1
|
Meloni G, Morgan L, Cappelletti D, Bevilacqua M, Graiff C, Pinter P, Biffis A, Tubaro C, Baron M. Exploring the reductive CO 2 fixation with amines and hydrosilanes using readily available Cu(II) NHC-phenolate catalyst precursors. Dalton Trans 2024; 53:18128-18140. [PMID: 39474859 DOI: 10.1039/d4dt02936d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
N-Methylation of amines is of great interest in the synthesis of pharmaceuticals and valuable compounds, and the possibility to perform this reaction with an inexpensive and non-toxic substrate like CO2 and its derivatives is quite appealing. Herein, the synthesis of four novel homoleptic Cu(II) complexes with hybrid NHC-phenolate (NHC = N-Heterocyclic Carbene) ligands is reported, and their use in the catalytic N-methylation of amines with CO2 in the presence of hydrosilanes is explored. Both bidentate or tetradentate ligands can be used in the preparation of the complexes provided that the structural requirement that the two NHC and the two phenolate donors in the metal coordination sphere are mutually in trans is fulfilled. A new reaction protocol to perform the N-methylation of secondary aromatic amines and dibenzylamine in high yield under mild reaction conditions is developed, using the ionic liquid [BMMIM][NTf2] (1-butyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide) as solvent and the catalyst precursor [Cu(L2)2]. Reactivity studies indicate that the reaction follows two different pathways with different hydrosilanes, and that the starting Cu(II) complexes are reduced under the catalytic conditions.
Collapse
Affiliation(s)
- Giammarco Meloni
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy.
- Consorzio Interuniversitario per le Reattività Chimiche e la Catalisi, Unità di Ricerca di Padova, via Marzolo 1, 35131 Padova, Italy
| | - Luca Morgan
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy.
| | - David Cappelletti
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy.
| | - Matteo Bevilacqua
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy.
| | - Claudia Graiff
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università degli Studi di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | | | - Andrea Biffis
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy.
- Consorzio Interuniversitario per le Reattività Chimiche e la Catalisi, Unità di Ricerca di Padova, via Marzolo 1, 35131 Padova, Italy
| | - Cristina Tubaro
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy.
- Consorzio Interuniversitario per le Reattività Chimiche e la Catalisi, Unità di Ricerca di Padova, via Marzolo 1, 35131 Padova, Italy
| | - Marco Baron
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy.
- Consorzio Interuniversitario per le Reattività Chimiche e la Catalisi, Unità di Ricerca di Padova, via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
2
|
Dutta I, Gholap SS, Rahman MM, Tan D, Zhang L, Dighe SU, Huang KW. Homogeneous Catalysis in N-Formylation/N-Methylation Utilizing Carbon Dioxide as the C1 Source. Chem Asian J 2024:e202400497. [PMID: 39152629 DOI: 10.1002/asia.202400497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/16/2024] [Accepted: 08/16/2024] [Indexed: 08/19/2024]
Abstract
The growing emphasis on sustainable chemistry has driven research into utilizing carbon dioxide (CO2) as a nontoxic, abundant, and cost-effective C1 building block. CO2 offers a promising avenue for direct conversion into valuable chemicals ranging from fuels to pharmaceuticals. This review focuses on the utilization of CO2 for reductive N-formylation/N-methylation reactions of various amines, providing advantages over conventional methods involving toxic CO and other methylating reagents. The approach employs readily available reductants such as silane, borane reagents, and hydrogen (H2). The discussion encompasses recent developments in transition metal and organocatalyst systems for these reactions, highlighting mechanistic interpretations and factors influencing product selectivity.
