López-Legentil S, Turon X, Erwin PM. Feeding cessation alters host morphology and bacterial communities in the ascidian Pseudodistoma crucigaster.
Front Zool 2016;
13:2. [PMID:
26770257 PMCID:
PMC4712478 DOI:
10.1186/s12983-016-0134-4]
[Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 01/07/2016] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND
Ascidians can associate with abundant and diverse consortia of microbial symbionts, yet these communities remain unexamined for the majority of host ascidians and little is known about host-symbiont interactions.
METHODS
We coupled electron microscopy and 16S rRNA gene tag pyrosequencing to investigate the bacterial communities associated with the colonial ascidian Pseudodistoma crucigaster, a species endemic to the Mediterranean Sea that has a life cycle with two phases: actively-filtering (active) and non-filtering (resting) forms.
RESULTS
Resting colonies exhibited a reduced branchial sac (feeding apparatus) and a thickened cuticle. Electron microscope images also suggested higher abundance of colonizing microorganisms on surfaces of resting colonies. Accordingly, bacterial sequences associated with environmental sources (sediment and biofilms, >99 % similarity) were detected exclusively in resting colonies. Bacterial communities of P. crucigaster colonies (active and resting) were dominated by 3 core taxa affiliated (>94 % similarity) with previously described symbiotic Alphaproteobacteria in marine invertebrates. Shifts in rare bacteria were detected when ascidians entered the resting phase, including the appearance of strictly anaerobic lineages and nitrifying bacterial guilds.
CONCLUSIONS
These findings suggest that physical (thickened cuticle) and metabolic (feeding cessation) changes in host ascidians have cascading effects on associated bacteria, where modified oxygen concentrations and chemical substrates for microbial metabolism may create anaerobic microhabitats and promote colonization by environmental microorganisms.
Collapse