1
|
Zhang B, Zhu S, Zhu Y, Sui X, Zhou J, Liu Z, Zheng Y. Construction of a Cell Factory for the Targeted and Efficient Production of Phytosterol to Boldenone in Mycobacterium neoaurum. Biotechnol J 2024; 19:e202400489. [PMID: 39552052 DOI: 10.1002/biot.202400489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/12/2024] [Accepted: 10/28/2024] [Indexed: 11/19/2024]
Abstract
Boldenone (BD), a protein anabolic hormone, is commonly used to treat muscle damage, osteoporosis, and off-season muscle building in athletes. Traditional BD synthesis methods rely on chemical processes, which are costly and environmentally impactful. Therefore, developing a more sustainable and economical biosynthetic pathway is crucial for BD production. This study aimed to achieve efficient production of BD. Firstly, the catalytic performance of 17β-hydroxysteroid dehydrogenase and 3-ketosteroid-Δ1-dehydrogenase was improved through enzyme engineering, and their expression in the new strain of Mycobacterium neoaurum was enhanced using metabolic engineering. These improvements significantly increased BD production to 4.05 g/L, with a significant decrease in by-product generation. To further increase the yield, a multi-enzyme fusion expression system was constructed, and a key cell wall gene kasB was knocked out, resulting in a spatial-time yield of BD reaching 1.02 g/(L·d). Subsequent optimization of the transformation system further increased the BD production to 5.56 g/L, with a spatiotemporal yield of 1.39 g/(L·d). The green biosynthetic route of phytosterol one-step conversion to BD developed in this study lays the foundation for industrial production.
Collapse
Affiliation(s)
- Bo Zhang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Sifang Zhu
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Yi Zhu
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Xin Sui
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Junping Zhou
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Zhiqiang Liu
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Yuguo Zheng
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| |
Collapse
|
2
|
Tekucheva DN, Nikolayeva VM, Karpov MV, Timakova TA, Shutov AV, Donova MV. Bioproduction of testosterone from phytosterol by Mycolicibacterium neoaurum strains: "one-pot", two modes. BIORESOUR BIOPROCESS 2022; 9:116. [PMID: 38647765 PMCID: PMC10992188 DOI: 10.1186/s40643-022-00602-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022] Open
Abstract
The main male hormone, testosterone is obtained from cheap and readily available phytosterol using the strains of Mycolicibacterium neoaurum VKM Ac-1815D, or Ac-1816D. During the first "oxidative" stage, phytosterol (5-10 g/L) was aerobically converted by Ac-1815D, or Ac-1816D to form 17-ketoandrostanes: androstenedione, or androstadienedione, respectively. At the same bioreactor, the 17-ketoandrostanes were further transformed to testosterone due to the presence of 17β-hydroxysteroid dehydrogenase activity in the strains ("reductive" mode). The conditions favorable for "oxidative" and "reductive" stages have been revealed to increase the final testosterone yield. Glucose supplement and microaerophilic conditions during the "reductive" mode ensured increased testosterone production by mycolicibacteria cells. Both strains effectively produced testosterone from phytosterol, but highest ever reported testosterone yield was achieved using M. neoaurum VKM Ac-1815D: 4.59 g/l testosterone was reached from 10 g/l phytosterol thus corresponding to the molar yield of over 66%. The results contribute to the knowledge on phytosterol bioconversion by mycolicibacteria, and are of significance for one-pot testosterone bioproduction from phytosterol bypassing the intermediate isolation of the 17-ketoandrostanes.
Collapse
Affiliation(s)
- Daria N Tekucheva
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", Prospect Nauki 5, Pushchino, Moscow Region, 142290, Russia.