Collapse
Affiliation(s)
- Indranil Dutta
- Chemistry Program, Division of Physical Sciences and Engineering and KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Sandeep Suryabhan Gholap
- Agency for Science, Technology and Research (A*STAR), Institute of Sustainability for Chemicals, Energy and Environment (ICSE2), Singapore, 138634, Singapore
| | - Mohammad Misbahur Rahman
- Chemistry Program, Division of Physical Sciences and Engineering and KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Davin Tan
- Agency for Science, Technology and Research (A*STAR), Institute of Sustainability for Chemicals, Energy and Environment (ICSE2), Singapore, 138634, Singapore
| | - Lili Zhang
- Agency for Science, Technology and Research (A*STAR), Institute of Sustainability for Chemicals, Energy and Environment (ICSE2), Singapore, 138634, Singapore
| | - Shashikant U Dighe
- Agency for Science, Technology and Research (A*STAR), Institute of Sustainability for Chemicals, Energy and Environment (ICSE2), Singapore, 138634, Singapore
| | - Kuo-Wei Huang
- Chemistry Program, Division of Physical Sciences and Engineering and KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
- Agency for Science, Technology and Research (A*STAR), Institute of Sustainability for Chemicals, Energy and Environment (ICSE2), Singapore, 138634, Singapore
| |
Collapse
|
3
|
Sun Q, Soulé JF. Broadening of horizons in the synthesis of CD 3-labeled molecules. Chem Soc Rev 2021; 50:10806-10835. [PMID: 34605827 DOI: 10.1039/d1cs00544h] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the light of the recent potentials of deuterated molecules as pharmaceuticals or even in mechanistic understanding, efficient methods for their synthesis are continually desired. CD3-containing molecules are prominent amongst these motifs due to the parallel of the "magic methyl effect": introducing a methyl group into pharmaceuticals could positively affect biological activities. The trideuteromethyl group is bound to molecules either by C, N, O, or S atom. For a long time, the preparation methods of such labeled compounds were underestimated and involved multi-step syntheses. More recently, specific approaches dealing with the direct incorporation of the CD3 group have been developed. This Review gives an overview of the methods for the preparation of CD3-labeled molecules from conventional functional group interconversion techniques to catalytic approaches and include radical strategy. Detailed reaction mechanisms are also discussed.
Collapse
Affiliation(s)
- Qiao Sun
- Process Chemistry Enabling Technology Platform, STA Pharmaceutical, a WuxiAppTech Company (Wuxi STA), Shanghai 201507, P. R. China
| | | |
Collapse
|
4
|
Jiang L, Zhang X, Wang Y, Guo F, Hou Z. N
‐Monomethylation of Amines with Methanol by Syndiotactic Poly(aminostyrene)‐supported Palladium Nanoparticle Catalyst. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100339] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Lei Jiang
- State Key Laboratory of Fine Chemicals Department of Polymer Science and Engineering School of Chemical Engineering Dalian University of Technology Dalian 116012 P. R. China
| | - Xiaoyan Zhang
- State Key Laboratory of Fine Chemicals Department of Polymer Science and Engineering School of Chemical Engineering Dalian University of Technology Dalian 116012 P. R. China
| | - Yinran Wang
- State Key Laboratory of Fine Chemicals Department of Polymer Science and Engineering School of Chemical Engineering Dalian University of Technology Dalian 116012 P. R. China
| | - Fang Guo
- State Key Laboratory of Fine Chemicals Department of Polymer Science and Engineering School of Chemical Engineering Dalian University of Technology Dalian 116012 P. R. China
| | - Zhaomin Hou
- State Key Laboratory of Fine Chemicals Department of Polymer Science and Engineering School of Chemical Engineering Dalian University of Technology Dalian 116012 P. R. China
- Organometallic Chemistry Laboratory RIKEN Cluster for Pioneering Research and Advanced Catalysis Research Group RIKEN Center for Sustainable Resource Science 2-1 Hirosawa Wako Saitama 351-0198 Japan
| |
Collapse
|
5
|
Sable DA, Vadagaonkar KS, Kapdi AR, Bhanage BM. Carbon dioxide based methodologies for the synthesis of fine chemicals. Org Biomol Chem 2021; 19:5725-5757. [PMID: 34132318 DOI: 10.1039/d1ob00755f] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Rapid environmental changes triggered by the increase in the concentration of heat-absorbing gases such as CO2 in the atmosphere have become a major cause of concern. One of the ways to counter this growing threat will be to efficiently convert atmospheric CO2 into value-added products via the development of efficient transition-metal-catalyzed processes. Conversion of CO2 into bulk products such as CH3OH and methane as well as its incorporation into commercial polyurethane synthesis has been achieved and reviewed extensively. However, the efficient transformation of CO2 into fine chemicals and value-added chemicals has many fold advantages. Recent years have seen a rapid rise in the number of metal-mediated protocols to achieve this goal of converting CO2 into fine chemicals. These are essential developments given the requirement of several commodities and fine chemicals in various industrial processes and the utilization of atmospheric CO2 will help provide a sustainable solution to the current environmental problems. Accordingly, we present here a comprehensive compilation of catalytic processes, involving CO2 as the C1 source for reacting with substrates such as alkanes, alkenes, alkynes, amines, acid chlorides, alcohols, allyl boronates, alkenyl triflates, and many others to provide easy access to a wide variety of useful molecules. Such a technology would certainly prove to be beneficial in solving the problems associated with the environmental accumulation of CO2.
