1
|
Wang Z, Ma R, Chen B, Yu X, Wang X, Zuo X, Liang B, Yang J. A transcription factor-based bacterial biosensor system and its application for on-site detection of explosives. Biosens Bioelectron 2024; 244:115805. [PMID: 37948915 DOI: 10.1016/j.bios.2023.115805] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/01/2023] [Accepted: 10/29/2023] [Indexed: 11/12/2023]
Abstract
Detecting unexploded landmines is critical due to the environmental pollution and potential humanitarian risks caused by buried landmines. Therefore, this study focused on developing a biosensor system capable of detecting explosives safely and efficiently. A novel transcription factor-based Escherichia coli biosensor was designed to detect 1,3-dinitrobenzene (1,3-DNB). The MexT transcription factor from Pseudomonas putida (P. putida) was identified as the fundamental sensing element in this biosensor. The study found that MexT positively regulated the transcription of PP_2827 by binding to the bidirectional promoter region between them, and significantly enhanced the expression of downstream genes under the condition of 1,3-DNB. The MexT-based biosensor for 1,3-DNB was developed by adopting different combinations of the mexT gene and promoters. The optimized biosensor demonstrated adequate sensitivity for detecting 0.1 μg/mL of 1,3-DNB in a liquid solution with satisfactory specificity and long-term stability. Subsequently, the MexT-based biosensor was integrated into a detection device to simulate the in-field exploration of explosives. The system exhibited a detection sensitivity of 0.5 mg/kg for 1,3-DNB in the sand, and realized the detection of on-site and large-scale area and the location of buried 1,3-DNB under the soil. The study provided a novel transcription factor-based bacterial biosensor and a complete system (China Earth Eye, CEE) for sensitive detection of 1,3-DNB. The good performance of this biosensor system can facilitate the development of accurate, on-site, and high-efficient exploration of explosives in real extensive minefields. Moreover, this 1,3-DNB biosensor can be complementary to the 2,4-DNT biosensor reported before, demonstrating its potential applications in military situations.
Collapse
Affiliation(s)
- Zhaobao Wang
- Energy-rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, PR China
| | - Ran Ma
- Energy-rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, PR China
| | - Bingjing Chen
- Energy-rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, PR China
| | - Xiaotong Yu
- Energy-rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, PR China
| | - Xue Wang
- Energy-rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, PR China
| | - Xinyun Zuo
- Energy-rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, PR China
| | - Bo Liang
- Energy-rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, PR China.
| | - Jianming Yang
- Energy-rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, PR China.
| |
Collapse
|
2
|
Kim M, Kang R, Jeon TJ, Ryu SE. Structural basis of transcription factor YhaJ for DNT detection. iScience 2023; 26:107984. [PMID: 37822509 PMCID: PMC10562874 DOI: 10.1016/j.isci.2023.107984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 07/11/2023] [Accepted: 09/16/2023] [Indexed: 10/13/2023] Open
Abstract
Detection of landmines without harming personnel is a global issue. The bacterial transcription factor YhaJ selectively detects metabolites of explosives, and it can be used as a key component of DNT biosensors. However, the wild-type YhaJ has a binding affinity that is not sufficient for the detection of trace amounts of explosives leaked from landmines buried in the soil. Here, we report crystal structures of the effector-binding domain of YhaJ in both the apo- and effector-bound forms. A structural comparison of the two forms revealed that the loop above the primary effector-binding site significantly switches its conformation upon effector binding. The primary effector-binding site involves hydrophobic and polar interactions, having specificity to hydroxyl-substituted benzene compounds. The structures explain the mechanism of activity-enhancing mutations and provide information for the rational engineering of YhaJ biosensors for the sensitive detection of explosives.
Collapse
Affiliation(s)
- Myeongbin Kim
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04673, Republic of Korea
| | - Ryun Kang
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04673, Republic of Korea
| | - Tae Jin Jeon
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04673, Republic of Korea
- National Instrumentation Center for Environmental Management (NICEM), Seoul National University, Seoul 08826, Republic of Korea
| | - Seong Eon Ryu
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04673, Republic of Korea
| |
Collapse
|
3
|
David L, Shpigel E, Levin I, Moshe S, Zimmerman L, Dadon-Simanowitz S, Shemer B, Levkovich SA, Larush L, Magdassi S, Belkin S. Performance upgrade of a microbial explosives' sensor strain by screening a high throughput saturation library of a transcriptional regulator. Comput Struct Biotechnol J 2023; 21:4252-4260. [PMID: 37701016 PMCID: PMC10493890 DOI: 10.1016/j.csbj.2023.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 09/14/2023] Open
Abstract
We present a methodology for a high-throughput screening (HTS) of transcription factor libraries, based on bacterial cells and GFP fluorescence. The method is demonstrated on the Escherichia coli LysR-type transcriptional regulator YhaJ, a key element in 2,4-dinitrotuluene (DNT) detection by bacterial explosives' sensor strains. Enhancing the performance characteristics of the YhaJ transcription factor is essential for future standoff detection of buried landmines. However, conventional directed evolution methods for modifying YhaJ are limited in scope, due to the vast sequence space and the absence of efficient screening methods to select optimal transcription factor mutants. To overcome this limitation, we have constructed a focused saturation library of ca. 6.4 × 107 yhaJ variants, and have screened over 70 % of its sequence space using fluorescence-activated cell sorting (FACS). Through this screening process, we have identified YhaJ mutants exhibiting superior fluorescence responses to DNT, which were then effectively transformed into a bioluminescence-based DNT detection system. The best modified DNT reporter strain demonstrated a 7-fold lower DNT detection threshold, a 45-fold increased signal intensity, and a 40 % shorter response time compared to the parental bioreporter. The FACS-based HTS approach presented here may hold a potential for future molecular enhancement of other sensing and catalytic bioreactions.
Collapse
Affiliation(s)
- Lidor David
- Enzymit Ltd. 3 Pinhas Sapir St., Ness Ziona 7403626, Israel
| | - Etai Shpigel
- Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Itay Levin
- Enzymit Ltd. 3 Pinhas Sapir St., Ness Ziona 7403626, Israel
| | - Shaked Moshe
- Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Lior Zimmerman
- Enzymit Ltd. 3 Pinhas Sapir St., Ness Ziona 7403626, Israel
| | | | - Benjamin Shemer
- Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Shon A. Levkovich
- George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Liraz Larush
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Shlomo Magdassi
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | | |
Collapse
|
4
|
Simon A, Ong TH, Wrobel A, Mendum T, Kunz R. Review: Headspace Components of Explosives for Canine Non-Detonable Training Aid Development. Forensic Chem 2023. [DOI: 10.1016/j.forc.2023.100491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
5
|
Mörén L, Bergström F, Brantlind M, Wingfors H. Rapid changes in profiles from stored materials used in scent training of explosive detection dogs. Sci Justice 2022; 62:657-665. [DOI: 10.1016/j.scijus.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 10/02/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022]
|
6
|
Aguado R, Santos ARMG, Vallejos S, Valente AJM. Paper-Based Probes with Visual Response to Vapors from Nitroaromatic Explosives: Polyfluorenes and Tertiary Amines. Molecules 2022; 27:molecules27092900. [PMID: 35566254 PMCID: PMC9101589 DOI: 10.3390/molecules27092900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 01/25/2023] Open
Abstract
Although it is well-known that nitroaromatic compounds quench the fluorescence of different conjugated polymers and form colored Meisenheimer complexes with proper nucleophiles, the potential of paper as a substrate for those macromolecules can be further developed. This work undertakes this task, impregnating paper strips with a fluorene-phenylene copolymer with quaternary ammonium groups, a bisfluorene-based cationic polyelectrolyte, and poly(2-(dimethylamino)ethyl methacrylate) (polyDMAEMA). Cationic groups make the aforementioned polyfluorenes attachable to paper, whose surface possesses a slightly negative charge and avoid interference from cationic quenchers. While conjugated polymers had their fluorescence quenched with nitroaromatic vapors in a non-selective way, polyDMAEMA-coated papers had a visual response that was selective to 2,4,6-trinitrotoluene (TNT), and that could be easily identified, and even quantified, under natural light. Far from implying that polyfluorenes should be ruled out, it must be taken into account that TNT-filled mines emit vapors from 2,4-dinitrotoluene (DNT) and dinitrobenzene isomers, which are more volatile than TNT itself. Atmospheres with only 790 ppbv TNT or 277 ppbv DNT were enough to trigger a distinguishable response, although the requirement for certain exposure times is an important limitation.
