1
|
Zhang J, Terreni M, Liu F, Sollogoub M, Zhang Y. Ganglioside GM3-based anticancer vaccines: Reviewing the mechanism and current strategies. Biomed Pharmacother 2024; 176:116824. [PMID: 38820973 DOI: 10.1016/j.biopha.2024.116824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/17/2024] [Accepted: 05/26/2024] [Indexed: 06/02/2024] Open
Abstract
Ganglioside GM3 is one of the most common membrane-bound glycosphingolipids. The over-expression of GM3 on tumor cells makes it defined as a tumor-associated carbohydrate antigen (TACA). The specific expression property in cancers, especially in melanoma, make it become an important target to develop anticancer vaccines or immunotherapies. However, in the manner akin to most TACAs, GM3 is an autoantigen facing with problems of low immunogenicity and easily inducing immunotolerance, which means itself only cannot elicit a powerful enough immune response to prevent or treat cancer. With a comparative understanding of the mechanisms that how immune system responses to the carbohydrate vaccines, this review summarizes the studies on the recent efforts to development GM3-based anticancer vaccines.
Collapse
Affiliation(s)
- Jiaxu Zhang
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, Paris 75005, France; College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Marco Terreni
- Drug Sciences Department, University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| | - Fang Liu
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, Paris 75005, France
| | - Matthieu Sollogoub
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, Paris 75005, France
| | - Yongmin Zhang
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, Paris 75005, France; College of Life Sciences, Northwest University, Xi'an 710069, China.
| |
Collapse
|
2
|
Yin XG, Lu J, Wang J, Zhang RY, Wang XF, Liao CM, Liu XP, Liu Z, Guo J. Synthesis and Evaluation of Liposomal Anti-GM3 Cancer Vaccine Candidates Covalently and Noncovalently Adjuvanted by αGalCer. J Med Chem 2021; 64:1951-1965. [PMID: 33539088 DOI: 10.1021/acs.jmedchem.0c01186] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
GM3, a typical tumor-associated carbohydrate antigen, is considered as an important target for cancer vaccine development, but its low immunogenicity limits its application. αGalCer, an iNKT cell agonist, has been employed as an adjuvant via a unique immune mode. Herein, we prepared and investigated two types of antitumor vaccine candidates: (a) self-adjuvanting vaccine GM3-αGalCer by conjugating GM3 with αGalCer and (b) noncovalent vaccine GM3-lipid/αGalCer, in which GM3 is linked with lipid anchor and coassembled with αGalCer. This demonstrated that βGalCer is an exceptionally optimized lipid anchor, which enables the noncovalent vaccine candidate GM3-βGalCer/αGalCer to evoke a comparable antibody level to GM3-αGalCer. However, the antibodies induced by GM3-αGalCer are better at recognition B16F10 cancer cells and more effectively activate the complement system. Our study highlights the importance of vaccine constructs utilizing covalent or noncovalent assembly between αGalCer with carbohydrate antigens and choosing an appropriate lipid anchor for use in noncovalent vaccine formulation.
Collapse
Affiliation(s)
- Xu-Guang Yin
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Jie Lu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Jian Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Ru-Yan Zhang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Xi-Feng Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Chun-Miao Liao
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Xiao-Peng Liu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Zheng Liu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Jun Guo
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| |
Collapse
|
3
|
Cieckiewicz E, Mathieu V, Angenot L, Gras T, Dejaegher B, de Tullio P, Pirotte B, Frédérich M. Semisynthesis and in Vitro Photodynamic Activity Evaluations of Halogenated and Glycosylated Derivatives of Pheophorbidea. European J Org Chem 2015. [DOI: 10.1002/ejoc.201500387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
4
|
Qu H, Liu JM, Wdzieczak-Bakala J, Lu D, He X, Sun W, Sollogoub M, Zhang Y. Synthesis and cytotoxicity assay of four ganglioside GM3 analogues. Eur J Med Chem 2014; 75:247-57. [DOI: 10.1016/j.ejmech.2014.01.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 01/21/2014] [Accepted: 01/24/2014] [Indexed: 11/25/2022]
|
5
|
Recent advances in developing synthetic carbohydrate-based vaccines for cancer immunotherapies. Future Med Chem 2012; 4:545-84. [DOI: 10.4155/fmc.11.193] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cancer cells can often be distinguished from healthy cells by the expression of unique carbohydrate sequences decorating the cell surface as a result of aberrant glycosyltransferase activity occurring within the cell; these unusual carbohydrates can be used as valuable immunological targets in modern vaccine designs to raise carbohydrate-specific antibodies. Many tumor antigens (e.g., GM2, Ley, globo H, sialyl Tn and TF) have been identified to date in a variety of cancers. Unfortunately, carbohydrates alone evoke poor immunogenicity, owing to their lack of ability in inducing T-cell-dependent immune responses. In order to enhance their immunogenicity and promote long-lasting immune responses, carbohydrates are often chemically modified to link to an immunogenic protein or peptide fragment for eliciting T-cell-dependent responses. This review will present a summary of efforts and advancements made to date on creating carbohydrate-based anticancer vaccines, and will include novel approaches to overcoming the poor immunogenicity of carbohydrate-based vaccines.