Collapse
Affiliation(s)
- Dhanashri A Sable
- Institute of Chemical Technology, Department of Chemistry, Nathalal Parekh Road, Matunga, Mumbai-400019, Maharashtra, India. and Institute of Chemical Technology-Indian Oil Odisha Campus, IIT Kharagpur Extension Centre, Mouza Samantpuri, Bhubaneswar 751013, Odisha, India
| | - Kamlesh S Vadagaonkar
- Institute of Chemical Technology, Department of Chemistry, Nathalal Parekh Road, Matunga, Mumbai-400019, Maharashtra, India.
| | - Anant R Kapdi
- Institute of Chemical Technology, Department of Chemistry, Nathalal Parekh Road, Matunga, Mumbai-400019, Maharashtra, India.
| | - Bhalchandra M Bhanage
- Institute of Chemical Technology, Department of Chemistry, Nathalal Parekh Road, Matunga, Mumbai-400019, Maharashtra, India.
| |
Collapse
|
6
|
Liu Z, Ren X, Wang P. A practical synthesis of deuterated methylamine and dimethylamine. JOURNAL OF CHEMICAL RESEARCH 2020. [DOI: 10.1177/1747519820969636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In recent years, several deuterated drugs have entered clinical trials and have been approved for use. Deuterated methylamine and dimethylamine as important intermediates play significant roles in the preparation of deuterated drugs. In this study, we have developed a new method to prepare deuterated methylamine and dimethylamine. This method employs Boc-benzylamine as the starting material and TsOCD3 as the deuterated methylation reagent. Our method gives relatively high yields and involves simple purifications, which provide a favourable supplement for the development and synthesis of deuterated drugs in the future.
Collapse
Affiliation(s)
- Zhaogang Liu
- School of Engineering, China Pharmaceutical University, Nanjing, P.R. of China
- Jiangsu Simcere Pharmaceutical Company, Nanjing, P.R. of China
| | - Xiangyu Ren
- School of Engineering, China Pharmaceutical University, Nanjing, P.R. of China
| | - Peng Wang
- School of Engineering, China Pharmaceutical University, Nanjing, P.R. of China
| |
Collapse
|
7
|
Goyal V, Gahtori J, Narani A, Gupta P, Bordoloi A, Natte K. Commercial Pd/C-Catalyzed N-Methylation of Nitroarenes and Amines Using Methanol as Both C1 and H2 Source. J Org Chem 2019; 84:15389-15398. [DOI: 10.1021/acs.joc.9b02141] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Vishakha Goyal
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Joggers Road, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| | - Jyoti Gahtori
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Joggers Road, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| | - Anand Narani
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Joggers Road, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| | | | - Ankur Bordoloi
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Joggers Road, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| | - Kishore Natte
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Joggers Road, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| |
Collapse
|
8
|
Tappe NA, Reich RM, D'Elia V, Kühn FE. Current advances in the catalytic conversion of carbon dioxide by molecular catalysts: an update. Dalton Trans 2018; 47:13281-13313. [DOI: 10.1039/c8dt02346h] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Recent advances (2015–) in the catalytic conversion of CO2 by metal-based and metal-free systems are discussed.