Collapse
Affiliation(s)
- Roberto Aguado
- CQC, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal; (R.A.); (A.R.M.G.S.); (S.V.)
- LEPAMAP-PRODIS Research Group, University of Girona, M. Aurèlia Capmany 61, 17003 Girona, Spain
| | - A. Rita M. G. Santos
- CQC, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal; (R.A.); (A.R.M.G.S.); (S.V.)
| | - Saúl Vallejos
- CQC, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal; (R.A.); (A.R.M.G.S.); (S.V.)
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza de Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Artur J. M. Valente
- CQC, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal; (R.A.); (A.R.M.G.S.); (S.V.)
- Correspondence:
| |
Collapse
|
7
|
Zhang Y, Zou ZP, Chen SY, Wei WP, Zhou Y, Ye BC. Design and optimization of E. coli artificial genetic circuits for detection of explosive composition 2,4-dinitrotoluene. Biosens Bioelectron 2022; 207:114205. [PMID: 35339074 DOI: 10.1016/j.bios.2022.114205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/07/2022] [Accepted: 03/18/2022] [Indexed: 11/26/2022]
Abstract
The detection of mine-based explosives poses a serious threat to the lives of deminers, and carcinogenic residues may cause severe environmental pollution. Whole-cell biosensors that can detect on-site in dangerous or inaccessible environments have great potential to replace conventional methods. Synthetic biology based on engineering modularity serves as a new tool that could be used to engineer microbes to acquire desired functions through artificial design and precise regulation. In this study, we designed artificial genetic circuits in Escherichia coli MG1655 by reconstructing the transcription factor YhaJ-based system to detect explosive composition 2,4-dinitrotoluene (2,4-DNT). These genetic circuits were optimized at the transcriptional, translational, and post-translational levels. The binding affinity of the transcription factor YhaJ with inducer 2,4-DNT metabolites was enhanced via directed evolution, and several activator binding sites were inserted in sensing yqjF promoter (PyqjF) to further improve the output level. The optimized biosensor PyqjF×2-TEV-(mYhaJ + GFP)-Ssr had a maximum induction ratio of 189 with green fluorescent signal output, and it could perceive at least 1 μg/mL 2,4-DNT. Its effective and robust performance was verified in different water samples. Our results demonstrate the use of synthetic biology tools to systematically optimize the performance of sensors for 2,4-DNT detection, that lay the foundation for practical applications.
Collapse
Affiliation(s)
- Yan Zhang
- Laboratory of Biosystems and Microanalysis, Institute of Engineering Biology and Health, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, China
| | - Zhen-Ping Zou
- Laboratory of Biosystems and Microanalysis, Institute of Engineering Biology and Health, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Sheng-Yan Chen
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, China
| | - Wen-Ping Wei
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Ying Zhou
- Laboratory of Biosystems and Microanalysis, Institute of Engineering Biology and Health, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Bang-Ce Ye
- Laboratory of Biosystems and Microanalysis, Institute of Engineering Biology and Health, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, China; Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
8
|
Shpigel E, Nathansohn S, Glozman A, Rosen R, Shemer B, Yagur‐Kroll S, Elad T, Belkin S. Introduction of quorum sensing elements into bacterial bioreporter circuits enhances explosives' detection capabilities. Eng Life Sci 2022; 22:308-318. [PMID: 35382532 PMCID: PMC8961053 DOI: 10.1002/elsc.202100134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/13/2022] [Accepted: 02/11/2022] [Indexed: 11/11/2022] Open
Abstract
A possible solution for the standoff detection of buried landmines is based on the use of microbial bioreporters, genetically engineered to emit a remotely detectable optical signal in response to trace amounts of explosives' signature chemicals, mostly 2,4-dinitrotoluene (DNT). Previously developed DNT sensor strains were based on the fusion of a DNT-inducible gene promoter to a reporting element, either a fluorescent protein gene or a bacterial bioluminescence gene cassette. In the present study, a different approach was used: the DNT-inducible promoter activates, in Escherichia coli, the quorum-sensing luxI and luxR genes of Aliivibrio fischeri. N-Acyl homoserine lactone (AHL), synthesized by LuxI, combines with LuxR and activates the bioluminescence reporter genes. The resulting bioreporter displayed a dose-dependent luminescent signal in the presence of DNT. Performance of the sensor strain was further enhanced by manipulation of the sensing element (combining the E. coli DNT-inducible azoR and yqjF gene promoters), by replacing the luminescence gene cassette of Photorhabdus luminescens luxCDABE with A. fischeri luxCDABEG, and by introducing two mutations, eutE and ygdD, into the host strain. DNT detection sensitivity of the final bioreporter was over 340-fold higher than the original construct.
Collapse
Affiliation(s)
- Etai Shpigel
- Department of Plant and Environmental SciencesThe Alexander Silberman Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - Shiri Nathansohn
- Department of Plant and Environmental SciencesThe Alexander Silberman Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - Anat Glozman
- Department of Plant and Environmental SciencesThe Alexander Silberman Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - Rachel Rosen
- Department of Plant and Environmental SciencesThe Alexander Silberman Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - Benjamin Shemer
- Department of Plant and Environmental SciencesThe Alexander Silberman Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - Sharon Yagur‐Kroll
- Department of Plant and Environmental SciencesThe Alexander Silberman Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - Tal Elad
- Department of Plant and Environmental SciencesThe Alexander Silberman Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - Shimshon Belkin
- Department of Plant and Environmental SciencesThe Alexander Silberman Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
| |
Collapse
|
9
|
Elad T, Shemer B, Simanowitz S, Kabessa Y, Mizrachi Y, Gold A, Shpigel E, Agranat AJ, Belkin S. Enhancing DNT Detection by a Bacterial Bioreporter: Directed Evolution of the Transcriptional Activator YhaJ. Front Bioeng Biotechnol 2022; 10:821835. [PMID: 35237579 PMCID: PMC8882911 DOI: 10.3389/fbioe.2022.821835] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/17/2022] [Indexed: 12/20/2022] Open
Abstract
Detection of buried landmines is a dangerous and complicated task that consumes large financial resources and poses significant risks to the personnel involved. A potential alternative to conventional detection methodologies is the use of microbial bioreporters, capable of emitting an optical signal upon exposure to explosives, thus revealing to a remote detector the location of buried explosive devices. We have previously reported the design, construction, and optimization of an Escherichia coli-based bioreporter for the detection of 2,4,6-trinitrotoluene (TNT) and its accompanying impurity 2,4-dinitrotoluene (DNT). Here we describe the further enhancement of this bioreporter by the directed evolution of YhaJ, the transcriptional activator of the yqjF gene promoter, the sensing element of the bioreporter's molecular circuit. This process resulted in a 37-fold reduction of the detection threshold, as well as significant enhancements to signal intensity and response time, rendering this sensor strain more suitable for detecting the minute concentrations of DNT in the soil above buried landmines. The capability of this enhanced bioreporter to detect DNT buried in sand is demonstrated.
