1
|
Sun J, Liu J, Liu M, Bi X, Huang C. New perspective for pathomechanism and clinical applications of animal toxins: Programmed cell death. Toxicon 2024; 249:108071. [PMID: 39134227 DOI: 10.1016/j.toxicon.2024.108071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/03/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024]
Abstract
Various animal toxins pose a significant threat to human safety, necessitating urgent attention to their treatment and research. The clinical potential of programmed cell death (PCD) is widely regarded as a target for envenomation, given its crucial role in regulating physiological and pathophysiological processes. Current research on animal toxins examines their specific components in pathomechanisms and injuries, as well as their clinical applications. This review explores the relationship between various toxins and several types of PCD, such as apoptosis, necroptosis, autophagy, ferroptosis, and pyroptosis, to provide a reference for future understanding of the pathophysiology of toxins and the development of their potential clinical value.
Collapse
Affiliation(s)
- Jiaqi Sun
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Jiahao Liu
- School of Basic Medicine Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Meiling Liu
- School of Basic Medicine Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Xiaowen Bi
- School of Basic Medicine Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
| | - Chunhong Huang
- School of Basic Medicine Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
2
|
Bittenbinder MA, van Thiel J, Cardoso FC, Casewell NR, Gutiérrez JM, Kool J, Vonk FJ. Tissue damaging toxins in snake venoms: mechanisms of action, pathophysiology and treatment strategies. Commun Biol 2024; 7:358. [PMID: 38519650 PMCID: PMC10960010 DOI: 10.1038/s42003-024-06019-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 03/07/2024] [Indexed: 03/25/2024] Open
Abstract
Snakebite envenoming is an important public health issue responsible for mortality and severe morbidity. Where mortality is mainly caused by venom toxins that induce cardiovascular disturbances, neurotoxicity, and acute kidney injury, morbidity is caused by toxins that directly or indirectly destroy cells and degrade the extracellular matrix. These are referred to as 'tissue-damaging toxins' and have previously been classified in various ways, most of which are based on the tissues being affected (e.g., cardiotoxins, myotoxins). This categorisation, however, is primarily phenomenological and not mechanistic. In this review, we propose an alternative way of classifying cytotoxins based on their mechanistic effects rather than using a description that is organ- or tissue-based. The mechanisms of toxin-induced tissue damage and their clinical implications are discussed. This review contributes to our understanding of fundamental biological processes associated with snakebite envenoming, which may pave the way for a knowledge-based search for novel therapeutic options.
Collapse
Affiliation(s)
- Mátyás A Bittenbinder
- Naturalis Biodiversity Center, 2333 CR, Leiden, The Netherlands
- AIMMS, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH, Amsterdam, The Netherlands
| | - Jory van Thiel
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, Liverpool, United Kingdom
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
- Howard Hughes Medical Institute and Department of Biology, University of Maryland, College Park, MD, 20742, USA
| | - Fernanda C Cardoso
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
- Centre for Innovations in Peptide and Protein Science, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Nicholas R Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, Liverpool, United Kingdom
| | - José-María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica.
| | - Jeroen Kool
- AIMMS, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands.
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH, Amsterdam, The Netherlands.
| | - Freek J Vonk
- Naturalis Biodiversity Center, 2333 CR, Leiden, The Netherlands
- AIMMS, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Larréché S, Chippaux JP, Chevillard L, Mathé S, Résière D, Siguret V, Mégarbane B. Bleeding and Thrombosis: Insights into Pathophysiology of Bothrops Venom-Related Hemostasis Disorders. Int J Mol Sci 2021; 22:ijms22179643. [PMID: 34502548 PMCID: PMC8431793 DOI: 10.3390/ijms22179643] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/29/2021] [Accepted: 09/03/2021] [Indexed: 12/13/2022] Open
Abstract
Toxins from Bothrops venoms targeting hemostasis are responsible for a broad range of clinical and biological syndromes including local and systemic bleeding, incoagulability, thrombotic microangiopathy and macrothrombosis. Beyond hemostais disorders, toxins are also involved in the pathogenesis of edema and in most complications such as hypovolemia, cardiovascular collapse, acute kidney injury, myonecrosis, compartmental syndrome and superinfection. These toxins can be classified as enzymatic proteins (snake venom metalloproteinases, snake venom serine proteases, phospholipases A2 and L-amino acid oxidases) and non-enzymatic proteins (desintegrins and C-type lectin proteins). Bleeding is due to a multifocal toxicity targeting vessels, platelets and coagulation factors. Vessel damage due to the degradation of basement membrane and the subsequent disruption of endothelial cell integrity under hydrostatic pressure and tangential shear stress is primarily responsible for bleeding. Hemorrhage is promoted by thrombocytopenia, platelet hypoaggregation, consumption coagulopathy and fibrin(ogen)olysis. Onset of thrombotic microangiopathy is probably due to the switch of endothelium to a prothrombotic phenotype with overexpression of tissue factor and other pro-aggregating biomarkers in association with activation of platelets and coagulation. Thrombosis involving large-caliber vessels in B. lanceolatus envenomation remains a unique entity, which exact pathophysiology remains poorly understood.