| | - Vera M Nikolayeva
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", Prospect Nauki 5, Pushchino, Moscow Region, 142290, Russia
| | - Mikhail V Karpov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", Prospect Nauki 5, Pushchino, Moscow Region, 142290, Russia
| | - Tatiana A Timakova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", Prospect Nauki 5, Pushchino, Moscow Region, 142290, Russia
| | - Andrey V Shutov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", Prospect Nauki 5, Pushchino, Moscow Region, 142290, Russia
| | - Marina V Donova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", Prospect Nauki 5, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
3
|
Efficient One-Step Biocatalytic Multienzyme Cascade Strategy for Direct Conversion of Phytosterol to C-17-Hydroxylated Steroids. Appl Environ Microbiol 2021; 87:e0032121. [PMID: 34586911 DOI: 10.1128/aem.00321-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Steroidal 17-carbonyl reduction is crucial to the production of natural bioactive steroid medicines, and boldenone (BD) is one of the important C-17-hydroxylated steroids. Although efforts have been made to produce BD through biotransformation, the challenges of the complex transformation process, high substrate costs, and low catalytic efficiencies have yet to be mastered. Phytosterol (PS) is the most widely accepted substrate for the production of steroid medicines due to its similar foundational structure and ubiquitous sources. 17β-Hydroxysteroid dehydrogenase (17βHSD) and its native electron donor play significant roles in the 17β-carbonyl reduction reaction of steroids. In this study, we bridged 17βHSD with a cofactor regeneration strategy in Mycobacterium neoaurum to establish a one-step biocatalytic carbonyl reduction strategy for the efficient biosynthesis of BD from PS for the first time. After investigating different intracellular electron transfer strategies, we rationally designed the engineered strain with the coexpression of 17βhsd and the glucose-6-phosphate dehydrogenase (G6PDH) gene in M. neoaurum. With the establishment of an intracellular cofactor regeneration strategy, the ratio of [NADPH]/[NADP+] was maintained at a relatively high level, the yield of BD increased from 17% (in MNR M3M-ayr1S.c) to 78% (in MNR M3M-ayr1&g6p with glucose supplementation), and the productivity was increased by 6.5-fold. Furthermore, under optimal glucose supplementation conditions, the yield of BD reached 82%, which is the highest yield reported for transformation from PS in one step. This study demonstrated an excellent strategy for the production of many other valuable carbonyl reduction steroidal products from natural inexpensive raw materials. IMPORTANCE Steroid C-17-carbonyl reduction is one of the important transformations for the production of valuable steroidal medicines or intermediates for the further synthesis of steroidal medicines, but it remains a challenge through either chemical or biological synthesis. Phytosterol can be obtained from low-cost residues of waste natural materials, and it is preferred as the economical and applicable substrate for steroid medicine production by Mycobacterium. This study explored a green and efficient one-step biocatalytic carbonyl reduction strategy for the direct conversion of phytosterol to C-17-hydroxylated steroids by bridging 17β-hydroxysteroid dehydrogenase with a cofactor regeneration strategy in Mycobacterium neoaurum. This work has practical value for the production of many valuable hydroxylated steroids from natural inexpensive raw materials.
Collapse
|
4
|
Luo JM, Zhu WC, Cao ST, Lu ZY, Zhang MH, Song B, Shen YB, Wang M. Improving Biotransformation Efficiency of Arthrobacter simplex by Enhancement of Cell Stress Tolerance and Enzyme Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:704-716. [PMID: 33406824 DOI: 10.1021/acs.jafc.0c06592] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Arthrobacter simplex exhibits excellent Δ1-dehydrogenation ability, but the acquisition of the desirable strain is limited due to lacking of comprehensive genetic manipulation. Herein, a promoter collection for fine-tuning gene expression was achieved. Next, the expression level was enhanced and directed evolution of the global transcriptional factor (IrrE) was applied to enhance cell viability in systems containing more substrate and ethanol, thus contributing to higher production. IrrE promotes a stronger antioxidant defense system, more energy generation, and changed signal transduction. Using a stronger promoter, the enzyme activities were boosted but their positive effects on biotransformation performance were inferior to cell stress tolerance when exposed to challenging systems. Finally, an optimal strain was created by collectively reinforcing cell stress tolerance and catalytic enzyme activity, achieving a yield 261.8% higher relative to the initial situation. Our study provided effective methods for steroid-transforming strains with high efficiency.
Collapse
Affiliation(s)
- Jian-Mei Luo
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Wen-Cheng Zhu
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Shu-Ting Cao
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Zhi-Yi Lu
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Meng-Han Zhang
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Bo Song
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Yan-Bing Shen
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Min Wang
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| |
Collapse
|
5
|
Nishimura T, Shimoda M, Tamizu E, Uno S, Uwamino Y, Kashimura S, Yano I, Hasegawa N. The rough colony morphotype of Mycobacterium avium exhibits high virulence in human macrophages and mice. J Med Microbiol 2020; 69:1020-1033. [PMID: 32589124 DOI: 10.1099/jmm.0.001224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. The incidence of Mycobacterium avium complex (MAC) pulmonary disease (MAC PD), a refractory chronic respiratory tract infection, is increasing worldwide. MAC has three predominant colony morphotypes: smooth opaque (SmO), smooth transparent (SmT) and rough (Rg).Aim. To determine whether colony morphotypes can predict the prognosis of MAC PD, we evaluated the virulence of SmO, SmT and Rg in mice and in human macrophages.Methodology. We compared the characteristics of mice and human macrophages infected with the SmO, SmT, or Rg morphotypes of M. avium subsp. hominissuis 104. C57BL/6 mice and human macrophages derived from peripheral mononuclear cells were used in these experiments.Results. In comparison to SmO- or SmT-infected mice, Rg-infected mice revealed severe pathologically confirmed pneumonia, increased lung weight and increased lung bacterial burden. Rg-infected macrophages revealed significant cytotoxicity, increased bacterial burden, secretion of proinflammatory cytokines (TNF-α and IL-6) and chemokines (CCL5 and CCL3), and formation of cell clusters. Rg formed larger bacterial aggregates than SmO and SmT. Cytotoxicity, bacterial burden and secretion of IL-6, CCL5 and CCL3 were induced strongly by Rg infection, and were decreased by disaggregation of the bacteria.Conclusion. M. avium Rg, which is associated with bacterial aggregation, has the highest virulence among the predominant colony morphotypes.