Collapse
Affiliation(s)
- Tal Elad
- Department of Plant and Environmental Sciences, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Benjamin Shemer
- Department of Plant and Environmental Sciences, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shilat Simanowitz
- Department of Plant and Environmental Sciences, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yossef Kabessa
- Department of Applied Physics and the Brojde Center for Innovative Engineering and Computer Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yosef Mizrachi
- Department of Applied Physics and the Brojde Center for Innovative Engineering and Computer Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Azriel Gold
- Department of Applied Physics and the Brojde Center for Innovative Engineering and Computer Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Etai Shpigel
- Department of Plant and Environmental Sciences, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Aharon J. Agranat
- Department of Applied Physics and the Brojde Center for Innovative Engineering and Computer Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shimshon Belkin
- Department of Plant and Environmental Sciences, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
10
|
Lifshitz A, Shemer B, Hazan C, Shpigel E, Belkin S. A bacterial bioreporter for the detection of 1,3,5-trinitro-1,3,5-triazinane (RDX). Anal Bioanal Chem 2021; 414:5329-5336. [PMID: 34622323 DOI: 10.1007/s00216-021-03685-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/13/2021] [Accepted: 09/20/2021] [Indexed: 10/20/2022]
Abstract
We report the design, construction, and testing of Escherichia coli-based bioluminescent bioreporters for the detection of 1,3,5-trinitro-1,3,5-triazinane (RDX), one of the most prevalent military-grade explosives in use today. These sensor strains are based on a fusion between the promoter of either the hmp (nitric oxide dioxygenase) or the hcp (a high-affinity nitric oxide reductase) E. coli gene, to the microbial bioluminescence luxCDABEG gene cassette. Signal intensity was enhanced in ∆hmp and ∆hcp mutants, and detection sensitivity was improved when the two gene promoters were cloned in tandem. The Photobacterium leiognathi luxCDABEG reporter genes were superior to those of Aliivibrio fischeri in terms of signal intensity, but in most cases inferior in terms of detection sensitivity, due to a higher background signal. Both sensor strains were also induced by additional nitro-organic explosives, as well as by nitrate salts. Sensitive detection of RDX in a solid matrix (either LB agar or sand) was also demonstrated, with the bioreporters encapsulated in 1.5-mm calcium alginate beads. Lowest RDX concentration detected in sand was 1.67 mg/kg sand. The bioreporter strains described herein may serve as a basis for a standoff detection technology of RDX-based explosive devices, including buried landmines.
Collapse
Affiliation(s)
- Amir Lifshitz
- Department of Plant & Environmental Sciences, Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel
| | - Benjamin Shemer
- Department of Plant & Environmental Sciences, Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel
| | - Carina Hazan
- Institute of Chemistry, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel
| | - Etai Shpigel
- Department of Plant & Environmental Sciences, Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel
| | - Shimshon Belkin
- Department of Plant & Environmental Sciences, Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel.
| |
Collapse
|
11
|
Gillanders RN, Glackin JM, Babić Z, Muštra M, Simić M, Kezić N, Turnbull GA, Filipi J. Biomonitoring for wide area surveying in landmine detection using honeybees and optical sensing. CHEMOSPHERE 2021; 273:129646. [PMID: 33493813 DOI: 10.1016/j.chemosphere.2021.129646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Humanitarian demining is a worldwide effort and the range of climates and environments prevent any one detection method being suitable for all sites, so more tools are required for safe and efficient explosives sensing. Landmines emit a chemical flux over time, and honeybees can collect the trace residues of explosives (as particles or as vapour) on their body hairs. This capability was exploited using a passive method allowing the honeybees to freely forage in a mined area, where trace explosives present in the environment stuck to the honeybee body, which were subsequently transferred onto an adsorbent material for analysis by a fluorescent polymer sensor. Potential false positive sources were investigated, namely common bee pheromones, the anti-varroa pesticide Amitraz, and the environment around a clean apiary, and no significant response was found to any from the sensor. The mined site gave a substantial response in the optical sensor films, with quenching efficiencies of up to 38%. A model was adapted to estimate the mass of explosives returned to the colony, which may be useful for estimating the number of mines in a given area.
Collapse
Affiliation(s)
- Ross N Gillanders
- Organic Semiconductor Centre, SUPA, School of Physics & Astronomy, University of St Andrews, Fife, KY16 9SS, Scotland.
| | - James Me Glackin
- Organic Semiconductor Centre, SUPA, School of Physics & Astronomy, University of St Andrews, Fife, KY16 9SS, Scotland
| | - Zdenka Babić
- Faculty of Electrical Engineering, University of Banja Luka, Patre 5, 78000, Banja Luka, Bosnia and Herzegovina
| | - Mario Muštra
- University of Zagreb, Faculty of Transport and Traffic Sciences, Vukelićeva 4, HR, 10000, Zagreb, Croatia
| | - Mitar Simić
- Faculty of Electrical Engineering, University of Banja Luka, Patre 5, 78000, Banja Luka, Bosnia and Herzegovina
| | - Nikola Kezić
- University of Zagreb, Faculty of Agriculture, Svetošimunska Cesta 25, 10000, Zagreb, Croatia
| | - Graham A Turnbull
- Organic Semiconductor Centre, SUPA, School of Physics & Astronomy, University of St Andrews, Fife, KY16 9SS, Scotland
| | - Janja Filipi
- Department of Ecology, Agronomy and Aquaculture, University of Zadar, Trg Kneza Višeslava 9, 23000, Zadar, Croatia.
| |
Collapse
|
12
|
Bacterial bioreporters for the detection of trace explosives: performance enhancement by DNA shuffling and random mutagenesis. Appl Microbiol Biotechnol 2021; 105:4329-4337. [PMID: 33942130 DOI: 10.1007/s00253-021-11290-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/28/2021] [Accepted: 04/08/2021] [Indexed: 10/21/2022]
Abstract
Landmines and other explosive remnants of war pose a global humanitarian problem that claims numerous casualties long after the conflict has ended. As there are no acceptable methodologies for the remote discovery of such devices, current detection practices still require the risky presence of personnel in the minefield. We have recently described bacterial sensor strains capable of reporting the existence of 2,4-dinitrotoluene (DNT) vapors in the soil above 2,4,6-trinitrotoluene (TNT)-based landmines, by generating a bioluminescent or a fluorescent signal. This may allow the identification of landmine location by remote imaging of an area over which the bacteria have been spread. In the study reported herein, we have improved the DNT-detection capabilities of these sensor strains by combining two DNT-responsive Escherichia coli gene promoters, yqjF and azoR, and subjecting them to three cycles of random mutagenesis by error-prone PCR, combined with segmentation and rearrangement ("DNA shuffling"). The activity of selected modified promoters was evaluated with the Aliivibrio fischeri and Photobacterium leiognathi luxCDABEG gene cassettes as the bioluminescent reporters, exhibiting a ten-fold background reduction that has led to a three-fold decrease in detection threshold. Signal intensity was further enhanced by modifying the ribosomal binding site of the yqjF gene promoter. The superior DNT detection capabilities on a solid matrix by the improved sensor strain were demonstrated. KEY POINTS: • Performance of microbial sensor strains for buried explosives was molecularly enhanced. • Manipulations included random mutagenesis, "DNA shuffling," and RBS reprogramming. • The re-engineered constructs exhibited superior detection of trace explosives.