Collapse
Affiliation(s)
- Sébastien Larréché
- INSERM, UMRS-1144, Paris University, 75006 Paris, France; (S.L.); (L.C.); (S.M.)
- Department of Medical Biology, Bégin Military Teaching Hospital, 94160 Saint-Mandé, France
| | - Jean-Philippe Chippaux
- MERIT, IRD, Paris University, 75006 Paris, France;
- CRT, Pasteur Institute, 75015 Paris, France
| | - Lucie Chevillard
- INSERM, UMRS-1144, Paris University, 75006 Paris, France; (S.L.); (L.C.); (S.M.)
| | - Simon Mathé
- INSERM, UMRS-1144, Paris University, 75006 Paris, France; (S.L.); (L.C.); (S.M.)
| | - Dabor Résière
- Clinical Toxicology Unit, Critical Care Department, University Hospital of Martinique, Fort de France, 97200 Martinique, France;
| | - Virginie Siguret
- INSERM, UMRS-1140, Paris University, 75006 Paris, France;
- Laboratory of Hematology, Lariboisière Hospital, 75010 Paris, France
| | - Bruno Mégarbane
- INSERM, UMRS-1144, Paris University, 75006 Paris, France; (S.L.); (L.C.); (S.M.)
- Department of Medical and Toxicological Critical Care, Lariboisière Hospital, 75010 Paris, France
- Correspondence: ; Tel.: +33-(0)-143-985-299
| |
Collapse
|
4
|
Chen YC, Wang TY, Huang YK, Chang KC, Chen MH, Liu CC, Liu KL, Yang YH, Yen DHT, Fan JS. Effects of Sodium Silicate Complex against Hemorrhagic Activities Induced by Protobothrops mucrosquamatus Venom. Toxins (Basel) 2021; 13:toxins13010059. [PMID: 33466634 PMCID: PMC7828652 DOI: 10.3390/toxins13010059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/13/2022] Open
Abstract
Protobothrops mucrosquamatus poses a serious medical threat to humans in Southern and Southeastern Asia. Hemorrhage is one of the conspicuous toxicities related to the pathology of P. mucrosquamatus envenoming. Previous in vitro and in vivo studies showed that a silica-derived reagent, sodium silicate complex (SSC), was able to neutralize hemorrhagic and proteolytic activities induced by pit viper venoms, including Crotalus atrox, Agkistrodon
contortrix contortrix and Agkistrodon piscivorus leucostoma. In this study, we validated that SSC could neutralize enzymatic and toxic effects caused by the venom of P. mucrosquamatus. We found that SSC inhibited the hemolytic and proteolytic activities induced by P. mucrosquamatus venom in vitro. In addition, we demonstrated that SSC could block intradermal hemorrhage caused by P. mucrosquamatus venom in a mouse model. Finally, SSC could neutralize lethal effects of P. mucrosquamatus venom in the mice. Therefore, SSC is a candidate for further development as a potential onsite first-aid treatment for P. mucrosquamatus envenoming.
Collapse
Affiliation(s)
- Yen-Chia Chen
- Emergency Department, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (Y.-C.C.); (T.-Y.W.); (D.H.-T.Y.)
- Department of Emergency Medicine, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan
- Department of Emergency Medicine, School of Medicine, National Defense Medical Center, Taipei 11490, Taiwan
| | - Tse-Yao Wang
- Emergency Department, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (Y.-C.C.); (T.-Y.W.); (D.H.-T.Y.)
