1
|
Hazelard D, Compain P. Nucleophilic Ring‐Opening of 1,6‐Anhydrosugars: Recent Advances and Applications in Organic Synthesis. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Damien Hazelard
- Laboratoire d'Innovation Moléculaire et Applications (LIMA) Univ. de Strasbourg Univ. de Haute-Alsace CNRS (UMR 7042) Equipe de Synthèse Organique et Molécules Bioactives (SYBIO) ECPM 25 Rue Becquerel 67000 Strasbourg France
| | - Philippe Compain
- Laboratoire d'Innovation Moléculaire et Applications (LIMA) Univ. de Strasbourg Univ. de Haute-Alsace CNRS (UMR 7042) Equipe de Synthèse Organique et Molécules Bioactives (SYBIO) ECPM 25 Rue Becquerel 67000 Strasbourg France
| |
Collapse
|
2
|
van der
Vorm S, Overkleeft HS, van der Marel GA, Codée JDC. Stereoselectivity of Conformationally Restricted Glucosazide Donors. J Org Chem 2017; 82:4793-4811. [PMID: 28401764 PMCID: PMC5423080 DOI: 10.1021/acs.joc.7b00470] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Indexed: 01/08/2023]
Abstract
Glycosylations of 4,6-tethered glucosazide donors with a panel of model acceptors revealed the effect of acceptor nucleophilicity on the stereoselectivity of these donors. The differences in reactivity among the donors were evaluated in competitive glycosylation reactions, and their relative reactivities were found to be reflected in the stereoselectivity in glycosylations with a set of fluorinated alcohols as well as carbohydrate acceptors. We found that the 2-azido-2-deoxy moiety is more β-directing than its C-2-O-benzyl counterpart, as a consequence of increased destabilization of anomeric charge development by the electron-withdrawing azide. Additional disarming groups further decreased the α-selectivity of the studied donors, whereas substitution of the 4,6-benzylidene acetal with a 4,6-di-tert-butyl silylidene led to a slight increase in α-selectivity. The C-2-dinitropyridone group was also explored as an alternative for the nonparticipating azide group, but this protecting group significantly increased β-selectivity. All studied donors exhibited the same acceptor-dependent selectivity trend, and good α-selectivity could be obtained with the weakest acceptors and most reactive donors.
Collapse
Affiliation(s)
- Stefan van der
Vorm
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Herman S. Overkleeft
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | | | - Jeroen D. C. Codée
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
3
|
Manoel EA, Ribeiro MF, dos Santos JC, Coelho MAZ, Simas AB, Fernandez-Lafuente R, Freire DM. Accurel MP 1000 as a support for the immobilization of lipase from Burkholderia cepacia : Application to the kinetic resolution of myo -inositol derivatives. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.06.023] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
4
|
Christensen HM, Oscarson S, Jensen HH. Common side reactions of the glycosyl donor in chemical glycosylation. Carbohydr Res 2015; 408:51-95. [DOI: 10.1016/j.carres.2015.02.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/12/2015] [Accepted: 02/18/2015] [Indexed: 12/13/2022]
|
5
|
|
6
|
Ngoje G, Li Z. Study of the stereoselectivity of 2-azido-2-deoxyglucosyl donors: protecting group effects. Org Biomol Chem 2013; 11:1879-86. [PMID: 23380832 DOI: 10.1039/c3ob26994a] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of tolyl 2-azido-2-deoxy-thio-glucoside donors with different combinations of protecting groups were prepared. These donors were used in glycosylation reactions to test the correlations between the stereoselectivity and the pattern of the protecting groups. Acetyl groups showed a position dependent stereo-directing effect. A remote participating mechanism is proposed to explain the observed results.