Collapse
|
13
|
|
14
|
Agranat AJ, Kabessa Y, Shemer B, Shpigel E, Schwartsglass O, Atamneh L, Uziel Y, Ejzenberg M, Mizrachi Y, Garcia Y, Perepelitsa G, Belkin S. An autonomous bioluminescent bacterial biosensor module for outdoor sensor networks, and its application for the detection of buried explosives. Biosens Bioelectron 2021; 185:113253. [PMID: 33930754 DOI: 10.1016/j.bios.2021.113253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/26/2021] [Accepted: 04/12/2021] [Indexed: 11/19/2022]
Abstract
We describe a miniaturized field-deployable biosensor module, designed to function as an element in a sensor network for standoff monitoring and mapping of environmental hazards. The module harbors live bacterial sensor cells, genetically engineered to emit a bioluminescent signal in the presence of preselected target materials, which act as its core sensing elements. The module, which detects and processes the biological signal, composes a digital record that describes its findings, and can be transmitted to a remote receiver. The module is an autonomous self-contained unit that can function either as a standalone sensor, or as a node in a sensor network. The biosensor module can potentially be used for detecting any target material to which the sensor cells were engineered to respond. The module described herein was constructed to detect the presence of buried landmines underneath its footprint. The demonstrated detection sensitivity was 0.25 mg 2,4-dinitrotoluene per Kg soil.
Collapse
Affiliation(s)
- Aharon J Agranat
- Department of Applied Physics and the Brojde Center for Innovative Engineering and Computer Science, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Yossef Kabessa
- Department of Applied Physics and the Brojde Center for Innovative Engineering and Computer Science, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.
| | - Benjamin Shemer
- Department of Plant & Environmental Sciences, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Etai Shpigel
- Department of Plant & Environmental Sciences, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Offer Schwartsglass
- Department of Applied Physics and the Brojde Center for Innovative Engineering and Computer Science, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Loay Atamneh
- Department of Applied Physics and the Brojde Center for Innovative Engineering and Computer Science, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Yonatan Uziel
- Department of Applied Physics and the Brojde Center for Innovative Engineering and Computer Science, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Meir Ejzenberg
- Department of Applied Physics and the Brojde Center for Innovative Engineering and Computer Science, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Yosef Mizrachi
- Department of Applied Physics and the Brojde Center for Innovative Engineering and Computer Science, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Yehudit Garcia
- Department of Applied Physics and the Brojde Center for Innovative Engineering and Computer Science, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Galina Perepelitsa
- Department of Applied Physics and the Brojde Center for Innovative Engineering and Computer Science, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Shimshon Belkin
- Department of Plant & Environmental Sciences, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| |
Collapse
|
15
|
Shemer B, Shpigel E, Hazan C, Kabessa Y, Agranat AJ, Belkin S. Detection of buried explosives with immobilized bacterial bioreporters. Microb Biotechnol 2021; 14:251-261. [PMID: 33095504 PMCID: PMC7888469 DOI: 10.1111/1751-7915.13683] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 01/14/2023] Open
Abstract
The unchecked dispersal of antipersonnel landmines since the late 19th century has resulted in large areas contaminated with these explosive devices, creating a substantial worldwide humanitarian safety risk. The main obstacle to safe and effective landmine removal is the identification of their exact location, an activity that currently requires entry of personnel into the minefields; to date, there is no commercialized technology for an efficient stand-off detection of buried landmines. In this article, we describe the optimization of a microbial sensor strain, genetically engineered for the remote detection of 2,4,6-trinitrotoloune (TNT)-based mines. This bioreporter, designed to bioluminescence in response to minute concentrations of either TNT or 2,4-dinitotoluene (DNT), was immobilized in hydrogel beads and optimized for dispersion over the minefield. Following modifications of the hydrogel matrix in which the sensor bacteria are encapsulated, as well as their genetic reporting elements, these sensor bacteria sensitively detected buried 2,4-dinitrotoluene in laboratory experiments. Encapsulated in 1.5 mm 2% alginate beads containing 1% polyacrylic acid, they also detected the location of a real metallic antipersonnel landmine under field conditions. To the best of our knowledge, this is the first report demonstrating the detection of a buried landmine with a luminescent microbial bioreporter.
Collapse
Affiliation(s)
- Benjamin Shemer
- Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - Etai Shpigel
- Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - Carina Hazan
- Institute of ChemistryThe Hebrew University of JerusalemJerusalemIsrael
| | - Yossef Kabessa
- The Department of Applied PhysicsThe Hebrew University of JerusalemJerusalemIsrael
| | - Aharon J. Agranat
- The Department of Applied PhysicsThe Hebrew University of JerusalemJerusalemIsrael
| | - Shimshon Belkin
- Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
| |
Collapse
|
16
|
Shemer B, Shpigel E, Glozman A, Yagur-Kroll S, Kabessa Y, Agranat AJ, Belkin S. Genome-wide gene-deletion screening identifies mutations that significantly enhance explosives vapor detection by a microbial sensor. N Biotechnol 2020; 59:65-73. [PMID: 32622861 DOI: 10.1016/j.nbt.2020.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/16/2022]
Abstract
Genetically engineered microbial biosensors, capable of detecting traces of explosives residues above buried military ordnance and emitting an optical signal in response, may potentially serve for the standoff detection of buried landmines. A promising candidate for such an application is a previously reported Escherichia coli-based reporter strain that employs the yqjF gene promoter as its sensing element; however, for this sensor to be able to detect actual landmines reliably, it was necessary for its detection sensitivity and signal intensity to be enhanced. In this study, a high-throughput approach was employed to screen the effects of individual gene deletions on yqjF activation by 2,4-dinitrotoluene (DNT). Several genes were identified, the deletion of which elicited a significant enhancement of yqjF induction by DNT. The most promising of these mutations were introduced into the sensor strain, individually or in pairs, yielding a considerable increase in signal intensity and a lowering of the detection threshold. A strain harboring two of the identified mutations, ygdD and eutE, appears to be the most sensitive microbial biosensor currently described for the detection of traces of landmine explosives.