- Department of Emergency Medicine, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan
| | - Yu-Kai Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Department of Surgery, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
| | - Kun-Che Chang
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
- Spencer Center for Vision Research, Byers Eye Institute, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Min-Hui Chen
- Enkang Clinic, 3F, 88, Baozhong Rd., Xindian Dist, New Taipei 23144, Taiwan;
| | - Chien-Chun Liu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Kuei-Lin Liu
- Faculty of Biotechnology and Laboratory Science in Medicine, School of Medical Technology and Engineering, National Yang-Ming University, Taipei 11221, Taiwan;
| | - Ya-Han Yang
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
| | - David Hung-Tsang Yen
- Emergency Department, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (Y.-C.C.); (T.-Y.W.); (D.H.-T.Y.)
- Department of Emergency Medicine, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan
- Department of Emergency Medicine, School of Medicine, National Defense Medical Center, Taipei 11490, Taiwan
| | - Ju-Sing Fan
- Emergency Department, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (Y.-C.C.); (T.-Y.W.); (D.H.-T.Y.)
- Department of Emergency Medicine, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan
- Correspondence: ; Tel.: +886-228-757-628; Fax: +886-228-738-013
| |
Collapse
|
5
|
Hwang DH, Lee H, Choudhary I, Kang C, Chae J, Kim E. Protective effect of epigallocatechin-3-gallate (EGCG) on toxic metalloproteinases-mediated skin damage induced by Scyphozoan jellyfish envenomation. Sci Rep 2020; 10:18644. [PMID: 33122740 PMCID: PMC7596074 DOI: 10.1038/s41598-020-75269-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 10/05/2020] [Indexed: 01/22/2023] Open
Abstract
Jellyfish stingings are currently raising serious public health concerns around the world. Hence, the search for an effective first aid reagent for the envenomation has been the goal of many investigators in the field. There have been a few previous reports of in vivo as well as in vivo studies suggesting the metalloproteinase activity of scyphozoan jellyfish venom, such as N. nomurai venom (NnV), plays a major role in the pathogenesis. These results have inspired us to develop a metalloproteinase inhibitor as a candidate for the treatment of Scyphozoan jellyfish envenomation. It has been previously demonstrated that the major polyphenol component in green tea, epigallocatechin-3-gallate (EGCG), can inhibit metalloproteinase activity of snake venoms. In fact, plant polyphenols as potential therapeutics have been shown to exert positive effects on neutralizing snake venoms and toxins. In the present study, we found that EGCG significantly inhibits the toxic proteases of NnV in a concentration-dependent manner. Human keratinocyte (HaCaT) and Human dermal fibroblast (HDF) cell culture studies showed that EGCG treatment can protect the cells from NnV-induced cytotoxicity which has been accompanied by the down-regulation of human matrix metalloproteinase (MMP)-2 and -9. Simulated rat NnV envenomation study disclosed that topical treatments with EGCG considerably ameliorated the progression of the dermonecrotic lesions caused by NnV. EGCG also reduced the activitions of tissue MMP-2 and MMP-9, which seem to be crucial players in the dermal toxic responses induced by NnV. Therefore, we propose that EGCG might be an effective therapeutic agent for the treatment of cutaneoous jellyfish symptoms.
Collapse
Affiliation(s)
- Du Hyeon Hwang
- College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Korea.,Institute of Animal Medicine, Gyeongsang National University, Jinju, 52828, Korea
| | - Hyunkyoung Lee
- College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Korea
| | - Indu Choudhary
- College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Korea
| | - Changkeun Kang
- College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Korea.,Institute of Animal Medicine, Gyeongsang National University, Jinju, 52828, Korea
| | - Jinho Chae
- Marine Environmental Research and Information Laboratory, B1101, 17 Gosan-ro 148beon-gil, Gunpo-si, Gyeonggi-do, 15850, Korea.
| | - Euikyung Kim
- College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Korea. .,Institute of Animal Medicine, Gyeongsang National University, Jinju, 52828, Korea.