Collapse
Affiliation(s)
- George Ngoje
- Binghamton University, Department of Chemistry, Binghamton, NY 13902, USA
| | | |
Collapse
|
7
|
Hansen SU, Miller GJ, Baráth M, Broberg KR, Avizienyte E, Helliwell M, Raftery J, Jayson GC, Gardiner JM. Synthesis and scalable conversion of L-iduronamides to heparin-related di- and tetrasaccharides. J Org Chem 2012; 77:7823-43. [PMID: 22900939 DOI: 10.1021/jo300722y] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A diastereomerically pure cyanohydrin, preparable on kilogram scale, is efficiently converted in one step into a novel L-iduronamide. A new regioselective acylation of this iduronamide and a new mild amide hydrolysis method mediated by amyl nitrite enables short, scalable syntheses of an L-iduronate diacetate C-4 acceptor, and also L-iduronate C-4 acceptor thioglycosides. Efficient conversions of these to a range of heparin-related gluco-ido disaccharide building blocks (various C-4 protection options) including efficient multigram access to key heparin-building block ido-thioglycoside donors are described. A 1-OAc disaccharide is converted into a heparin-related tetrasaccharide, via divergence to both acceptor and donor disaccharides. X-ray and NMR data of the 1,2-diacetyl iduronate methyl ester and the analogous iduronamide show that while both adopt (1)C(4) conformations in solution, the iduronate ester adopts the (4)C(1) conformation in solid state. An X-ray structure is also reported for the novel, (4)C(1)-conformationally locked bicyclic 1,6-anhydro iduronate lactone along with an X-ray structures of a novel distorted (4)C(1) iduronate 4,6-lactone. Deuterium labeling also provides mechanistic insight into the formation of lactone products during the novel amyl nitrite-mediated hydrolysis of iduronamide into the parent iduronic acid functionality.
Collapse
Affiliation(s)
- Steen U Hansen
- School of Chemistry and Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Enugala R, Carvalho LCR, Dias Pires MJ, Marques MMB. Stereoselective Glycosylation of Glucosamine: The Role of the
N
‐Protecting Group. Chem Asian J 2012; 7:2482-501. [DOI: 10.1002/asia.201200338] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Indexed: 12/17/2022]
Affiliation(s)
- Ramu Enugala
- Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica 2829‐516 Caparica (Portugal), Fax: (+351) 21‐294‐8550
| | - Luísa C. R. Carvalho
- Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica 2829‐516 Caparica (Portugal), Fax: (+351) 21‐294‐8550
| | - Marina J. Dias Pires
- Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica 2829‐516 Caparica (Portugal), Fax: (+351) 21‐294‐8550
| | - M. Manuel B. Marques
- Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica 2829‐516 Caparica (Portugal), Fax: (+351) 21‐294‐8550
| |
Collapse
|
9
|
Iwata R, Sudo M, Nagafuji K, Wada T. Synthesis of oligodiaminosaccharides having α-glycoside bonds and their interactions with oligonucleotide duplexes. J Org Chem 2011; 76:5895-906. [PMID: 21688799 DOI: 10.1021/jo200951p] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Syntheses of the novel oligodiaminosaccharides, α-(1→4)-linked-2,6-diamino-2,6-dideoxy-D-glucopyranose oligomers, and their interactions with nucleic acid duplexes DNA-DNA, RNA-RNA, and DNA-RNA are described. Monomers to tetramers of oligodiaminoglucose derivatives having α-glycosyl bonds were successfully synthesized using a chain elongation cycle including glycosylation reactions of a 6-phthalimide glycosyl donor. UV melting experiments for a variety of nucleic acid duplexes in the absence and presence of the oligodiaminosaccharides were performed. The synthesized oligodiaminosaccharides exhibited notable thermodynamic stabilization effects on A-type RNA-RNA and DNA-RNA duplexes, whereas B-type DNA-DNA duplexes were not stabilized by the synthesized oligodiaminosaccharides. Among the oligodiaminosaccharides, the tetramer exhibited the highest ability to stabilize A-type duplexes, and the increase in T(m) values induced by the tetramer were higher than those induced by neomycin B and tobramycin, which are known aminoglycosides having ability to bind and stabilize a variety of RNA molecules. CD spectrometry experiments revealed that the oligodiaminosaccharides caused small structural changes in RNA-RNA duplexes, whereas no appreciable changes were observed in the structure of DNA-DNA duplexes. ITC (isothermal titration calorimetry) experiments demonstrated that the amount of heat generated by the interaction between RNA-RNA duplexes and the tetradiaminosaccharides was approximately double that generated by that between DNA-DNA duplexes and the tetradiaminosaccharides. These results strongly suggested the existence of an A-type nucleic acid specific-binding mode of the oligodiaminosaccharides, which bind to these duplexes and cause small structural changes.