Collapse
Affiliation(s)
- Benjamin Shemer
- Department of Plant and Environmental Sciences, Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| | - Etai Shpigel
- Department of Plant and Environmental Sciences, Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| | - Anat Glozman
- Department of Plant and Environmental Sciences, Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| | - Sharon Yagur-Kroll
- Department of Plant and Environmental Sciences, Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| | - Yosssef Kabessa
- Department of Applied Physics and the Brojde Center for Innovative Engineering and Computer Science, The Hebrew University of Jerusalem, Israel
| | - Aharon J Agranat
- Department of Applied Physics and the Brojde Center for Innovative Engineering and Computer Science, The Hebrew University of Jerusalem, Israel
| | - Shimshon Belkin
- Department of Plant and Environmental Sciences, Institute of Life Sciences, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|
17
|
A Portable Biosensor for 2,4-Dinitrotoluene Vapors. SENSORS 2018; 18:s18124247. [PMID: 30513956 PMCID: PMC6308836 DOI: 10.3390/s18124247] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 12/17/2022]
Abstract
Buried explosive material, e.g., landmines, represent a severe issue for human safety all over the world. Most explosives consist of environmentally hazardous chemicals like 2,4,6-trinitrotoluene (TNT), carcinogenic 2,4-dinitrotoluene (2,4-DNT) and related compounds. Vapors leaking from buried landmines offer a detection marker for landmines, presenting an option to detect landmines without relying on metal detection. 2,4-Dinitrotoluene (DNT), an impurity and byproduct of common TNT synthesis, is a feasible detection marker since it is extremely volatile. We report on the construction of a wireless, handy and cost effective 2,4-dinitrotoluene biosensor combining recombinant bioluminescent bacterial cells and a compact, portable optical detection device. This biosensor could serve as a potential alternative to the current detection technique. The influence of temperature, oxygen and different immobilization procedures on bioluminescence were tested. Oxygen penetration depth in agarose gels was investigated, and showed that aeration with molecular oxygen is necessary to maintain bioluminescence activity at higher cell densities. Bioluminescence was low even at high cell densities and 2,4-DNT concentrations, hence optimization of different prototypes was carried out regarding radiation surface of the gels used for immobilization. These findings were applied to sensor construction, and 50 ppb gaseous 2,4-DNT was successfully detected.
Collapse
|
18
|
Aerobic Transformation of 2,4-Dinitrotoluene by Escherichia coli and Its Implications for the Detection of Trace Explosives. Appl Environ Microbiol 2018; 84:AEM.01729-17. [PMID: 29222096 DOI: 10.1128/aem.01729-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/25/2017] [Indexed: 11/20/2022] Open
Abstract
DNT (2,4-dinitrotoluene), a volatile impurity in military-grade 2,4,6-trinitrotoluene (TNT)-based explosives, is a potential tracer for the detection of buried landmines and other explosive devices. We have previously described an Escherichia coli bioreporter strain engineered to detect traces of DNT and have demonstrated that the yqjF gene promoter, the sensing element of this bioreporter, is induced not by DNT but by at least one of its transformation products. In the present study, we have characterized the initial stages of DNT biotransformation in E. coli, have identified the key metabolic products in this reductive pathway, and demonstrate that the main DNT metabolite that induces yqjF is 2,4,5-trihydroxytoluene. We further show that E. coli cannot utilize DNT as a sole carbon or nitrogen source and propose that this compound is metabolized in order to neutralize its toxicity to the cells.IMPORTANCE The information provided in this article sheds new light both on the microbial biodegradability of nitroaromatic compounds and on the metabolic capabilities of E. coli By doing so, it also clarifies the pathway leading to the previously unexplained induction of the E. coli yqjF gene by 2,4-dinitrotoluene, an impurity that accompanies 2,4,6-trinitrotoluene (TNT)-based explosives. Our improved understanding of these processes will serve to molecularly enhance the performance of a previously described microbial bioreporter of buried landmines and other explosive devices, in which the yqjF gene promoter serves as the sensing element.
Collapse
|
19
|
Shemer B, Koshet O, Yagur-Kroll S, Belkin S. Microbial bioreporters of trace explosives. Curr Opin Biotechnol 2017; 45:113-119. [PMID: 28319855 DOI: 10.1016/j.copbio.2017.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/28/2017] [Accepted: 03/02/2017] [Indexed: 12/27/2022]
Abstract
Since its introduction as an explosive in the late 19th century, 2,4,6-trinitrotoluene (TNT), along with other explosive compounds, has left numerous environmental marks. One of these is widespread soil and water pollution by trace explosives in military proving grounds, manufacturing facilities, or actual battlefields. Another dramatic impact is that exerted by the millions of landmines and other explosive devices buried in large parts of the world, causing extensive loss of life, injuries, and economical damage. In this review we highlight recent advances in the design and construction of microbial bioreporters, molecularly engineered to generate a quantifiable dose-dependent signal in the presence of trace amounts of explosives. Such sensor strains may be employed for monitoring environmental pollution as well as for the remote detection of buried landmines.
Collapse
Affiliation(s)
- Benjamin Shemer
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ori Koshet
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sharon Yagur-Kroll
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shimshon Belkin
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
20
|
Sun W, Liang M, Li Z, Shu J, Yang B, Xu C, Zou Y. Ultrasensitive detection of explosives and chemical warfare agents by low-pressure photoionization mass spectrometry. Talanta 2016; 156-157:191-195. [DOI: 10.1016/j.talanta.2016.05.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/03/2016] [Accepted: 05/09/2016] [Indexed: 10/21/2022]
|
21
|
Design and fabrication of optical chemical sensor for detection of nitroaromatic explosives based on fluorescence quenching of phenol red immobilized poly(vinyl alcohol) membrane. Talanta 2016; 150:162-8. [DOI: 10.1016/j.talanta.2015.12.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 12/07/2015] [Accepted: 12/09/2015] [Indexed: 12/25/2022]
|
22
|
Kumar V, Zamora-Olivares D, Anslyn EV. Indicator displacement assay using an in situ generated polymeric system in water: exploiting donor–acceptor interactions. Supramol Chem 2016. [DOI: 10.1080/10610278.2015.1059939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Vinod Kumar
- Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | - Diana Zamora-Olivares
- Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | - Eric V. Anslyn
- Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
23
|
Shemer B, Palevsky N, Yagur-Kroll S, Belkin S. Genetically engineered microorganisms for the detection of explosives' residues. Front Microbiol 2015; 6:1175. [PMID: 26579085 PMCID: PMC4625088 DOI: 10.3389/fmicb.2015.01175] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/12/2015] [Indexed: 01/14/2023] Open
Abstract
The manufacture and use of explosives throughout the past century has resulted in the extensive pollution of soils and groundwater, and the widespread interment of landmines imposes a major humanitarian risk and prevents civil development of large areas. As most current landmine detection technologies require actual presence at the surveyed areas, thus posing a significant risk to personnel, diverse research efforts are aimed at the development of remote detection solutions. One possible means proposed to fulfill this objective is the use of microbial bioreporters: genetically engineered microorganisms “tailored” to generate an optical signal in the presence of explosives’ vapors. The use of such sensor bacteria will allow to pinpoint the locations of explosive devices in a minefield. While no study has yet resulted in a commercially operational system, significant progress has been made in the design and construction of explosives-sensing bacterial strains. In this article we review the attempts to construct microbial bioreporters for the detection of explosives, and analyze the steps that need to be undertaken for this strategy to be applicable for landmine detection.