Collapse
|
6
|
Wang Q, Guo Z. Synthetic and Immunological Studies of sTn Derivatives Carrying 5-N-(p-Substituted Phenylacetyl)Sialic Acid for the Development of Effective Cancer Vaccines. ACS Med Chem Lett 2011; 2:373-378. [PMID: 21691430 DOI: 10.1021/ml100313d] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
To search for effective cancer vaccines based on sTn, a sialylated tumor-associated carbohydrate antigen (sialo-TACA) expressed by a number of tumors, four unnatural N-acyl sTn derivatives, including 5'-N-p-methylphenylacetyl sTn (sTnNMePhAc), 5'-N-p-methoxylphenylacetyl sTn (sTnNMeOPhAc), 5'-N-p-acetylphenylacetyl sTn (sTnNAcPhAc) and 5'-N-p-chlorophenylacetyl sTn (sTnNClPhAc), as well as their protein conjugates, were synthesized by a highly convergent procedure. The immunological properties of these sTn derivatives in the form of keyhole limpet hemocyanin conjugate were evaluated in mice and compared to that of sTnNPhAc, a sTn derivative previously investigated as a vaccine candidate. It was shown that sTnNMePhAc, sTnNMeOPhAc, sTnNAcPhAc and sTnNClPhAc are all much more immunogenic than sTnNPhAc and that they provoked strong T cell-dependent IgG1 immune responses useful for cancer immunotherapy. It was concluded that sTnNClPhAc is a promising candidate for cancer vaccine development and is worthy further investigation.
Collapse
Affiliation(s)
- Qianli Wang
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Zhongwu Guo
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| |
Collapse
|
7
|
Nikolaev AV, Al-Maharik N. Synthetic glycosylphosphatidylinositol (GPI) anchors: how these complex molecules have been made. Nat Prod Rep 2011; 28:970-1020. [PMID: 21448495 DOI: 10.1039/c0np00064g] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Andrei V Nikolaev
- College of Life Sciences, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, DD1 5EH, UK.
| | | |
Collapse
|
8
|
Wang Q, Guo Z. Coupling carbohydrates to proteins for glycoconjugate vaccine development using a pentenoyl group as a convenient linker. Methods Mol Biol 2011; 751:309-316. [PMID: 21674339 DOI: 10.1007/978-1-61779-151-2_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Carbohydrates are important molecular targets in the development of vaccines against cancer, viral and bacterial infections, and many other diseases. However, carbohydrates are usually poorly immunogenic and cannot induce a T cell-dependent immune response that is necessary for effective immunity. To overcome this problem, carbohydrate antigens have to be coupled to an immunogenic carrier molecule, such as a protein, to improve their immunogenicity. To this end, many carbohydrate-protein coupling methods have been developed. A recently established method is based on the introduction of an azido group to carbohydrate antigens during their syntheses, and after the carbohydrate antigens are synthesized, the azido group can be selectively reduced to a free amino group, to which a 4-pentenoyl group can be readily and regiospecifically attached. Thereafter, the C=C bond of the pentenoyl group is ozonolyzed to generate a reactive aldehyde functionality, through which the carbohydrate antigens are linked to carrier proteins by reductive amination. Since the azido group is orthogonal to most transformations involved in carbohydrate synthesis, it can be introduced at an early stage of the synthesis. Moreover, since the pentenoyl group, as well as its aldehyde derivative, is attached to the carbohydrate antigens after they are synthesized, this would significantly simplify the synthetic design of complex carbohydrates, including the design of protecting tactics.