Collapse
Affiliation(s)
- Rintaro Iwata
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Bioscience Building 702, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | | | | | | |
Collapse
|
10
|
Nkambule CM, Kwezi NW, Kinfe HH, Nokwequ MG, Gammon DW, Oscarson S, Karlsson E. Efficient regioselective protection of myo-inositol via facile protecting group migration. Tetrahedron 2011. [DOI: 10.1016/j.tet.2010.11.063] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Hansen SU, Baráth M, Salameh BAB, Pritchard RG, Stimpson WT, Gardiner JM, Jayson GC. Scalable synthesis of L-iduronic acid derivatives via stereocontrolled cyanohydrin reaction for synthesis of heparin-related disaccharides. Org Lett 2009; 11:4528-31. [PMID: 19764712 DOI: 10.1021/ol901723m] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
L-ido cyanohydrin 3 was prepared from diacetone-D-glucose in four steps and 76% overall yield and 90% de via cyanohydrin reaction of aldehyde 2. This process can be scaled to provide >1 mol of pure L-ido cyanohydrin 3. Cyanohydrin 3 was elaborated to 1,2-isopropylidine-protected L-ido nitrile (8), iduronic amide 9, and known carboxy ester 10. Coupling of 8 and 9 with glucosamine donors leads to new types (6-cyano and 6-carboxamide) of heparin-related disaccharides.
Collapse
Affiliation(s)
- Steen Uldall Hansen
- School of Chemistry and Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| | | | | | | | | | | | | |
Collapse
|
12
|
López-Prados J, Cuevas F, Reichardt NC, de Paz JL, Morales EQ, Martín-Lomas M. Design and synthesis of inositolphosphoglycan putative insulin mediators. Org Biomol Chem 2005; 3:764-86. [PMID: 15731862 DOI: 10.1039/b418041k] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The binding modes of a series of molecules, containing the glucosamine (1-->6) myo-inositol structural motif, into the ATP binding site of the catalytic subunit of cAMP-dependent protein kinase (PKA) have been analysed using molecular docking. These calculations predict that the presence of a phosphate group at the non-reducing end in pseudodisaccharide and pseudotrisaccharide structures properly orientate the molecule into the binding site and that pseudotrisaccharide structures present the best shape complementarity. Therefore, pseudodisaccharides and pseudotrisaccharides have been synthesised from common intermediates using effective synthetic strategies. On the basis of this synthetic chemistry, the feasibility of constructing small pseudotrisaccharide libraries on solid-phase using the same intermediates has been explored. The results from the biological evaluation of these molecules provide additional support to an insulin-mediated signalling system which involves the intermediacy of inositolphosphoglycans as putative insulin mediators.
Collapse
Affiliation(s)
- Javier López-Prados
- Grupo de Carbohidratos, Instituto de Investigaciones Químicas, CSIC, Américo Vespucio s/n, 41092, Sevilla, Spain
| | | | | | | | | | | |
Collapse
|
13
|
Tsuda T, Nakamura S, Hashimoto S. A highly stereoselective construction of 1,2-trans-β-glycosidic linkages capitalizing on 2-azido-2-deoxy-d-glycosyl diphenyl phosphates as glycosyl donors. Tetrahedron 2004. [DOI: 10.1016/j.tet.2004.08.076] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Painter GF, Eldridge PJ, Falshaw A. Syntheses of tetrahydroxyazepanes from chiro-inositols and their evaluation as glycosidase inhibitors. Bioorg Med Chem 2004; 12:225-32. [PMID: 14697787 DOI: 10.1016/j.bmc.2003.10.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Two pairs of C(2)-symmetric tetrahydroxyazepanes [(-), (+)-1 and (-), (+)-2] have been synthesized from the enantiomeric chiro-inositols and evaluated as glycosidase inhibitors. Alternative syntheses of ido-tetrahydroxyazepanes (-)- and (+)-2 from myo-inositol were also developed. The key synthetic transformations were glycol fission and cyclization of the derived dialdehydes by double reductive amination. The D-manno-tetrahydroxyazepane [(-)-1] showed selective inhibition of alpha-L-fucosidase and beta-D-galactosidase, while the enantiomer [(+)-1] was a selective inhibitor of an alpha-D-galactosidase. In contrast, the L-ido-tetrahydroxyazepane (+)-2 was a broad spectrum hexosidase inhibitor, but showed none of the reported hexosaminidase inhibition. Its enantiomer (-)-2 is a poor hexosidase inhibitor.