Collapse
Affiliation(s)
- Benjamin Shemer
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem Jerusalem, Israel
| | - Noa Palevsky
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem Jerusalem, Israel
| | - Sharon Yagur-Kroll
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem Jerusalem, Israel
| | - Shimshon Belkin
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem Jerusalem, Israel
| |
Collapse
|
24
|
Detection of 2,4-dinitrotoluene and 2,4,6-trinitrotoluene by an Escherichia coli bioreporter: performance enhancement by directed evolution. Appl Microbiol Biotechnol 2015; 99:7177-88. [DOI: 10.1007/s00253-015-6607-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/02/2015] [Accepted: 04/12/2015] [Indexed: 11/26/2022]
|
25
|
Abstract
Efficient sensing of trace amount nitroaromatic (NAC) explosives has become a major research focus in recent time due to concerns over national security as well as their role as environment pollutants. NO2 -containing electron-deficient aromatic compounds, such as picric acid (PA), trinitrotoluene (TNT), and dinitrotoluene (DNT), are the common constituents of many commercially available chemical explosives. In this article, we have summarized our recent developments on the rational design of electron-rich self-assembled discrete molecular sensors and their efficacy in sensing nitroaromatics both in solution as well as in vapor phase. Several π-electron-rich fluorescent metallacycles (squares, rectangles, and tweezers/pincers) and metallacages (trigonal and tetragonal prisms) have been synthesized by means of metal-ligand coordination-bonding interactions, with enough internal space to accommodate electron-deficient nitroaromatics at the molecular level by multiple supramolecular interactions. Such interactions subsequently result in the detectable fluorescence quenching of sensors even in the presence of trace quantities of nitroaromatics. The fascinating sensing characteristics of molecular architectures discussed in this article may enable future development of improved sensors for nitroaromatic explosives.
Collapse
|
26
|
Brust H, Willemse S, Zeng T, van Asten A, Koeberg M, van der Heijden A, Bolck A, Schoenmakers P. Impurity profiling of trinitrotoluene using vacuum-outlet gas chromatography–mass spectrometry. J Chromatogr A 2014; 1374:224-230. [DOI: 10.1016/j.chroma.2014.11.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 10/13/2014] [Accepted: 11/21/2014] [Indexed: 10/24/2022]
|
27
|
Dubey A, Mishra A, Min JW, Lee MH, Kim H, Stang PJ, Chi KW. Self-Assembly of New Arene-Ruthenium Rectangles Containing Triptycene Building Block and Their Application in Fluorescent Detection of Nitro Aromatics. Inorganica Chim Acta 2014; 423:326-331. [PMID: 26321767 PMCID: PMC4550223 DOI: 10.1016/j.ica.2014.08.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A suite of two new tetraruthenium metallarectangles 5 and 6 have been obtained from [2 + 2] self-assemblies between dipyridylethynyltriptycene 2 and one of the two dinuclear arene ruthenium clips, [Ru2 (μ-η4-OO∩OO) (η6-p-cymene)2][OTf]2 ; (OO∩OO = oxalate 3; 6,11-dihydroxy-5,12-naphthacenedionato (dotq) 4; OTf = triflate). These molecular rectangles are fully characterized by 1H NMR spectroscopy, electrospray mass spectrometry. A single crystal of 6 was suitable for X-ray diffraction structural characterization. These new metallarectangles showed fluorescence behavior in solution, have been examined for emission quenching effects with various aromatic compounds, and show high quenching selectivity and sensitivity towards nitroaromatics, particularly picric acid and trinitrotoluene. Excited-state charge transfer from the rectangles to nitro aromatic substrates can be used to develop selective fluorescent sensors for nitro aromatics.
Collapse
Affiliation(s)
- Abhishek Dubey
- Department of Chemistry, University of Ulsan, Ulsan 680-749, Republic of Korea
| | - Anurag Mishra
- Department of Chemistry, University of Ulsan, Ulsan 680-749, Republic of Korea
| | - Jin Wook Min
- Department of Chemistry, University of Ulsan, Ulsan 680-749, Republic of Korea
| | - Min Hyung Lee
- Department of Chemistry, University of Ulsan, Ulsan 680-749, Republic of Korea
| | - Hyunuk Kim
- Energy Materials and Convergence Research Department, Korea Institute of Energy Research, Daejeon 305-343, Republic of Korea
| | - Peter J. Stang
- Department of Chemistry, Salt Lake City, Utah 84112-0850, U.S.A
| | - Ki-Whan Chi
- Department of Chemistry, University of Ulsan, Ulsan 680-749, Republic of Korea
| |
Collapse
|
28
|
Caron T, Pasquinet E, van der Lee A, Pansu RB, Rouessac V, Clavaguera S, Bouhadid M, Serein-Spirau F, Lère-Porte JP, Montméat P. Efficient Sensing of Explosives by Using Fluorescent Nonporous Films of Oligophenyleneethynylene Derivatives Thanks to Optimal Structure Orientation and Exciton Migration. Chemistry 2014; 20:15069-76. [DOI: 10.1002/chem.201402271] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 07/02/2014] [Indexed: 11/08/2022]
|
29
|
Berliner A, Lee MG, Zhang Y, Park SH, Martino R, Rhodes PA, Yi GR, Lim SH. A patterned colorimetric sensor array for rapid detection of TNT at ppt level. RSC Adv 2014. [DOI: 10.1039/c3ra47152g] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
30
|
Farahat Khedr MS, McNeil K, Nikles DE. Explosives detection with electron-rich polymers. POLYM ADVAN TECHNOL 2013. [DOI: 10.1002/pat.3209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Medhat S. Farahat Khedr
- Center for Materials for Information Technology; The University of Alabama; Tuscaloosa Alabama 35487-0209 USA
| | - Keith McNeil
- Center for Materials for Information Technology; The University of Alabama; Tuscaloosa Alabama 35487-0209 USA
| | - David E. Nikles
- Center for Materials for Information Technology; The University of Alabama; Tuscaloosa Alabama 35487-0209 USA
| |
Collapse
|
31
|
McNeil SK, Kelley SP, Beg C, Cook H, Rogers RD, Nikles DE. Cocrystals of 10-methylphenthiazine and 1,3-dinitrobenzene: implications for the optical sensing of TNT-based explosives. ACS APPLIED MATERIALS & INTERFACES 2013; 5:7647-7653. [PMID: 23859489 DOI: 10.1021/am401961s] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The evaporation of an ethanol solution containing an equimolar mixture of 10-methylphenothiazine and 1,3-dinitrobenzene gave red-purple crystals. The diffuse reflection spectrum for the cocrystals showed a low reflectance from the UV through the visible spectrum until the reflectance increased at the red end of the visible spectrum. The crystal structure showed alternating π stacking of the electron-rich 10-methylphenothiazine and the electron-poor 1,3-dinitrobenzene. There were also hydrogen bonding interactions between the nitro groups from 1,3-dinitrobenzene and the aromatic hydrogen atoms from 10-methylphenothiazine. The infrared spectrum showed a shift to lower wavenumbers for the symmetric and antisymmetric stretching modes for the nitro groups. Thin films containing 10-methylphenothiazine in polystyrene were exposed to 1,3-dintrobenzene vapor, and spectroscopic ellipsometry showed an average increase in the refractive index of 0.006 through the entire range of wavelengths from 1000 to 300 nm.
