1
|
Leifheit-Nestler M, Grabner A, Hermann L, Richter B, Schmitz K, Fischer DC, Yanucil C, Faul C, Haffner D. Vitamin D treatment attenuates cardiac FGF23/FGFR4 signaling and hypertrophy in uremic rats. Nephrol Dial Transplant 2018; 32:1493-1503. [PMID: 28339837 DOI: 10.1093/ndt/gfw454] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/06/2016] [Indexed: 11/13/2022] Open
Abstract
Background Vitamin D deficiency and excess of circulating fibroblast growth factor 23 (FGF23) contribute to cardiovascular mortality in patients with chronic kidney disease (CKD). FGF23 activates FGF receptor 4 and (FGFR4) calcineurin/nuclear factor of activated T cells (NFAT) signaling in cardiac myocytes, thereby causing left ventricular hypertrophy (LVH). Here, we determined if 1,25-dihydroxyvitamin D (calcitriol) inhibits FGF23-induced cardiac signaling and LVH. Methods 5/6 nephrectomized (5/6 Nx) rats were treated with different doses of calcitriol for 4 or 10 weeks and cardiac expression of FGF23/FGFR4 and activation of calcineurin/NFAT as well as LVH were analyzed. FGFR4 activation and hypertrophic cell growth were studied in cultured cardiac myocytes that were co-treated with FGF23 and calcitriol. Results In 5/6Nx rats with LVH, we detected elevated FGF23 expression in bone and myocardium, increased cardiac expression of FGFR4 and elevated cardiac activation of calcineurin/NFAT signaling. Cardiac expression levels of FGF23 and FGFR4 significantly correlated with the presence of LVH in uremic rats. Treatment with calcitriol reduced LVH as well as cardiac FGFR4 expression and calcineurin/NFAT activation. Bone and cardiac FGF23 expression were further stimulated by calcitriol in a dose-dependent manner, but levels of intact cardiac FGF23 protein were suppressed by high-dose calcitriol. In cultured cardiac myocytes, co-treatment with calcitriol blocked FGF23-induced activation of FGFR4 and hypertrophic cell growth. Conclusions Our data suggest that in CKD, cardioprotective effects of calcitriol stem from its inhibitory actions on the cardiac FGF23/FGFR4 system, and based on their counterbalancing effects on cardiac myocytes, high FGF23 and low calcitriol synergistically contribute to cardiac hypertrophy.
Collapse
Affiliation(s)
- Maren Leifheit-Nestler
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Alexander Grabner
- Department of Medicine, Katz Family Drug Discovery Center and Division of Nephrology and Hypertension, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Laura Hermann
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Beatrice Richter
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Karin Schmitz
- Department of Pediatrics, University Hospital Rostock, Rostock, Germany
| | | | - Christopher Yanucil
- Department of Medicine, Katz Family Drug Discovery Center and Division of Nephrology and Hypertension, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Cell Biology and Anatomy, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
| | - Christian Faul
- Department of Medicine, Katz Family Drug Discovery Center and Division of Nephrology and Hypertension, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Cell Biology and Anatomy, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
| | - Dieter Haffner
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| |
Collapse
|
2
|
Murata K, Takahashi A, Morita T, Nezu A, Fukumoto S, Saitoh M, Tanimura A. Effect of 1,25-dihydroxyvitamin D 3 on spontaneous calcium responses in rat dental epithelial SF2 cells revealed by long-term imaging. Biomed Res 2016; 37:329-334. [PMID: 28003579 DOI: 10.2220/biomedres.37.329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Genetically encoded calcium indicators (GECIs) are suitable for long-term imaging studies. In this study, we employed a highly sensitive GECI, G-GECO, and achieved efficient gene delivery with an adenoviral vector. The adenoviral vector allowed us to express G-GECO in more than 80% of cells. More than 80% of G-GECO-expressing cells showed an ATP-induced increase in fluorescence intensity due to Ca2+ release from intracellular stores and subsequent Ca2+ entry. The fluorescence intensity of these cells was increased more than 2-fold by stimulation with 10 μM ATP. We applied long-term imaging (for ~10 h) to monitor Ca2+ responses in SF2, a rat dental epithelial cell line, in culture conditions. SF2 cells showed intermittent rises in the intracellular Ca2+ concentration in the presence of 100 nM 1,25-dihydroxyvitamin D3. Many of these Ca2+ responses began at a specific location in the cytoplasm and spread throughout the entire cytoplasm. The combination of efficient gene delivery with an adenoviral vector and long-term imaging with a highly sensitive GECI enabled detection of intermittent Ca2+ responses that occur only 3-10 times/h/100 cells. This method could be useful to study the effects of Ca2+ responses for regulating longterm processes, such as gene expression, cell migration, and cell division, in many cell types.