Collapse
Affiliation(s)
- Gavin F Painter
- Carbohydrate Chemistry, Industrial Research Limited, PO Box 31-310, Lower Hutt, New Zealand.
| | | | | |
Collapse
|
15
|
Sureshan KM, Shashidhar MS, Praveen T, Das T. Regioselective Protection and Deprotection of Inositol Hydroxyl Groups. Chem Rev 2003; 103:4477-503. [PMID: 14611268 DOI: 10.1021/cr0200724] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kana M Sureshan
- Division of Organic Synthesis, National Chemical Laboratory, Pune 411 008, India
| | | | | | | |
Collapse
|
16
|
A stereocontrolled construction of 2-azido-2-deoxy-1,2-trans-β-glycosidic linkages utilizing 2-azido-2-deoxyglycopyranosyl diphenyl phosphates. Tetrahedron Lett 2003. [DOI: 10.1016/s0040-4039(03)01557-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Gammon DW, Hunter R, Steenkamp DJ, Mudzunga TT. Synthesis of 2-deoxy-2-C-alkylglucosides of myo-inositol as possible inhibitors of a N-deacetylase enzyme in the biosynthesis of mycothiol. Bioorg Med Chem Lett 2003; 13:2045-9. [PMID: 12781192 DOI: 10.1016/s0960-894x(03)00157-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Two new analogues of 1-D-1-O-(2-acetamido-2-deoxy-alpha-D-glucopyranosyl)-myo-inositol, a biosynthetic intermediate in the production of mycothiol in the Mycobacteria have been synthesized. Both the 2-deoxy-2-C-(2'-hydroxypropyl)-D-glucoside 5, and the 2-deoxy-2-C-(2'-oxopropyl)-D-glucoside 6, are derived from fully benzylated 1-D-1-O-(2-C-allyl-2-deoxy)-D-glucopyranosyl)-myo-inositol 20, readily assembled via a protected 2-C-allyl-2-deoxyglucosyl fluoride. Both 5 and 6 inhibit the incorporation of [3H]inositol by whole cells of Mycobacterium smegmatis into a number of metabolites which contain inositol.
Collapse
Affiliation(s)
- David W Gammon
- Department of Chemistry, University of Cape Town, 7701, Rondebosch, South Africa
| | | | | | | |
Collapse
|
18
|
Lahmann M, Garegg PJ, Konradsson P, Oscarson S. Synthesis of a polyphosphorylated GPI-anchor core structure. CAN J CHEM 2002. [DOI: 10.1139/v02-160] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Using a linear assembly approach a highly differentially protected derivative of the common GPI-anchor core structure (α-D-Man-(1[Formula: see text]6)-α-D-Man-(1[Formula: see text]2)-α-D-Man-(1[Formula: see text]4)-α-D-GlcNH2-(1[Formula: see text]6)-D-myo-inositol) has been synthesized. All mannose donors were prepared from a common thioglycoside precursor (1), and coupled to GlcN3-myo-inositol acceptor 5 in a linear five-step glycosylationdeprotection sequence in 49% overall yield, to give the key intermediate 10, with orthogonal temporary protecting groups at the 6'', 2'', 6', and 2 positions of the trimannoside motif and at the 1 and 2 positions of the inositol part. Consecutive removal of the temporary protecting groups in the trimannoside moiety followed by phosphorylation, gave a tetraphosphosphate derivative in 60% overall yield. Removal of a camphor acetal afforded a 1,2-inositol diol, which was converted to a 1,2-cyclic phosphate using commercial methyl dichlorophosphate ([Formula: see text]17, 95%). One-step deprotection using sodium in liquid ammonia afforded the target polyphosphorylated core structure 18 (60%), which will be tested for metabolic insulin action.Key words: glycophosphatidylinositols, linear synthesis, glycosylations, inositolphosphoglycans, IPG.
Collapse
|
19
|
Lindberg J, Strålfors P, Konradsson P. Synthesis of inositol phosphoglycans containing thiol-terminated spacers for efficient coupling to maleimide functionalized solid phases or proteins. Tetrahedron 2002. [DOI: 10.1016/s0040-4020(02)00359-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|