1
|
Alexander BW, Bartfield NM, Gupta V, Mercado BQ, Del Campo M, Herzon SB. An oxidative photocyclization approach to the synthesis of Securiflustra securifrons alkaloids. Science 2024; 383:849-854. [PMID: 38386756 DOI: 10.1126/science.adl6163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024]
Abstract
Securines and securamines are cytotoxic alkaloids that contain reactive alkene and heterocyclic residues embedded in skeletons comprising four to six oxidized rings. This structural complexity imparts a rich chemistry to the isolates but has impeded synthetic access to the structures in the nearly three decades since their isolation. We present a flexible route to eight isolates that exemplify the three skeletal classes of metabolites. The route proceeds by the modular assembly of the advanced azides 38 and 49 (13 steps, 6 to 10% yield), sequential oxidative photocyclizations, and late-stage functional group manipulations. With this approach, the targets were obtained in 17 to 19 steps, 12 to 13 purifications, and 0.5 to 3.5% overall yield. The structure of an advanced intermediate was elucidated by microcrystal electron diffraction (MicroED) analysis. The route will support structure-function and target identification studies of the securamines.
Collapse
Affiliation(s)
| | - Noah M Bartfield
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
| | - Vaani Gupta
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
| | - Brandon Q Mercado
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
- Chemical and Biological Instrumentation Center, Yale University, New Haven, CT 06511, USA
| | - Mark Del Campo
- Rigaku Americas Corporation, The Woodlands, TX 77381, USA
| | - Seth B Herzon
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
2
|
Kim GU, Cho H, Lee JK, Lee JY, Tae J, Min SJ, Kang T, Cho YS. Stereoselective synthesis of 1,6-diazecanes by a tandem aza-Prins type dimerization and cyclization process. Chem Commun (Camb) 2022; 59:82-85. [PMID: 36475509 DOI: 10.1039/d2cc05133h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
We report the stereocontrolled synthesis of 1,6-diazecanes via a tandem aza-Prins type reaction of N-acyliminium ions with allylsilanes. It involves an aza-Prins type dimerization and cyclization in a single-step operation. This reaction represents the first example of 10-membered N-heterocycle synthesis using an aza-Prins reaction. Also, the interesting formation of an unusual tetracyclic compound through further cyclization of 1,6-diazecane and bicyclic compounds by the intramolecular cyclization of linear allylsilane are described. This tandem aza-Prins protocol provides a new synthetic strategy for the direct synthesis of medium-sized nitrogen heterocycles.
Collapse
Affiliation(s)
- Gyeong Un Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea. .,Department of Chemistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyunmi Cho
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea. .,Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Jae Kyun Lee
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
| | - Jae Yeol Lee
- Department of Chemistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jinsung Tae
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Sun-Joon Min
- Department of Chemical & Molecular Engineering/Applied Chemistry, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea.
| | - Taek Kang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
| | - Yong Seo Cho
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
| |
Collapse
|
3
|
Bhat C, Tilve SG. Tandem approaches for the synthesis of functionalized pyrrolidones: efficient routes toward allokainic acid and kainic acid. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2012.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
|
5
|
Langlois N, Le Nguyen BK, Retailleau P, Tarnus C, Salomon E. Creation of quaternary stereocentres: synthesis of new polyhydroxylated indolizidines. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/j.tetasy.2005.11.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Langlois N, Le Nguyen BK. Diastereoselective syntheses of deoxydysibetaine, dysibetaine, and its 4-epimer. J Org Chem 2004; 69:7558-64. [PMID: 15497982 DOI: 10.1021/jo040216+] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
(+/-)-Deoxydysibetaine 2 and 4-epi-dysibetaine 3 were prepared in a few steps from methyl pyroglutamate through a regioselective Mannich reaction at C-2. Natural (2S,4S)-dysibetaine 1, a sponge metabolite isolated from Dysidea herbacea, and (2S)-2 were synthesized from enantiopure (S)-pyroglutaminol with very high stereoselectivity. The key steps were an original formation of stereogenic quaternary center C-2 and the diastereoselective hydroxylation at C-4.
Collapse
Affiliation(s)
- Nicole Langlois
- Institut de Chimie des Substances Naturelles, CNRS, 91198 Gif-sur-Yvette, France.
| | | |
Collapse
|
7
|
Choudhury PK, Le Nguyen BK, Langlois N. Stereoselective synthesis of (2S)-2-hydroxymethylglutamic acid, a potent agonist of metabotropic glutamate receptor mGluR3. Tetrahedron Lett 2002. [DOI: 10.1016/s0040-4039(01)02196-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Steinig AG, Spero DM. AMINESviaNUCLEOPHJLIC 1,2-ADDITION TO KETIMINES. CONSTRUCTION OF NITROGEN-SUBSTITUTED QUATERNARY CARBON ATOMS. A REVIEW. ORG PREP PROCED INT 2000. [DOI: 10.1080/00304940009355920] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
|
10
|
Ollero L, Mentink G, Rutjes FPJT, Speckamp WN, Hiemstra H. A Kulinkovich Entry into Tertiary N-Acyliminium Ion Chemistry. Org Lett 1999. [DOI: 10.1021/ol990866d] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lourdes Ollero
- Laboratory of Organic Chemistry, Institute of Molecular Chemistry, University of Amsterdam, Nieuwe Achtergracht 129, 1018 WS Amsterdam, The Netherlands
| | - Gertjan Mentink
- Laboratory of Organic Chemistry, Institute of Molecular Chemistry, University of Amsterdam, Nieuwe Achtergracht 129, 1018 WS Amsterdam, The Netherlands
| | - Floris P. J. T. Rutjes
- Laboratory of Organic Chemistry, Institute of Molecular Chemistry, University of Amsterdam, Nieuwe Achtergracht 129, 1018 WS Amsterdam, The Netherlands
| | - W. Nico Speckamp
- Laboratory of Organic Chemistry, Institute of Molecular Chemistry, University of Amsterdam, Nieuwe Achtergracht 129, 1018 WS Amsterdam, The Netherlands
| | - Henk Hiemstra
- Laboratory of Organic Chemistry, Institute of Molecular Chemistry, University of Amsterdam, Nieuwe Achtergracht 129, 1018 WS Amsterdam, The Netherlands
| |
Collapse
|