Collapse
Affiliation(s)
- Kaori Murata
- Department of Pediatric Dentistry, School of Dentistry, Health Sciences University of Hokkaido
| | | | | | | | | | | | | |
Collapse
|
3
|
|
4
|
Fang NX, Gu W, Ding J, Saunders NA, Frazer IH, Zhao KN. Calcium enhances mouse keratinocyte differentiation in vitro to differentially regulate expression of papillomavirus authentic and codon modified L1 genes. Virology 2007; 365:187-97. [PMID: 17462691 DOI: 10.1016/j.virol.2007.03.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 02/12/2007] [Accepted: 03/19/2007] [Indexed: 11/27/2022]
Abstract
Here, we first wished to establish for mouse primary keratinocytes (KCs) the Ca(2+) concentrations that were associated with KC differentiation in vitro. Using the range of Ca(2+) concentrations (0-6 mM) to differentiate primary KCs in culture to varying extents for 2 days, we then examined how KC differentiation impacted on expression of papillomavirus (PV) native (Nat) and codon modified (Mod) L1 genes. L1 mRNAs transcribed from either Nat or Mod L1 genes were present in similar amounts in KCs exposed to six Ca(2+) concentrations. However, expression of the L1 proteins from two Mod L1 genes were down-regulated, with no L1 signal detected in KCs exposed to 6 mM Ca(2+). In contrast, L1 proteins expressed from the two Nat L1 genes were not detectable in KCs without Ca(2+), but dramatically up-regulated as the KC cultures exposed to Ca(2+) from 0.5 to 2 mM, then down-regulated in KCs exposed to Ca(2+) from 4 to 6 mM. The different regulatory roles of the Ca(2+) in L1 protein expression from Nat and Mod L1 genes in cultured KCs were confirmed by TGF-beta1 experiments. We observed that aminoacyl-tRNAs (aa-tRNAs) from the 2 mM Ca(2+)-treated KCs only significantly enhanced the Nat L1 mRNAs translation in vitro, suggesting that aa-tRNAs play a differentially regulatory role in translations of the PV Nat and Mod L1 mRNAs. Importantly, the Ca(2+) experimental model provides evidence that mouse primary KCs could be transiently infected by BPV1 virus to express L1 mRNA and protein, which is very useful for future HPV virus infection study.
Collapse
Affiliation(s)
- Ning-Xia Fang
- Diamantina Institute for Cancer, Immunology and Metabolic Medicine, The University of Queensland, Research Extension, Building 1, Princess Alexandra Hospital, Ipswich Road, Woolloongabba, Queensland 4102, Australia
| | | | | | | | | | | |
Collapse
|
5
|
Abstract
A constant extracellular Ca2+ concentration is required for numerous physiological functions at tissue and cellular levels. This suggests that minor changes in Ca2+ will be corrected by appropriate homeostatic systems. The system regulating Ca2+ homeostasis involves several organs and hormones. The former are mainly the kidneys, skeleton, intestine and the parathyroid glands. The latter comprise, amongst others, the parathyroid hormone, vitamin D and calcitonin. Progress has recently been made in the identification and characterisation of Ca2+ transport proteins CaT1 and ECaC and this has provided new insights into the molecular mechanisms of Ca2+ transport in cells. The G-protein coupled calcium-sensing receptor, responsible for the exquisite ability of the parathyroid gland to respond to small changes in serum Ca2+ concentration was discovered about a decade ago. Research has focussed on the molecular mechanisms determining the serum levels of 1,25(OH)2D3, and on the transcriptional activity of the vitamin D receptor. The aim of recent work has been to elucidate the mechanisms and the intracellular signalling pathways by which parathyroid hormone, vitamin D and calcitonin affect Ca2+ homeostasis. This article summarises recent advances in the understanding and the molecular basis of physiological Ca2+ homeostasis.
Collapse
Affiliation(s)
- Indra Ramasamy
- Department of Chemical Pathology, Newham University Hospital, London, UK.
| |
Collapse
|
6
|
Ivanchenko E, Markwardt F. Characterization of large-conductance Ca2+-dependent and -independent K+ channels in HaCaT keratinocytes. Skin Pharmacol Physiol 2005; 18:115-22. [PMID: 15897683 DOI: 10.1159/000084908] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2004] [Accepted: 04/28/2004] [Indexed: 01/29/2023]
Abstract
To characterize ion channels expressed in cell membrane of human keratinocytes, patch-clamp recordings were carried out in HaCaT cells. Two types of large-conductance K(+) channels (about 250 pS) were measured. One type was activated by micromolar concentrations of intracellular Ca(2+) ions ([Ca(2+)](i)) and membrane depolarization, the other was [Ca(2+)](i) independent. The channels were neither dependent on intracellular ATP nor Mg(2+) nor on membrane stretch. We conclude that HaCaT keratinocytes express Ca(2+)-dependent maxi K(+) channels and still unknown large Ca(2+)-independent K(+) channels. These K(+) channels may affect the proliferation and differentiation of human keratinocytes by the influence on the resting potential, which may control the Ca(2+) influx across the cell membrane.