Collapse
Affiliation(s)
| | - Masayuki Shimoda
- Department of Pathology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Eiko Tamizu
- Department of Infectious Diseases, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Shunsuke Uno
- Department of Infectious Diseases, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Yoshifumi Uwamino
- Department of Laboratory Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Shoko Kashimura
- Department of Infectious Diseases, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Ikuya Yano
- Department of Bacteriology, Osaka City University Graduate School of Medicine, Osaka-city, Osaka, Japan
| | - Naoki Hasegawa
- Department of Infectious Diseases, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
6
|
Pacífico C, Fernandes P, de Carvalho CCCR. Mycobacterial Response to Organic Solvents and Possible Implications on Cross-Resistance With Antimicrobial Agents. Front Microbiol 2018; 9:961. [PMID: 29867865 PMCID: PMC5962743 DOI: 10.3389/fmicb.2018.00961] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/24/2018] [Indexed: 02/02/2023] Open
Abstract
Mycobacterium vaccae, a bacterium found in soil, has been receiving attention as adjuvant to antituberculosis treatment, vaccines and immunotherapies and even as antidepressant. This bacterium is also able to degrade several pollutants, including aromatic compounds. The increasing presence of organic solvents in the environment may lead to M. vaccae adapted populations. A possible relationship between solvent tolerance and decreased susceptibility to other types of chemicals, including antibiotics, may pose a problem during opportunistic infections. The present study thus aimed at assessing if solvent adapted cells presented higher tolerance to antibiotics and efflux pump inhibitors (EPIs). M. vaccae cells were able to thrive and grow in the presence of up 20% (v/v) glycerol, 5% (v/v) ethanol, 1% (v/v) methyl tert-butyl ether (MTBE) and 0.1% (v/v) toluene. During adaptation to increasing concentration of ethanol and MTBE, the cells changed their fatty acid profile, zeta potential and morphology. Adapted cells acquired an improved tolerance toward the EPIs thioridazine and omeprazole, but became more susceptible to the antibiotics levofloxacin and teicoplanin when compared with non-adapted cells.
Collapse
Affiliation(s)
- Cátia Pacífico
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Pedro Fernandes
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Faculty of Engineering, Universidade Lusófona, Lisbon, Portugal
| | - Carla C. C. R. de Carvalho
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
7
|
Liu J, Jiang J, Bai Y, Fan TP, Zhao Y, Zheng X, Cai Y. Mimicking a New 2-Phenylethanol Production Pathway from Proteus mirabilis JN458 in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3498-3504. [PMID: 29560727 DOI: 10.1021/acs.jafc.8b00627] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Bacteria rarely produce natural 2-phenylethanol. We verified a new pathway from Proteus mirabilis JN458 to produce 2-phenylethanol using Escherichia coli to coexpress l-amino acid deaminase, α-keto acid decarboxylase, and alcohol dehydrogenase from P. mirabilis. Based on this pathway, a glucose dehydrogenase coenzyme regeneration system was constructed. The optimal conditions of biotransformation by the recombinant strain E-pAEAKaG were at 40 °C and pH 7.0. Finally, the recombinant strain E-pAEAKaG produced 3.21 ± 0.10 g/L 2-phenylethanol in M9 medium containing 10 g/L l-phenylalanine after a 16 h transformation. Furthermore, when the concentration of l-phenylalanine was 4 g/L (24 mM), the production of 2-phenylethanol reached 2.88 ± 0.18 g/L and displayed a higher conversion rate of 97.38 mol %.
