Mehdoui T, Berthet JC, Thuéry P, Ephritikhine M. Lanthanide(iii)/actinide(iii) differentiation in coordination of azine molecules to tris(cyclopentadienyl) complexes of cerium and uranium.
Dalton Trans 2004:579-90. [PMID:
15252520 DOI:
10.1039/b313992a]
[Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reaction of azine molecules L with the trivalent metallocenes [M(C5H4R)3](M = Ce, U; R = But, SiMe3) in toluene gave the Lewis base adducts [M(C5H4R)3(L)](L = pyridine, 3-picoline, 3,5-lutidine, 3-chloropyridine, pyridazine, pyrimidine, pyrazine, 3,5-dimethylpyrazine and s-triazine), except in the cases of M = U and L = 3-chloropyridine, pyridazine, pyrazine and s-triazine where oxidation of U(III) was found to occur. In the pairs of analogous compounds of Ce(III) and U(III), i.e.[M(C5H4But)3(L)](L = pyridine, picoline) and [M(C5H4SiMe3)3(L)](L = pyridine, lutidine, pyrimidine and dimethylpyrazine), the M-N and average M-C distances are longer for M = Ce than for M = U; however, within a series of azine adducts of the same metallocene, no significant variation is noted in the M-N and average M-C distances. The equilibria between [M(C5H4R)3], L and [M(C5H4R)3(L)] were studied by 1H NMR spectroscopy. The stability constants of the uranium complexes, KUL, are greater than those of the cerium counterparts, KCeL. The values of KML are much greater for R = SiMe3 than for R = But and a linear correlation is found between the logarithms of KML and the hydrogen-bond basicity pKHB scale of the azines. Thermodynamic parameters indicate that the enthalpy-entropy compensation effect holds for these complexation reactions. Competition reactions of [Ce(C5H4R)3] and [U(C5H4R)3] with L show that the selectivity of L in favour of U(III) increases with the [small pi] donor character of the metallocene and is proportional to the pi accepting ability of the azine molecule, measured by its reduction potential.
Collapse