Collapse
Affiliation(s)
- E Ivanchenko
- Julius-Bernstein Institute for Physiology, Martin-Luther University Halle-Wittenberg, Germany
| | | |
Collapse
|
7
|
Hughes PJ, Steinmeyer A, Chandraratna RAS, Brown G. 1?,25-dihydroxyvitamin D3 stimulates steroid sulphatase activity in HL60 and NB4 acute myeloid leukaemia cell lines by different receptor-mediated mechanisms. J Cell Biochem 2005; 94:1175-89. [PMID: 15696548 DOI: 10.1002/jcb.20377] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Steroid sulphatase is a key enzyme in the biosynthesis of bioactive estrogens and androgens from highly abundant inactive circulating sulphated steroid precursors. Little is known about how the expression/activity of this enzyme is regulated. In this article, we show that of 1alpha,25(OH)2D3 stimulates an increase steroid sulphatase activity in the HL60 myeloid leukaemic cell line that is inhibited by a specific nuclear VDR (VDRnuc) antagonist and unaffected by plasma membrane-associated vitamin D receptor (VDRmem) agonists and antagonists. 1alpha,25(OH)2D3-mediated up-regulation of steroid sulphatase activity in HL60 cells was augmented by RXR agonists, blocked by RXR-specific antagonists, and RAR specific agonists and antagonists had no effect. In contrast, the 1alpha,25(OH)2D3-mediated up-regulation of steroid sulphatase activity in the NB4 myeloid leukaemic cell line was unaffected by the specific VDRnuc and RXR antagonists, but was blocked by a VDRmem-specific antagonist and was increased by VDRmem-specific agonists. The findings reveal that VDRnuc-RXR-heterodimers play a key role in the 1alpha,25(OH)2D3-mediated up-regulation of steroid sulphatase activity in HL60 cells. However, in NB4 cells, VDRnuc-derived signals do not play an obligatory role, and non-genomic VDRmem-derived signals are important.
Collapse
Affiliation(s)
- Philip J Hughes
- Division of Immunity and Infection, The Medical School, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.
| | | | | | | |
Collapse
|
8
|
Gamady A, Koren R, Ron D, Liberman UA, Ravid A. Vitamin D enhances mitogenesis mediated by keratinocyte growth factor receptor in keratinocytes. J Cell Biochem 2003; 89:440-9. [PMID: 12761878 DOI: 10.1002/jcb.10508] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The hormonally active vitamin D metabolite, 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), and keratinocyte growth factor (KGF) belong to the network of autocrine and paracrine mediators in the skin. Both were shown to modulate keratinocyte proliferation, to reverse epidermal atrophy, to increase wound healing, and to reduce chemotherapy-induced alopecia. The overlap between their activities may suggest that vitamin D exerts some of its actions by modulation of KGF activities in the skin. This notion was examined by using HaCaT keratinocytes cultured in serum-free medium in the absence of exogenous growth factors and in the presence of the EGF receptor tyrosine kinase inhibitor AG 1478 that blocks their autonomous proliferation. These cells could be stimulated to proliferate by different fibroblast growth factors (FGFs). The relative mitogenic efficacy of basic FGF, acidic FGF, or KGF was in correlation with their affinities for the KGF receptor (KGFR). Forty-eight hour co-treatment with 1,25(OH)(2)D(3) enhanced KGFR-mediated cell proliferation in a dose dependent manner. Both ERK1/2 and c-Jun N-terminal kinase (JNK) were activated by the FGFs. Treatment with 1,25(OH)(2)D(3) increased the activation of ERK but reduced the activation of JNK. Treatment with 1,25(OH)(2)D(3) increased the levels of KGFR in the presence but not in the absence of KGF, probably due to inhibition of ligand-induced receptor degradation. Inhibition of protein kinase C with bisindolylmaleimide did not interfere with the effect of 1,25(OH)(2)D(3) on KGFR-mediated ERK activation. Our results support the notion that the paracrine KGF-KGFR system in the skin can act in concert with the autocrine vitamin D system in keratinocytes to promote keratinocyte proliferation and survival under situations of stress and injury.
Collapse
Affiliation(s)
- Anat Gamady
- The Basil and Gerald Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel-Aviv University, Petah-Tikva, Israel
| | | | | | | | | |
Collapse
|
9
|
Lamprecht SA, Lipkin M. Cellular mechanisms of calcium and vitamin D in the inhibition of colorectal carcinogenesis. Ann N Y Acad Sci 2001; 952:73-87. [PMID: 11795445 DOI: 10.1111/j.1749-6632.2001.tb02729.x] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Convincing evidence is available showing that dietary calcium and vitamin D impede the development of colonic carcinogenesis. The major cellular modes of action of calcium and vitamin D which can contribute to the inhibition of colonic neoplasia are reviewed in this article. These consist of complex series of signaling events induced by the chemopreventive agents acting at various tiers of colonic cell organization.
Collapse
Affiliation(s)
- S A Lamprecht
- Strang Cancer Prevention Center, New York, NewYork 10021, USA
| | | |
Collapse
|