Collapse
Affiliation(s)
- S Keith McNeil
- Department of Chemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336, United States
| | | | | | | | | | | |
Collapse
|
32
|
Sarkar K, Salinas Y, Campos I, Martínez-Máñez R, Marcos MD, Sancenón F, Amorós P. Organic-Inorganic Hybrid Mesoporous Materials as Regenerable Sensing Systems for the Recognition of Nitroaromatic Explosives. Chempluschem 2013; 78:684-694. [DOI: 10.1002/cplu.201300140] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Indexed: 12/31/2022]
|
33
|
Yagur-Kroll S, Lalush C, Rosen R, Bachar N, Moskovitz Y, Belkin S. Escherichia coli bioreporters for the detection of 2,4-dinitrotoluene and 2,4,6-trinitrotoluene. Appl Microbiol Biotechnol 2013; 98:885-95. [PMID: 23615740 DOI: 10.1007/s00253-013-4888-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 03/17/2013] [Accepted: 03/30/2013] [Indexed: 11/25/2022]
Abstract
The primary explosive found in most land mines, 2,4,6-trinitrotoluene (2,4,6-TNT), is often accompanied by 2,4-dinitrotoluene (2,4-DNT) and 1,3-dinitrobenzene (1,3-DNB) impurities. The latter two compounds, being more volatile, have been reported to slowly leak through land mine covers and permeate the soil under which they are located, thus serving as potential indicators for buried land mines. We report on the construction of genetically engineered Escherichia coli bioreporter strains for the detection of these compounds, based on a genetic fusion between two gene promoters, yqjF and ybiJ, to either the green fluorescent protein gene GFPmut2 or to Photorhabdus luminescens bioluminescence luxCDABE genes. These two gene promoters were identified by exposing to 2,4-DNT a comprehensive library of about 2,000 E. coli reporter strains, each harboring a different E. coli gene promoter controlling a fluorescent protein reporter gene. Both reporter strains detected 2,4-DNT in an aqueous solution as well as in vapor form or when buried in soil. Performance of the yqjF-based sensor was significantly improved in terms of detection threshold, response time, and signal intensity, following two rounds of random mutagenesis in the promoter region. Both yqjF-based and ybiJ-based reporters were also induced by 2,4,6-TNT and 1,3-DNB. It was further demonstrated that both 2,4,6-TNT and 2,4-DNT are metabolized by E. coli and that the actual induction of both yqjF and ybiJ is caused by yet unidentified degradation products. This is the first demonstration of an E. coli whole-cell sensor strain for 2,4-DNT and 2,4,6-TNT, constructed using its own endogenous sensing elements.
Collapse
Affiliation(s)
- Sharon Yagur-Kroll
- Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | | | | | | | | | | |
Collapse
|
34
|
Alnemrat S, Hooper JP. Predicting Temperature-Dependent Solid Vapor Pressures of Explosives and Related Compounds Using a Quantum Mechanical Continuum Solvation Model. J Phys Chem A 2013; 117:2035-43. [DOI: 10.1021/jp400164j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Sufian Alnemrat
- Department of Physics, Naval Postgraduate School, Monterey, California 93943, United States
| | - Joseph P. Hooper
- Department of Physics, Naval Postgraduate School, Monterey, California 93943, United States
| |
Collapse
|
35
|
Na JH, Joo MS, Lee WK, Shim H, Lim SH, Jung ST, Yu YG. Development of a Single Chain Antibody Using a Phage Display Cloning Method for the Detection of 2,4-Dinitrotoluene. B KOREAN CHEM SOC 2013. [DOI: 10.5012/bkcs.2013.34.2.460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
Liu T, Zhao K, Liu K, Ding L, Yin S, Fang Y. Synthesis, optical properties and explosive sensing performances of a series of novel π-conjugated aromatic end-capped oligothiophenes. JOURNAL OF HAZARDOUS MATERIALS 2013; 246-247:52-60. [PMID: 23280053 DOI: 10.1016/j.jhazmat.2012.11.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Revised: 10/14/2012] [Accepted: 11/04/2012] [Indexed: 06/01/2023]
Abstract
Four novel terthiophene (3T) derivatives, have been synthesized by employing Grignard coupling reaction via end-capping of naphthyl (NA) or pyrenyl (Py) unit to the one or two ends of 3T. It has been shown that both increasing electron donating strength and extending conjugation are effective approaches to improve the photochemical stability of the oligothiophene. Fluorescence studies demonstrated that the emission of the 3T derivatives is sensitive to the presence of some important nitro-containing explosives in their ethanol solution, in particular, 2,4,6-trinitrophenol (PA) and 3,5-dinitro-2,6-bispicrylamino pyridine (PYX). As an example, the detection limits of 4 to PA and PYX were determined to be 6.21 × 10(-7)mol/L and 8.95 × 10(-7)mol/L, respectively. Based on the discovery, a colorimetric detection method has been developed. The sensitive and selective response of the modified 3T to the explosives have been tentatively attributed to the adsorptive affinity of the compounds to the explosives, and to the higher probability of the electron transfer from the electron-rich 3T derivatives to the electron-poor nitro-containing explosives. No doubt, present study broadens the family of fluorophores which may be employed for the development of fluorescent sensors.
Collapse
Affiliation(s)
- Taihong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China
| | | | | | | | | | | |
Collapse
|
37
|
Wright LK, Zellers ET. A nanoparticle-coated chemiresistor array as a microscale gas chromatograph detector for explosive marker compounds: flow rate and temperature effects. Analyst 2013; 138:6860-8. [DOI: 10.1039/c3an01136d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Demirel GB, Daglar B, Bayindir M. Extremely fast and highly selective detection of nitroaromatic explosive vapours using fluorescent polymer thin films. Chem Commun (Camb) 2013; 49:6140-2. [DOI: 10.1039/c3cc43202e] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
39
|
Shanmugaraju S, Jadhav H, Karthik R, Mukherjee PS. Electron rich supramolecular polymers as fluorescent sensors for nitroaromatics. RSC Adv 2013. [DOI: 10.1039/c3ra23269g] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
40
|
|
41
|
Xin Y, Wang Q, Liu T, Wang L, Li J, Fang Y. A portable and autonomous multichannel fluorescence detector for on-line and in situ explosive detection in aqueous phase. LAB ON A CHIP 2012; 12:4821-4828. [PMID: 23007322 DOI: 10.1039/c2lc40804j] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A multichannel fluorescence detector used to detect nitroaromatic explosives in aqueous phase has been developed, which is composed of a five-channel sample-sensor unit, a measurement and control unit, a microcontroller, and a communication unit. The characteristics of the detector as developed are mainly embedded in the sensor unit, and each sensor consists of a fluorescent sensing film, a light emitting diode (LED), a multi-pixel photon counter (MPPC), and an optical module with special bandpass optical filters. Due to the high sensitivity of the sensing film, the small size and low cost of LED and MPPC, the developed detector not only has a better detecting performance and small size, but also has a very low cost - it is an alternative to the device made with an expensive high power lamp and photomultiplier tube. The wavelengths of the five sensors covered extend from the upper UV through the visible spectrum, 370-640 nm, and thereby it possesses the potential to detect a variety of explosives and other hazardous materials in aqueous phase. An additional function of the detector is its ability to function via a wireless network, by which the data recorded by the detector can be sent to the host computer, and at the same time the instructions can be sent to the detector from the host computer. By means of the powerful computing ability of the host computer, and utilizing the classical principal component analysis (PCA) algorithm, effective classification of the analytes is achieved. Furthermore, the detector has been tested and evaluated using NB, PA, TNT and DNT as the analytes, and toluene, benzene, methanol and ethanol as interferent compounds (concentration various from 10 and 60 μM). It has been shown that the detector can detect the four nitroaromatics with high sensitivity and selectivity.