Collapse
Affiliation(s)
- Nadine A. Tappe
- Molecular Catalysis
- Catalysis Research Center and Department of Chemistry
- Technische Universität München
- 85747 Garching bei München
- Germany
| | - Robert M. Reich
- Molecular Catalysis
- Catalysis Research Center and Department of Chemistry
- Technische Universität München
- 85747 Garching bei München
- Germany
| | - Valerio D'Elia
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology
- Rayong
- Thailand
| | - Fritz E. Kühn
- Molecular Catalysis
- Catalysis Research Center and Department of Chemistry
- Technische Universität München
- 85747 Garching bei München
- Germany
| |
Collapse
|
9
|
Pedrajas E, Sorribes I, Guillamón E, Junge K, Beller M, Llusar R. Efficient and Selective N-Methylation of Nitroarenes under Mild Reaction Conditions. Chemistry 2017; 23:13205-13212. [PMID: 28767165 DOI: 10.1002/chem.201702783] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Indexed: 12/12/2022]
Abstract
Herein, we report a straightforward protocol for the preparation of N,N-dimethylated amines from readily available nitro starting materials using formic acid as a renewable C1 source and silanes as reducing agents. This tandem process is efficiently accomplished in the presence of a cubane-type Mo3 PtS4 catalyst. For the preparation of the novel [Mo3 Pt(PPh3 )S4 Cl3 (dmen)3 ]+ (3+ ) (dmen: N,N'-dimethylethylenediamine) compound we have followed a [3+1] building block strategy starting from the trinuclear [Mo3 S4 Cl3 (dmen)3 ]+ (1+ ) and Pt(PPh3 )4 (2) complexes. The heterobimetallic 3+ cation preserves the main structural features of its 1+ cluster precursor. Interestingly, this catalytic protocol operates at room temperature with high chemoselectivity when the 3+ catalyst co-exists with its trinuclear 1+ precursor. N-heterocyclic arenes, double bonds, ketones, cyanides and ester functional groups are well retained after N-methylation of the corresponding functionalized nitroarenes. In addition, benzylic-type as well as aliphatic nitro compounds can also be methylated following this protocol.
Collapse
Affiliation(s)
- Elena Pedrajas
- Departament de Química Física i Analítica, Universitat Jaume I, Av. Sos Baynat s/n, 12071, Castelló, Spain
| | - Iván Sorribes
- Leibniz-Institut für Katalyse an der, Universität Rostock, Albert Einstein Str. 29a, 18059, Rostock, Germany.,Present address: Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Av. De los Naranjos s/n, 46022, Valencia, Spain
| | - Eva Guillamón
- Departament de Química Física i Analítica, Universitat Jaume I, Av. Sos Baynat s/n, 12071, Castelló, Spain
| | - Kathrin Junge
- Leibniz-Institut für Katalyse an der, Universität Rostock, Albert Einstein Str. 29a, 18059, Rostock, Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse an der, Universität Rostock, Albert Einstein Str. 29a, 18059, Rostock, Germany
| | - Rosa Llusar
- Departament de Química Física i Analítica, Universitat Jaume I, Av. Sos Baynat s/n, 12071, Castelló, Spain
| |
Collapse
|
10
|
Li Y, Cui X, Dong K, Junge K, Beller M. Utilization of CO2 as a C1 Building Block for Catalytic Methylation Reactions. ACS Catal 2017. [DOI: 10.1021/acscatal.6b02715] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Yuehui Li
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str.
29a, 18059 Rostock, Germany
| | - Xinjiang Cui
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str.
29a, 18059 Rostock, Germany
| | - Kaiwu Dong
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str.
