O'Neill AC, Winograd JM, Zeballos JL, Johnson TS, Randolph MA, Bujold KE, Kochevar IE, Redmond RW. Microvascular anastomosis using a photochemical tissue bonding technique.
Lasers Surg Med 2008;
39:716-22. [PMID:
17960755 DOI:
10.1002/lsm.20548]
[Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND OBJECTIVES
Photochemical tissue bonding (PTB) combines photoactive dyes with visible light to create fluid-tight seals between tissue surfaces without causing collateral thermal damage. The potential of PTB to improve outcomes over standard of care microsurgical reanastomoses of blood vessels in ex vivo and in vivo models was evaluated.
STUDY DESIGN
The mechanical strength and integrity of PTB and standard microsurgical suture repairs in ex vivo porcine brachial arteries (n = 10) were compared using hydrostatic testing of leak point pressure (LPP). Femoral artery repair in vivo was measured in Sprague-Dawley rats using either standard microvascular sutures (n = 20) or PTB (n = 20). Patency was evaluated at 6 hours (n = 10) and 8 weeks post-repair (n = 10) for each group.
RESULTS
PTB produced significantly higher LPPs (1,100+/- 150 mmHg) than suture repair (350+/-40 mmHg, P<0.001) in an ex vivo study. In an in vivo study all femoral arteries in both suture and PTB repair groups were patent at 6 hours post-repair. At 8 weeks post-repair the patency rate was 80% for both groups. No evidence of aneurysm formation was seen in either group and bleeding was absent from the repair site in the PTB-treated vessels, in contrast to the suture repair group.
CONCLUSION
PTB is a feasible microvascular repair technique that results in an immediate, mechanically robust bond with short- and long-term patency rates equal to those for standard suture repair.
Collapse