Collapse
Affiliation(s)
- Yunhong Xin
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, PR China.
| | | | | | | | | | | |
Collapse
|
42
|
Li J, Haddad R, Chen S, Santos V, Luetje CW. A broadly tuned mouse odorant receptor that detects nitrotoluenes. J Neurochem 2012; 121:881-90. [PMID: 22443178 DOI: 10.1111/j.1471-4159.2012.07740.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mammals employ large numbers of odorant receptors to sample and identify volatile chemicals in the environment. These receptors are thought to vary not only in specificity for particular odorants, but also in breadth of tuning. That is, some odorant receptors are narrowly focused on a few closely related structures, while other odorant receptors may be 'broadly tuned', responding to a wide variety of odorant structures. In this study, we have performed a detailed examination the mouse odorant receptor MOR256-17, demonstrating that this receptor is broadly tuned. This receptor responds to odorant structures that span a significant portion of a multi-dimensional odor space. However, we found that broad tuning was not a defining characteristic of other members the MOR256 subfamily. Two additional members of this odorant receptor subfamily (MOR256-8 and MOR256-22) were more narrowly focused on small sets of odorant structures. Interestingly, the receptive range of MOR256-17 encompassed a variety of nitrotoluenes, including various trinitrotoluene synthesis intermediates, degradation products and trinitrotoluene itself, suggesting the potential utility of odorant receptors in the development of sensing technologies for the detection of explosives and other forms of contraband.
Collapse
Affiliation(s)
- Jingyi Li
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, Florida 33101, USA
| | | | | | | | | |
Collapse
|
43
|
Lönneborg R, Varga E, Brzezinski P. Directed evolution of the transcriptional regulator DntR: isolation of mutants with improved DNT-response. PLoS One 2012; 7:e29994. [PMID: 22276138 PMCID: PMC3261848 DOI: 10.1371/journal.pone.0029994] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 12/07/2011] [Indexed: 11/18/2022] Open
Abstract
The transcriptional regulator DntR, which previously has been isolated from bacterial strains capable of degrading 2,4-dinitrotoluene (DNT), was engineered in order to improve the ability to detect DNT. A directed evolution strategy was employed, where sequence diversity first was created by random mutagenesis in three subsequent rounds, followed by recombination of previously selected mutants. A gfp gene was used as a reporter for transcriptional activity mediated by DntR and cells with higher GFP expression after addition of DNT were sorted out using fluorescence-activated cell sorting (FACS). A DntR mutant, which displayed 10 times higher induction levels than wild-type DntR in response to DNT was isolated. This mutant still maintained low levels of gfp expression in the absence of DNT. The detection limit was ∼10 µM, a 25-fold improvement compared to wild-type DntR. The functional role of some substitutions found in this clone is discussed in the framework of the structural changes observed when comparing the recently determined structures of DntR with and without bound inducer ligand.
Collapse
Affiliation(s)
- Rosa Lönneborg
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
- * E-mail: (RL); (PB)
| | - Edina Varga
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
- * E-mail: (RL); (PB)
| |
Collapse
|
44
|
Satapathi S, Li L, Anandakathir R, Samuelson LA, Kumar J. Sensory Response and Two-Photon-Fluorescence Study of Regioregular Polythiophene Nanoparticles. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2011. [DOI: 10.1080/10601325.2011.620452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
45
|
Shanmugaraju S, Joshi SA, Mukherjee PS. Self-Assembly of Metallamacrocycles Using a Dinuclear Organometallic Acceptor: Synthesis, Characterization, and Sensing Study. Inorg Chem 2011; 50:11736-45. [DOI: 10.1021/ic201745y] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
| | - Sachin A. Joshi
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012, India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
46
|
Mäkinen M, Nousiainen M, Sillanpää M. Ion spectrometric detection technologies for ultra-traces of explosives: a review. MASS SPECTROMETRY REVIEWS 2011; 30:940-973. [PMID: 21294149 DOI: 10.1002/mas.20308] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In recent years, explosive materials have been widely employed for various military applications and civilian conflicts; their use for hostile purposes has increased considerably. The detection of different kind of explosive agents has become crucially important for protection of human lives, infrastructures, and properties. Moreover, both the environmental aspects such as the risk of soil and water contamination and health risks related to the release of explosive particles need to be taken into account. For these reasons, there is a growing need to develop analyzing methods which are faster and more sensitive for detecting explosives. The detection techniques of the explosive materials should ideally serve fast real-time analysis in high accuracy and resolution from a minimal quantity of explosive without involving complicated sample preparation. The performance of the in-field analysis of extremely hazardous material has to be user-friendly and safe for operators. The two closely related ion spectrometric methods used in explosive analyses include mass spectrometry (MS) and ion mobility spectrometry (IMS). The four requirements-speed, selectivity, sensitivity, and sampling-are fulfilled with both of these methods.
Collapse
Affiliation(s)
- Marko Mäkinen
- Laboratory of Applied Environmental Chemistry, Department of Environmental Science, University of Eastern Finland, Patteristonkatu 1, 50100 Mikkeli, Finland.
| | | | | |
Collapse
|
47
|
Choi SS, Kim OB, Kim YK, An SG, Shin MW, Maeng SJ, Choi GS. Negative Ion Formation of Pentaerythritol Tetranitrate in Atmospheric Pressure Chemical Ionization-Mass Spectrometry and in Corona Discharge Ionization-Ion Mobility Spectrometry. B KOREAN CHEM SOC 2011. [DOI: 10.5012/bkcs.2011.32.3.1055] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
48
|
Shanmugaraju S, Bar AK, Joshi SA, Patil YP, Mukherjee PS. Constructions of 2D-Metallamacrocycles Using Half-Sandwich RuII2 Precursors: Synthesis, Molecular Structures, and Self-Selection for a Single Linkage Isomer. Organometallics 2011. [DOI: 10.1021/om2000019] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | - Arun Kumar Bar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560 012, India
| | - Sachin A. Joshi
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560 012, India
| | - Yogesh P. Patil
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560 012, India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560 012, India
| |
Collapse
|
49
|
Shanmugaraju S, Joshi SA, Mukherjee PS. Fluorescence and visual sensing of nitroaromatic explosives using electron rich discrete fluorophores. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm10406c] [Citation(s) in RCA: 200] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
50
|
Shanmugaraju S, Samanta D, Gole B, Mukherjee PS. Coordination-driven self-assembly of 2D-metallamacrocycles using a shape-selective PtII2-organometallic 90° acceptor: design, synthesis and sensing study. Dalton Trans 2011; 40:12333-41. [DOI: 10.1039/c1dt10790a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|