29a, 18059 Rostock, Germany
| | - Kathrin Junge
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str.
29a, 18059 Rostock, Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str.
29a, 18059 Rostock, Germany
| |
Collapse
|
11
|
Wang H, Huang Y, Dai X, Shi F. N-Monomethylation of amines using paraformaldehyde and H2. Chem Commun (Camb) 2017; 53:5542-5545. [DOI: 10.1039/c7cc02314f] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The selective N-monomethylation of amines is an important topic in fine chemical synthesis.
Collapse
Affiliation(s)
- Hongli Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Centre for Green Chemistry and Catalysis
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou
| | - Yongji Huang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Centre for Green Chemistry and Catalysis
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou
| | - Xingchao Dai
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Centre for Green Chemistry and Catalysis
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou
| | - Feng Shi
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Centre for Green Chemistry and Catalysis
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou
| |
Collapse
|
12
|
Cabrero-Antonino JR, Adam R, Junge K, Beller M. A general protocol for the reductive N-methylation of amines using dimethyl carbonate and molecular hydrogen: mechanistic insights and kinetic studies. Catal Sci Technol 2016. [DOI: 10.1039/c6cy01401a] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A general and selective ruthenium-catalyzed reductive N-methylation of primary and secondary aromatic and aliphatic amines using dimethyl carbonate as a C1 source and molecular hydrogen as a reducing agent is reported for the first time.
Collapse
Affiliation(s)
| | - Rosa Adam
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock
- 18059 Rostock
- Germany
| | - Kathrin Junge
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock
- 18059 Rostock
- Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock
- 18059 Rostock
- Germany
| |
Collapse
|
13
|
Santoro O, Lazreg F, Minenkov Y, Cavallo L, Cazin CSJ. N-heterocyclic carbene copper(I) catalysed N-methylation of amines using CO2. Dalton Trans 2015; 44:18138-44. [PMID: 26420462 DOI: 10.1039/c5dt03506f] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The N-methylation of amines using CO2 and PhSiH3 as source of CH3 was efficiently performed using a N-heterocyclic carbene copper(i) complex. The methodology was found compatible with aromatic and aliphatic primary and secondary amines. Synthetic and computational studies have been carried out to support the proposed reaction mechanism for this transformation.
Collapse
Affiliation(s)
- Orlando Santoro
- EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK.
| | | | | | | | | |
Collapse
|
14
|
Dang TT, Ramalingam B, Seayad AM. Efficient Ruthenium-Catalyzed N-Methylation of Amines Using Methanol. ACS Catal 2015. [DOI: 10.1021/acscatal.5b00606] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Tuan Thanh Dang
- Organic Chemistry, Institute of Chemical and Engineering Sciences, 8 Biomedical Grove, #07-01 Neuros, Singapore 138665
| | - Balamurugan Ramalingam
- Organic Chemistry, Institute of Chemical and Engineering Sciences, 8 Biomedical Grove, #07-01 Neuros, Singapore 138665
| | - Abdul Majeed Seayad
- Organic Chemistry, Institute of Chemical and Engineering Sciences, 8 Biomedical Grove, #07-01 Neuros, Singapore 138665
| |
Collapse
|
15
|
Zhang L, Zhang Y, Deng Y, Shi F. Light-promoted N,N-dimethylation of amine and nitro compound with methanol catalyzed by Pd/TiO2 at room temperature. RSC Adv 2015. [DOI: 10.1039/c4ra13848a] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The N,N-dimethylation of different amines and nitro compounds with methanol were realized under UV irradiation at room temperature catalyzed by Pd/TiO2.