Collapse
Affiliation(s)
- Jinbin Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , 1800 Lihu Road , Wuxi , Jiangsu 214122 , China
| | - Jing Jiang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , 1800 Lihu Road , Wuxi , Jiangsu 214122 , China
| | - Yajun Bai
- College of Life Sciences , Northwest University , Xi'an , Shanxi 710069 , China
| | - Tai-Ping Fan
- Department of Pharmacology , University of Cambridge , Cambridge CB2 1T , U.K
| | - Ye Zhao
- College of Life Sciences , Northwest University , Xi'an , Shanxi 710069 , China
| | - Xiaohui Zheng
- College of Life Sciences , Northwest University , Xi'an , Shanxi 710069 , China
| | - Yujie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , 1800 Lihu Road , Wuxi , Jiangsu 214122 , China
| |
Collapse
|
8
|
Shao M, Sha Z, Zhang X, Rao Z, Xu M, Yang T, Xu Z, Yang S. Efficient androst-1,4-diene-3,17-dione production by co-expressing 3-ketosteroid-Δ 1 -dehydrogenase and catalase in Bacillus subtilis. J Appl Microbiol 2017; 122:119-128. [PMID: 27797429 DOI: 10.1111/jam.13336] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/11/2016] [Accepted: 10/17/2016] [Indexed: 01/02/2023]
Abstract
AIMS 3-ketosteroid-Δ1 -dehydrogenase (KSDD), a flavin adenine dinucleotide (FAD)-dependent enzyme involved in sterol metabolism, specifically catalyses the conversion of androst-4-ene-3,17-dione (AD) to androst-1,4-diene-3,17-dione (ADD). However, the low KSDD activity and the toxic effects of hydrogen peroxide (H2 O2 ) generated during the biotransformation of AD to ADD with FAD regeneration hinder its application on AD conversion. The aim of this work was to improve KSDD activity and eliminate the toxic effects of the generated H2 O2 to enhance ADD production. METHODS AND RESULTS The ksdd gene obtained from Mycobacterium neoaurum JC-12 was codon-optimized to increase its expression level in Bacillus subtilis, and the KSDD activity reached 12·3 U mg-1 , which was sevenfold of that of codon-unoptimized gene. To improve AD conversion, catalase was co-expressed with KSDD in B. subtilis 168/pMA5-ksddopt -katA to eliminate the toxic effects of H2 O2 generated during AD conversion. Finally, under optimized bioconversion conditions, fed-batch strategy was carried out and the ADD yield improved to 8·76 g l-1 . CONCLUSIONS This work demonstrates the potential to improve enzyme activity by codon-optimization and eliminate the toxic effects of H2 O2 by co-expressing catalase. SIGNIFICANCE AND IMPACT OF THE STUDY This study showed the highest ADD productivity ever reported and provides a promising strain for efficient ADD production in the pharmaceutical industry.
Collapse
Affiliation(s)
- M Shao
- Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Z Sha
- Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - X Zhang
- Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Z Rao
- Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - M Xu
- Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - T Yang
- Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Z Xu
- Laboratory of Pharmaceutical Engineering, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu Province, China
| | - S Yang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
9
|
Abstract
Systematic and holistic process development, considering upstream and downstream processing simultaneously, is crucial for designing effective and economical production processes. Based on a multiphasic fermentation process, where oil is added to improve substrate solubility, a systematic approach for the purification of microbial steroids is presented. The design methodology incorporates expert knowledge in the form of heuristics to generate different downstream processing alternatives for processing the complex, multiphasic fermentation broth, and recovering the target steroid precursor androst-4-ene-3,17-dione (androstenedione; AD). The resulting alternative tree of different purification techniques is evaluated using scouting experiments to check the performance of each technique. Purification steps such as extraction, adsorption-desorption, and precipitation seem most promising and have been investigated in detail. Each process step selected is optimized and connected to a process route for recovering AD.
Collapse
Affiliation(s)
- Fabian B Thygs
- Department of Biochemical and Chemical Engineering, Laboratory of Plant and Process Design, TU Dortmund University, Emil-Figge-Straße 70, 44227, Dortmund, Germany
| | - Juliane Merz
- Department of Biochemical and Chemical Engineering, Laboratory of Plant and Process Design, TU Dortmund University, Emil-Figge-Straße 70, 44227, Dortmund, Germany.
| |
Collapse
|
10
|
Shao M, Zhang X, Rao Z, Xu M, Yang T, Li H, Xu Z. Enhanced Production of Androst-1,4-Diene-3,17-Dione by Mycobacterium neoaurum JC-12 Using Three-Stage Fermentation Strategy. PLoS One 2015; 10:e0137658. [PMID: 26352898 PMCID: PMC4564235 DOI: 10.1371/journal.pone.0137658] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 08/19/2015] [Indexed: 11/30/2022] Open
Abstract
To improve the androst-1,4-diene-3,17-dione (ADD) production from phytosterol by Mycobacterium neoaurum JC-12, fructose was firstly found favorable as the initial carbon source to increase the biomass and eliminate the lag phase of M. neoaurum JC-12 in the phytosterol transformation process. Based on this phenomenon, two-stage fermentation by using fructose as the initial carbon source and feeding glucose to maintain strain metabolism was designed. By applying this strategy, the fermentation duration was decreased from 168 h to 120 h with the ADD productivity increased from 0.071 g/(L·h) to 0.108 g/(L·h). Further, three-stage fermentation by adding phytosterol to improve ADD production at the end of the two-stage fermentation was carried out and the final ADD production reached 18.6 g/L, which is the highest reported ADD production using phytosterol as substrate. Thus, this strategy provides a possible way in enhancing the ADD production in pharmaceutical industry.
