. Richard Lower, Matthäus Purmann and Georges Mercklin also experimented with the use of animal blood for transfusion until this practice was forbidden in 1670, after the death of one of Denis's patients. In the middle of the 19th century, xenotransfusion was rescued from oblivion by the work of Pierre Cyprien Oré. Franz Gesellius and Oscar Hasse fervently defended xenotransfusion, but Emil Ponfick and Leonard Landois stressed the potentially harmful effects of inter-species transfusion from 1874 onward. Xenotransfusion was abandoned completely following the discovery of blood groups by Karl Landsteiner in 1900. From 2000, because of progress in xenotransplantation and the need of blood supply, xenotransfusion is again being considered. Pigs are the best potential donors. The development of alpha-1,3-galactosyltransferase gene-knockout pigs has overcome the first hurdle to xenotransfusion. The main obstacle to porcine red blood cell transfusion is now the cellular response involving macrophages or natural killer cells.
Collapse
Affiliation(s)
- Françoise A Roux
- Department of Cellular and Molecular Immuno-Endocrinology, INRA, Nantes School of Veterinary Medicine, Nantes Cedex, France
| | | | | |
Collapse
|
12
|
Abstract
The present historical review reports the clinical experiences of transplantations from animal to human. The first transplantation attempts were made without any knowledge of the species barrier. The pioneers of xenotransplantation realized xenotransfusions as early as the 16th century, then cell and tissue xenotransplantations in the 19th century. At the beginning of the 20th century, xenotransplantation of testicles became the latest craze. At the same time, and later in the 1960s, organ xenotransplantations were attempted, with disappointing results. Mathieu Jaboulay, Serge Voronoff, Keith Reemtsma, James Hardy, Denton Cooley, Thomas Starzl, Christiaan Barnard and Leonard Bailey were among the pionneers of xenotransplantation. Recent trials concerned above all tissue and cell xenotransplantations. Nowadays, with encapsulation, transgenesis, and cloning, great advances have been made for controlling xenograft rejection, but ethical questions linked to the risk of infections have become a major pre-occupation within the scientific community and the general population.
Collapse
Affiliation(s)
- Jack-Yves Deschamps
- Department of Cellular and Molecular Immuno-Endocrinology, University of Nantes/Veterinary School of Nantes, ENVN, Atlanpole, La Chantrerie, BP 40706, 44307 Nantes Cedex 03, France.
| | | | | | | |
Collapse
|
13
|
Rouhani FJ, Dor FJMF, Cooper DKC. Investigation of red blood cells from α1,3-galactosyltransferase-knockout pigs for human blood transfusion. Transfusion 2004; 44:1004-12. [PMID: 15225240 DOI: 10.1111/j.1537-2995.2004.04002.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Pigs are a potential source of red blood cells (RBCs) for transfusion into humans, but the presence of galactose-alpha1,3-galactose (Gal) epitopes on their surface, against which humans have anti-Gal, has been perceived as a major barrier. alpha1,3-Galactosyltransferase gene-knockout pigs, which do not express Gal epitopes on RBCs (Gal-/-), have recently become available. STUDY DESIGN AND METHODS In vitro, RBCs from Gal-/- pigs were exposed to sera from naïve humans or baboons or from baboons previously sensitized to pig antigens; immunoglobulin binding was measured by flow cytometry, and cytotoxicity, by a hemolytic assay. In vivo, relatively small numbers of Gal-/- RBCs were transfused into two nonsensitized untreated baboons. The survival of pig RBCs was detected by flow cytometry. RESULTS In vitro, binding of immunoglobulin (Ig) M from naïve human or baboon sera was detected to Gal-/- RBCs but was significantly less than to Gal+/+ RBCs; IgG binding to Gal-/- RBCs was absent or minimal. Sera had minimal cytotoxicity to Gal-/- RBCs compared to Gal+/+ RBCs. Sensitized baboon sera demonstrated much higher IgG binding to Gal-/- RBCs and increased cytotoxicity, but again these were less than to Gal+/+ RBCs. In vivo, the transfusion of relatively small volumes of Gal-/- RBCs was followed by detection of the cells in the baboon's blood for only 5 minutes. CONCLUSION Pig RBCs are rapidly phagocytosed from the primate circulation by a mechanism not involving anti-Gal.
Collapse
Affiliation(s)
- Foad J Rouhani
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
14
|
|
15
|
Eckermann JM, Buhler LH, Zhu A, Dor FJMF, Awwad M, Cooper DKC. Initial investigation of the potential of modified porcine erythrocytes for transfusion in primates. Xenotransplantation 2004; 11:18-26. [PMID: 14962289 DOI: 10.1111/j.1399-3089.2004.00087.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
There is a shortage of human blood for transfusion. The possibility of using alpha-galactosidase-treated pig red blood cells (pRBCs) for transfusion into humans has been investigated. pRBCs were treated in vitro with alpha-galactosidase. In vitro binding of antibodies (Abs) in baboon or human sera to untreated/treated pRBCs was assessed by flow cytometry and serum cytotoxicity. In vivo clearance rates of (1) autologous baboon red blood cells (RBCs), (2) unmodified pRBCs, and (3) alpha-galactosidase-treated pRBCs were measured after transfusion into baboons receiving either no treatment or depletion of complement +/- depletion of anti-Gal alpha 1-3Gal (Gal) Ab or of macrophage phagocytes. In vitro binding of baboon or human Abs to treated pRBCs was absent or minimal compared with untreated pRBCs, and serum cytotoxicity was completely inhibited. In vivo autologous baboon RBCs survived for >16 days and unmodified pRBCs for <15 min in an untreated baboon. Treated pRBCs survived for 2 h in an untreated baboon, for 24 h in a complement-depleted baboon, and for 72 h when the baboon was depleted of both complement and anti-Gal Ab, or of complement and macrophage phagocytes. All baboons, however, became sensitized to Gal antigens. Failure to prolong the in vivo survival of treated pRBCs could be due to inadequate removal of Gal epitopes because sensitization to Gal developed, or could imply other, as yet unidentified, causes for RBC destruction. To fully assess the potential of pRBC transfusion in humans, more complete alpha-galactosidase treatment of pRBCs will be required.
Collapse
Affiliation(s)
- Jan M Eckermann
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
16
|
Affiliation(s)
- David K C Cooper
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
17
|
Wang J, Gao X, Bai Y, Ren H, Tan Y, Zhang Y. Rudimentary study on humanization of porcine red blood cells: Enzymatic removal of galactose-α1,3-galactose antigen from porcine red blood cell. CHINESE SCIENCE BULLETIN-CHINESE 2003. [DOI: 10.1007/bf03183226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Zhu A, Hurst R. Human natural antibodies that recognize nonalphaGal antigens on porcine red blood cells. Transplant Proc 2000; 32:872-3. [PMID: 10936252 DOI: 10.1016/s0041-1345(00)01018-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- A Zhu
- Laboratory of Molecular Immunology, The Lindsley F. Kimball Research Institute of The New York Blood Center, New York, NY 10021, USA
| | | |
Collapse
|