Collapse
Affiliation(s)
- Lina Zhang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Centre for Green Chemistry and Catalysis
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou
| | - Yan Zhang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Centre for Green Chemistry and Catalysis
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou
| | - Youquan Deng
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Centre for Green Chemistry and Catalysis
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou
| | - Feng Shi
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Centre for Green Chemistry and Catalysis
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou
| |
Collapse
|
16
|
Harnett JJ, Dolo C, Viossat I, Auger F, Ferrandis E, Bigg D, Auguet M, Auvin S, Chabrier PE. Novel azoles as potent and selective cannabinoid CB2 receptor agonists. Bioorg Med Chem Lett 2015; 25:88-91. [DOI: 10.1016/j.bmcl.2014.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 10/28/2014] [Accepted: 11/01/2014] [Indexed: 01/01/2023]
|
17
|
|
18
|
Atkinson BN, Williams JMJ. Dimethylsulfoxide as an N-Methylation Reagent for Amines and Aromatic Nitro Compounds. ChemCatChem 2014. [DOI: 10.1002/cctc.201400015] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
19
|
Sorribes I, Junge K, Beller M. General Catalytic Methylation of Amines with Formic Acid under Mild Reaction Conditions. Chemistry 2014; 20:7878-83. [DOI: 10.1002/chem.201402124] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Indexed: 11/10/2022]
|
20
|
Jiang X, Wang C, Wei Y, Xue D, Liu Z, Xiao J. A General Method for N-Methylation of Amines and Nitro Compounds with Dimethylsulfoxide. Chemistry 2013; 20:58-63. [DOI: 10.1002/chem.201303802] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Indexed: 11/07/2022]
|
21
|
Li Y, Fang X, Junge K, Beller M. A General Catalytic Methylation of Amines Using Carbon Dioxide. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201301349] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
22
|
Li Y, Fang X, Junge K, Beller M. A general catalytic methylation of amines using carbon dioxide. Angew Chem Int Ed Engl 2013; 52:9568-71. [PMID: 23564695 DOI: 10.1002/anie.201301349] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Yuehui Li
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | | | | | | |
Collapse
|
23
|
Riva E, Rencurosi A, Gagliardi S, Passarella D, Martinelli M. Synthesis of (+)-dumetorine and congeners by using flow chemistry technologies. Chemistry 2011; 17:6221-6. [PMID: 21506188 DOI: 10.1002/chem.201100300] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Indexed: 11/05/2022]
Abstract
An efficient total synthesis of the natural alkaloid (+)-dumetorine by using flow technology is described. The process entailed five separate steps starting from the enantiopure (S)-2-(piperidin-2-yl)ethanol 4 with 29% overall yield. Most of the reactions were carried out by exploiting solvent superheating and by using packed columns of immobilized reagents or scavengers to minimize handling. New protocols for performing classical reactions under continuous flow are disclosed: the ring-closing metathesis reaction with a novel polyethylene glycol-supported Hoveyda catalyst and the unprecedented flow deprotection/Eschweiler-Clarke methylation sequence. The new protocols developed for the synthesis of (+)-dumetorine were applied to the synthesis of its simplified natural congeners (-)-sedamine and (+)-sedridine.
Collapse
Affiliation(s)
- Elena Riva
- Dipartimento di Chimica Organica e Industriale, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| | | | | | | | | |
Collapse
|
24
|
Harding JR. From ICI to AstraZeneca: the development of synthetic isotope chemistry at Alderley Park, UK. J Labelled Comp Radiopharm 2007. [DOI: 10.1002/jlcr.1423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Ashry EE, Kassem A, Ramadan E. Microwave Irradiation for Accelerating Organic Reactions – Part II: Six-, Seven-Membered, Spiro, and Fused Heterocycles. ADVANCES IN HETEROCYCLIC CHEMISTRY 2006. [DOI: 10.1016/s0065-2725(05)90001-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
26
|
Kuznetsov DV, Raev VA, Kuranov GL, Arapov OV, Kostikov RR. Microwave Activation in Organic Synthesis. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2005. [DOI: 10.1007/s11178-006-0030-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
27
|
Chen FL, Sung K. An exception of eschweiler-clarke methylation: Cyclocondensation of α-amino amides with formaldehyde and formic acid. J Heterocycl Chem 2004. [DOI: 10.1002/jhet.5570410507] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|