Collapse
Affiliation(s)
- Minglong Shao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, 214122, P. R. China
| | - Xian Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, 214122, P. R. China
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, 214122, P. R. China
- * E-mail:
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, 214122, P. R. China
| | - Taowei Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, 214122, P. R. China
| | - Hui Li
- Laboratory of Pharmaceutical Engineering, School of Pharmaceutical Science, Jiangnan University, Wuxi, Jiangsu Province, 214122, P. R. China
| | - Zhenghong Xu
- Laboratory of Pharmaceutical Engineering, School of Pharmaceutical Science, Jiangnan University, Wuxi, Jiangsu Province, 214122, P. R. China
| |
Collapse
|
11
|
Yin Y. Effects of Different Carbon Sources on Growth, Membrane Permeability, β-Sitosterol Consumption, Androstadienedione and Androstenedione Production by Mycobacterium neoaurum. Interdiscip Sci 2015; 8:102-7. [DOI: 10.1007/s12539-015-0116-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/24/2015] [Accepted: 01/30/2015] [Indexed: 10/23/2022]
|
12
|
Yin Y. Effects of different carbon sources on growth, membrane permeability, β-sitosterol consumption, androstadienedione and androstenedione production by Mycobacterium neoaurum. Interdiscip Sci 2015. [PMID: 25682382 DOI: 10.1007/s12539-014-0256-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/24/2015] [Accepted: 01/30/2015] [Indexed: 09/29/2022]
Abstract
Effects of different carbon sources on growth, membrane permeability, β-sitosterol consumption, androstadienedione and androstenedione (AD(D)) production by Mycobacterium neoaurum were investigated. The results indicated that glucose was advantageous to the growth and resulted in the adverse effects on the phytosterols consumption and AD(D) production compared to the results of propanol and isopropanol as sole carbon source. The cell wall widths of 9.76 by propanol and 8.00 nm by isopropanol were 38.3% and 49.4% thinner than that of 15.82 nm by glucose, respectively. The partition coefficient of the cell grown in propanol and isopropanol were 18.1 and 22.2, which were 7.23 and 9.09 folds higher than that of the cell grown in glucose.
Collapse
Affiliation(s)
- Yanli Yin
- College of Bioengineering, Henan University of Technology, Zhengzhou, 450001, China,
| |
Collapse
|
13
|
Sharma P, Slathia PS, Somal P, Mehta P. Biotransformation of cholesterol to 1,4-androstadiene-3,17-dione (ADD) by Nocardia species. ANN MICROBIOL 2012. [DOI: 10.1007/s13213-012-0422-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
14
|
Huang XF, Li MX, Lu LJ, Yang S, Liu J. Relationship of cell-wall bound fatty acids and the demulsification efficiency of demulsifying bacteria Alcaligenes sp. S-XJ-1 cultured with vegetable oils. BIORESOURCE TECHNOLOGY 2012; 104:530-536. [PMID: 22093975 DOI: 10.1016/j.biortech.2011.10.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2011] [Revised: 10/08/2011] [Accepted: 10/10/2011] [Indexed: 05/31/2023]
Abstract
Considering that the surface properties of demulsifying cells correlate with their demulsification efficiency, the demulsifying bacteria Alcaligenes sp. S-XJ-1 with various surface properties were obtained using different vegetable oils as carbon sources. The results show that better performance was achieved with demulsifying bacteria S-XJ-1 possessing a relatively high cell surface hydrophobicity (CSH) and total unsaturated degree for the cell-wall bound fatty acids. There also appeared to be a correlation between the specific cell-wall bound fatty acid components of the bacteria, in terms of carbon chain length or degree of unsaturation, and either CSH or demulsification efficiency. The fatty acids attached to the cell wall were mainly composed of palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1), linoleic acid (C18:2) and linolenic acid (C18:3). C18:1 and C18:2 had a positive effect on the formation of CSH, while C18:0 and C18:3 had the opposite effect.
Collapse
Affiliation(s)
- Xiang-Feng Huang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, PR China
| | | | | | | | | |
Collapse
|
15
|
Gill CO, Saucier L, Meadus WJ. Mycobacterium avium subsp. paratuberculosis in dairy products, meat, and drinking water. J Food Prot 2011; 74:480-99. [PMID: 21375889 DOI: 10.4315/0362-028x.jfp-10-301] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mycobacterium avium subsp. paratuberculosis (Map) is the cause of Johne's disease, a chronic infection of the gut, in ruminant animals that provide milk and/or meat for human consumption. Map also may be involved in Crohn's disease and type 1 diabetes in humans. Although the role of Map in human diseases has not been established, minimizing the exposure of humans to the organism is considered desirable as a precautionary measure. Infected animals can shed Map in feces and milk, and the organism can become disseminated in tissues remote from the gut and its associated lymph nodes. The presence of at least some Map in raw milk and meat and in natural waters is likely, but the numbers of Map in those foods and waters should be reduced through cooking or purification. The available information relating to Map in milk and dairy products, meats, and drinking water is reviewed here for assessment of the risks of exposure to Map from consumption of such foods and water.