Collapse
|
9
|
Yu S, Wang Q, Zhang J, Wu Q, Guo Z. Synthesis and Evaluation of Protein Conjugates of GM3 Derivatives Carrying Modified Sialic Acids as Highly Immunogenic Cancer Vaccine Candidates. MEDCHEMCOMM 2011; 2:524-530. [PMID: 21927709 DOI: 10.1039/c1md00033k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
GM3, a sialylated trisaccharide antigen expressed by a number of tumors, is an attractive target in the design of therapeutic cancer vaccines. However, a serious problem associated with GM3 is that it is poorly immunogenic. To overcome this problem for the development of GM3-based cancer vaccines, four GM3 derivatives, including 5'-N-p-methylphenylacetyl, 5'-N-p-methoxyphenylacetyl, 5'-N-p-acetophenylacetyl and 5'-N-p-chlorophenylacetyl GM3, were synthesized and then coupled to a carrier protein, keyhole limpet haemocyanin (KLH). The resultant glycoconjugates were evaluated as vaccines in mouse and compared to the KLH conjugate of 5'-N-phenylacetyl GM3 (GM3NPhAc), a highly immunogenic GM3 derivative that was previously investigated as a vaccine candidate. All of the four new GM3 derivatives were proved to be more immunogenic than GM3NPhAc and elicit very strong T cell-dependent immune responses desirable for cancer immunotherapy. It was concluded that the new GM3 derivatives can form promising vaccine candidates that may be used to combine with cell glycoengineering for cancer immunotherapy.
Collapse
Affiliation(s)
- Shichong Yu
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China
| | | | | | | | | |
Collapse
|
10
|
Abstract
Easy, quantitative, and one-pot introduction of eight β-lactoside-modules onto a porphyrin-core was achieved through Cu+-catalyzed chemoselective coupling (click chemistry) between a porphyrin carrying eight alkyne-terminals and β-lactosyl azides. The obtained porphyrin-based glycocluster shows not only good water-solubility but also strong/specific lectin-affinity.
Collapse
|
11
|
Hu H, Xue J, Swarts BM, Wang Q, Wu Q, Guo Z. Synthesis and Antibacterial Activities of N-Glycosylated Derivatives of Tyrocidine A, a Macrocyclic Peptide Antibiotic. J Med Chem 2009; 52:2052-9. [DOI: 10.1021/jm801577r] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Honggang Hu
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Jie Xue
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Benjamin M. Swarts
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Qianli Wang
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Qiuye Wu
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Zhongwu Guo
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
12
|
Wang Q, Ekanayaka SA, Wu J, Zhang J, Guo Z. Synthetic and immunological studies of 5'-N-phenylacetyl sTn to develop carbohydrate-based cancer vaccines and to explore the impacts of linkage between carbohydrate antigens and carrier proteins. Bioconjug Chem 2008; 19:2060-7. [PMID: 18816108 PMCID: PMC2652678 DOI: 10.1021/bc800243f] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
5'- N-Phenylacetyl sTn (sTnNPhAc), an unnatural derivative of sTn antigen expressed by many tumors, and its alpha-linked protein conjugates were prepared and investigated to explore glycoconjugate cancer vaccines. sTnNPhAcalpha-KLH elicited a robust T cell dependent immunity. The antiserum derived from sTnNPhAcalpha- or sTnNPhAcbeta-KLH-inoculated mice was similarly reactive to sTnNPhAcalpha and sTnNPhAcbeta but showed very little reactivity to sTn, NeuNPhAcalpha(2,3)GalNAc--a regioisomer of sTnNPhAc, isolated phenylacetyl group, and the linker employed to conjugate sTnNPhAc and carrier protein. It was concluded that the sTnNPhAc-elicited immunity was specific for the whole antigen rather than the phenylacetyl group or other partial structures of sTnNPhAc and that the reducing end configuration or linkage of sTnNPhAc did not affect its immunological identity. It was also concluded that a new linker designed to conjugate carbohydrates and proteins did not provoke any immune reaction and that the linker, as well as the associated new and convenient coupling strategy, can be safely used for the development of glycoconjugate vaccines.
Collapse
Affiliation(s)
- Qianli Wang
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, USA
| | | | - Jian Wu
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, USA
| | - Junping Zhang
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, USA
| | - Zhongwu Guo
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, USA
| |
Collapse
|
13
|
|
14
|
Matsuoka K, Onaga T, Mori T, Sakamoto JI, Koyama T, Sakairi N, Hatano K, Terunuma D. Synthesis of a useful lauryl thioglycoside of sialic acid and its application. Tetrahedron Lett 2004. [DOI: 10.1016/j.tetlet.2004.10.105] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|