Collapse
Affiliation(s)
- C O Gill
- Agriculture and Agri-Food Canada Lacombe Research Centre, 6000 C&E Trail, Lacombe, Alberta, Canada.
| | | | | |
Collapse
|
16
|
Cell wall adaptations of planktonic and biofilm Rhodococcus erythropolis cells to growth on C5 to C16 n-alkane hydrocarbons. Appl Microbiol Biotechnol 2009; 82:311-20. [DOI: 10.1007/s00253-008-1809-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 11/07/2008] [Accepted: 12/05/2008] [Indexed: 10/21/2022]
|
17
|
Malaviya A, Gomes J. Androstenedione production by biotransformation of phytosterols. BIORESOURCE TECHNOLOGY 2008; 99:6725-6737. [PMID: 18329874 DOI: 10.1016/j.biortech.2008.01.039] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 01/23/2008] [Accepted: 01/26/2008] [Indexed: 05/26/2023]
Abstract
Androstenedione is a key intermediate of microbial steroid metabolism. It belongs to the 17-keto steroid family and is used as starting material for the preparation of different steroids. Androstenedione can be produced by microbial side chain cleavage of phytosterol, which is an alternative to multi-step chemical synthesis. In this review, various methods of biotransformation of sterols to androstenedione are surveyed. It begins with the history and current research status in this field. The existing methods of chemical and biochemical synthesis are examined. Various issues related to these methods and how researchers have addressed them is presented. Among these, the low solubility of sterols in aqueous systems is a critical problem since it limits the product yield. The main content of this review focuses on new methods of biotransformation that are being investigated. Recent biotechnological advances in this field are presented. The review ends with a note on future perspectives.
Collapse
Affiliation(s)
- Alok Malaviya
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | | |
Collapse
|
18
|
Donova MV, Nikolayeva VM, Dovbnya DV, Gulevskaya SA, Suzina NE. Methyl-beta-cyclodextrin alters growth, activity and cell envelope features of sterol-transforming mycobacteria. MICROBIOLOGY-SGM 2007; 153:1981-1992. [PMID: 17526855 DOI: 10.1099/mic.0.2006/001636-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Modified beta-cyclodextrins have been shown previously to enhance sterol conversion to 4-androstene-3,17-dione (AD) and 1,4-androstadiene-3,17-dione (ADD) by growing Mycobacterium spp. The enhancement effect was mainly attributed to steroid solubilization by the formation of inclusion complexes with modified cyclodextrins. In this work, the influence of randomly methylated beta-cyclodextrin (MCD) on the growth, AD- and ADD-producing activity, cell wall (CW) composition and ultrastructure of sterol-transforming Mycobacterium sp. VKM Ac-1816D was studied. The specific growth rate of the strain on glycerol increased in the presence of MCD (20-100 mM). Washed cells grown in the presence of MCD (20-40 mM) expressed 1.6-fold higher ADD-producing activity than did the cells grown without MCD, and their adhesiveness differed. Electron microscopy showed MCD-mediated CW exfoliation and accumulation of membrane-like structures outside the cells, while preserving cells intact. The analysis of CW composition revealed both a decrease in the proportion of extractable lipids and a considerable shift in fatty acid profile resulting from MCD action. The MCD-mediated enhancement of mycolic and fatty acids content was observed outside the cells. The total secreted protein level rose 2.4-fold, and the extracellular 3-hydroxysteroid oxidase activity 3.2-fold. The composition of the CW polysaccharide was not altered, while the overall proportion of the carbohydrates in the CW of the MCD-exposed mycobacteria increased. The results showed that the multiple mechanisms of MCD-mediated intensification of sterol to AD(D) conversion by mycobacteria include not only solubilization of steroids, but also the increase of CW permeability for both steroids and soluble nutrients, disorganization of the lipid bilayer and the release of steroid-transforming enzymes weakly associated with the CW.
Collapse
Affiliation(s)
- M V Donova
- G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia
| | - V M Nikolayeva
- G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia
| | - D V Dovbnya
- G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia
| | - S A Gulevskaya
- G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia
| | - N E Suzina
- G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia
| |
Collapse
|
19
|
Angelova B, Fernandes P, Spasova D, Mutafov S, Pinheiro HM, Cabral JMS. Scanning electron microscopy investigations on bis(2-ethylhexyl)phthalate treatedMycobacterium cells. Microsc Res Tech 2006; 69:613-7. [PMID: 16729266 DOI: 10.1002/jemt.20327] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Comparative investigation of steroid transforming activity and ultrastructural changes of bis(2-ethylhexyl)phthalate (BEHP, phthalate) treated Mycobacterium sp. NRRL B-3805 cells was carried out. Transformation of beta-sitosterol into androstenedione (AD) and androstadienedione (ADD) was performed in phthalate medium by resting cells preincubated in the organic solvent for a period from 3 to 24 h. It was observed that a preincubation greater than 12 h leads to the development of dense formations on the cells surface, reduction in the cell turgor, disruption in the cell walls, and formation of zones with reduced electron density. The preincubation for 24 h causes deeper changes in the cell ultrastructure but the treated cells retain their steroid transforming activity, allowing up to 80% of the substrate to be converted into AD and ADD. A preincubation of the resting Mycobacterium cells in BEHP for 6 h might be recommended as it leads to an achievement of stoichiometrical transformation of the substrate into AD and ADD and slightly higher initial rate of the reaction performed.
Collapse
Affiliation(s)
- B Angelova
- Bulgarian Academy of Sciences, The Stephan Angeloff Institute of Microbiology, 1113 Sofia, Bulgaria.
| | | | | | | | | | | |
Collapse
|
20
|
Florio W, Batoni G, Esin S, Bottai D, Maisetta G, Favilli F, Brancatisano FL, Campa M. Influence of culture medium on the resistance and response of Mycobacterium bovis BCG to reactive nitrogen intermediates. Microbes Infect 2005; 8:434-41. [PMID: 16298152 DOI: 10.1016/j.micinf.2005.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Revised: 07/14/2005] [Accepted: 07/15/2005] [Indexed: 10/25/2022]
Abstract
The aim of the present work was to evaluate the influence of the culture medium on the resistance and response of Mycobacterium bovis BCG to reactive nitrogen intermediates, in vitro. BCG was grown in Sauton, Dubos or Middlebrook 7H9 medium and exposed to sodium nitroprusside (SNP) for up to 7 days. The percentage of bacilli that survived was significantly lower in Middlebrook 7H9 than in Sauton or Dubos medium. Addition of SNP to Middlebrook 7H9 caused an increase in the RedOx potential in either the absence or the presence of BCG, while addition of the compound to Sauton medium gave rise to an increase in the RedOx potential only in the absence of bacteria, whereas a decrease in the RedOx potential was observed in the presence of BCG. The resistance of BCG to SNP in the different media did not correlate with the concentration of peroxynitrite in culture supernatants. BCG grown in different media showed a differential protein expression pattern, as assessed by two-dimensional gel electrophoresis. Exposure of BCG to sub-lethal concentrations of SNP in Middlebrook 7H9, but not in Sauton medium, revealed a differential expression of at least 38 protein species. Altogether these results demonstrate that the growth medium may have a remarkable influence on the resistance and the response of BCG to SNP and suggest that the different resistance of BCG in the two media is unlikely to be due to a differential antioxidant effect of the medium itself.
Collapse
Affiliation(s)
- Walter Florio
- Dipartimento di Patologia Sperimentale, Biotecnologie Mediche, Infettivologia ed Epidemiologia, Università di Pisa, Via S. Zeno 35-39, 56127 Pisa, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Johnsen AR, Wick LY, Harms H. Principles of microbial PAH-degradation in soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2005; 133:71-84. [PMID: 15327858 DOI: 10.1016/j.envpol.2004.04.015] [Citation(s) in RCA: 560] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2004] [Accepted: 04/13/2004] [Indexed: 05/13/2023]
Abstract
Interest in the biodegradation mechanisms and environmental fate of polycyclic aromatic hydrocarbons (PAHs) is motivated by their ubiquitous distribution, their low bioavailability and high persistence in soil, and their potentially deleterious effect on human health. Due to high hydrophobicity and solid-water distribution ratios, PAHs tend to interact with non-aqueous phases and soil organic matter and, as a consequence, become potentially unavailable for microbial degradation since bacteria are known to degrade chemicals only when they are dissolved in water. As the aqueous solubility of PAHs decreases almost logarithmically with increasing molecular mass, high-molecular weight PAHs ranging in size from five to seven rings are of special environmental concern. Whereas several reviews have focussed on metabolic and ecological aspects of PAH degradation, this review discusses the microbial PAH-degradation with special emphasis on both biological and physico-chemical factors influencing the biodegradation of poorly available PAHs.
Collapse
Affiliation(s)
- Anders R Johnsen
- National Environmental Research Institute, Department of Environmental Chemistry and Microbiology, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | | | | |
Collapse
|
22
|
Fernandes P, Cruz A, Angelova B, Pinheiro H, Cabral J. Microbial conversion of steroid compounds: recent developments. Enzyme Microb Technol 2003. [DOI: 10.1016/s0141-0229(03)00029-2] [Citation(s) in RCA: 273] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
23
|
Wick LY, Wattiau P, Harms H. Influence of the growth substrate on the mycolic acid profiles of mycobacteria. Environ Microbiol 2002; 4:612-6. [PMID: 12366756 DOI: 10.1046/j.1462-2920.2002.00340.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The influence of growth substrates on mycolic acid profiles of PAH-degrading Mycobacterium spp. LB501T, LB307T and VM552 was examined by high-performance liquid chromatography (HPLC) using glucose, alkanes, polycyclic aromatic hydrocarbons (PAH) or Luria-Bertani medium (LB) as the sole carbon source. The substrates gave rise to varying mycolic acid profiles, as bacteria growing on poorly water-soluble substrates exhibited more hydrophobic mycolic acids than cells grown on glucose. Our results indicate that mycobacteria respond to the growth substrate by changing the mycolic acid composition of their cell wall, pointing at the importance of the growth substrate for mycolic acid profiling as an identification method of actinomycetes.
Collapse
Affiliation(s)
- Lukas Y Wick
- Swiss Federal Institute of Technology Lausanne (EPFL), School of Architecture and Civil and Environmental Engineering, CH-1015 Lausanne, Switzerland.
| | | | | |
Collapse
|
24
|
Etienne G, Villeneuve C, Billman-Jacobe H, Astarie-Dequeker C, Dupont MA, Daffé M. The impact of the absence of glycopeptidolipids on the ultrastructure, cell surface and cell wall properties, and phagocytosis of Mycobacterium smegmatis. MICROBIOLOGY (READING, ENGLAND) 2002; 148:3089-3100. [PMID: 12368442 DOI: 10.1099/00221287-148-10-3089] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Glycopeptidolipids (GPLs) are a class of species- or type-specific mycobacterial lipids and major constituents of the cell envelopes of many non-tuberculous mycobacteria. To determine the function of GPLs in the physiology of these bacteria, a mutant of Mycobacterium smegmatis in which the gene encoding a mycobacterial nonribosomal peptide synthetase has been inactivated by transposon mutagenesis was analysed. Labelling experiments indicated that half of the bacterial GPLs were located on the cell surface and represented 85% of the surface-exposed lipids of the parent strain whereas the mutant was defective in the production of the GPLs. Compared to the parent smooth morphotype strain, the GPL-deficient mutant strain exhibited a rough colony morphology, an increase of the cell hydrophobicity and formed huge aggregates. As a consequence, the mutant cells were no longer able to bind ruthenium red, as observed by transmission electron microscopy. The altered surface properties of the mutant cells also affected the phagocytosis of individual bacilli by human monocyte-derived macrophages since mutant cells were internalized more rapidly than cells from the parent strain. Nevertheless, no specific release of surface constituents into the culture broth of the mutant was observed, indicating that the cell surface is composed of substances other than GPLs and that these are essential for maintaining the architecture of the outermost layer of the cell envelope. Importantly, the absence of these major extractable lipids of M. smegmatis from the mutant strain has a profound effect on the uptake of the hydrophobic chenodeoxycholate by cells, indicating that GPLs are involved in the cell wall permeability barrier of M. smegmatis. Altogether, these data showed that, in addition to being distinctive markers of numerous mycobacterial species, GPLs play a role in the bacterial phenotype, surface properties and cell wall permeability.
Collapse
Affiliation(s)
- Gilles Etienne
- Institut de Pharmacologie et de Biologie Structurale, Unité Mixte de Recherche du Centre de National de Recherche Scientifique et de l'Université Paul Sabatier (UMR 5089), 205 route de Narbonne, 31077 Toulouse cedex 04, France1
| | - Christelle Villeneuve
- Institut de Pharmacologie et de Biologie Structurale, Unité Mixte de Recherche du Centre de National de Recherche Scientifique et de l'Université Paul Sabatier (UMR 5089), 205 route de Narbonne, 31077 Toulouse cedex 04, France1
| | - Helen Billman-Jacobe
- Department of Microbiology and Immunology, University of Melbourne, Victoria 3010, Australia2
| | - Catherine Astarie-Dequeker
- Institut de Pharmacologie et de Biologie Structurale, Unité Mixte de Recherche du Centre de National de Recherche Scientifique et de l'Université Paul Sabatier (UMR 5089), 205 route de Narbonne, 31077 Toulouse cedex 04, France1
| | - Marie-Ange Dupont
- Institut d'Exploration Fonctionnelle des Génomes (IFR 109), 118 route de Narbonne, 31062 Toulouse cedex, France3
| | - Mamadou Daffé
- Institut de Pharmacologie et de Biologie Structurale, Unité Mixte de Recherche du Centre de National de Recherche Scientifique et de l'Université Paul Sabatier (UMR 5089), 205 route de Narbonne, 31077 Toulouse cedex 04, France1
| |
Collapse
|