| |
Collapse
|
6
|
Rima M, Alavi Naini SM, Karam M, Sadek R, Sabatier JM, Fajloun Z. Vipers of the Middle East: A Rich Source of Bioactive Molecules. Molecules 2018; 23:molecules23102721. [PMID: 30360399 PMCID: PMC6222703 DOI: 10.3390/molecules23102721] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/14/2018] [Accepted: 10/19/2018] [Indexed: 11/30/2022] Open
Abstract
Snake venom serves as a tool of defense against threat and helps in prey digestion. It consists of a mixture of enzymes, such as phospholipase A2, metalloproteases, and l-amino acid oxidase, and toxins, including neurotoxins and cytotoxins. Beside their toxicity, venom components possess many pharmacological effects and have been used to design drugs and as biomarkers of diseases. Viperidae is one family of venomous snakes that is found nearly worldwide. However, three main vipers exist in the Middle Eastern region: Montivipera bornmuelleri, Macrovipera lebetina, and Vipera (Daboia) palaestinae. The venoms of these vipers have been the subject of many studies and are considered as a promising source of bioactive molecules. In this review, we present an overview of these three vipers, with a special focus on their venom composition as well as their biological activities, and we discuss further frameworks for the exploration of each venom.
Collapse
Affiliation(s)
- Mohamad Rima
- Department of Neuroscience, Institut de Biologie Paris Seine (IBPS), INSERM, CNRS, Sorbonne Université, F-75005 Paris, France.
| | - Seyedeh Maryam Alavi Naini
- Department of Neuroscience, Institut de Biologie Paris Seine (IBPS), INSERM, CNRS, Sorbonne Université, F-75005 Paris, France.
| | - Marc Karam
- Department of Biology, Faculty of Sciences, University of Balamand, Kourah3843, Lebanon.
| | - Riyad Sadek
- Department of Biology, American University of Beirut, Beirut 1107-2020, Lebanon.
| | - Jean-Marc Sabatier
- Laboratory INSERM UMR 1097, Aix-Marseille University, 163, Parc Scientifique et Technologique de Luminy, Avenue de Luminy, Bâtiment TPR2, Case 939, 13288 Marseille, France.
| | - Ziad Fajloun
- Department of Biology, Faculty of Sciences III, Lebanese University, Tripoli 1300, Lebanon.
- Laboratory of Applied Biotechnology, Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon.
| |
Collapse
|
7
|
Choudhury M, Senthilvadivel V, Velmurugan D. Inhibitory effects of ascorbic acid toward snake venom metalloproteinase (SVMP) from Indian
Echis carinatus
venom: Insights from molecular modeling and binding studies. J Biochem Mol Toxicol 2018; 32:e22224. [DOI: 10.1002/jbt.22224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/16/2018] [Accepted: 08/26/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Manisha Choudhury
- Centre of Advanced Studies in Crystallography and Biophysics, University of Madras, Guindy CampusChennai Tamil Nadu India
| | - Vajravijayan Senthilvadivel
- Centre of Advanced Studies in Crystallography and Biophysics, University of Madras, Guindy CampusChennai Tamil Nadu India
| | - Devadasan Velmurugan
- Centre of Advanced Studies in Crystallography and Biophysics, University of Madras, Guindy CampusChennai Tamil Nadu India
| |
Collapse
|
8
|
Gutiérrez JM, Escalante T, Rucavado A, Herrera C, Fox JW. A Comprehensive View of the Structural and Functional Alterations of Extracellular Matrix by Snake Venom Metalloproteinases (SVMPs): Novel Perspectives on the Pathophysiology of Envenoming. Toxins (Basel) 2016; 8:toxins8100304. [PMID: 27782073 PMCID: PMC5086664 DOI: 10.3390/toxins8100304] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 10/14/2016] [Indexed: 12/22/2022] Open
Abstract
Snake venom metalloproteinases (SVMPs) affect the extracellular matrix (ECM) in multiple and complex ways. Previously, the combination of various methodological platforms, including electron microscopy, histochemistry, immunohistochemistry, and Western blot, has allowed a partial understanding of such complex pathology. In recent years, the proteomics analysis of exudates collected in the vicinity of tissues affected by SVMPs has provided novel and exciting information on SVMP-induced ECM alterations. The presence of fragments of an array of ECM proteins, including those of the basement membrane, has revealed a complex pathological scenario caused by the direct action of SVMPs. In addition, the time-course analysis of these changes has underscored that degradation of some fibrillar collagens is likely to depend on the action of endogenous proteinases, such as matrix metalloproteinases (MMPs), synthesized as a consequence of the inflammatory process. The action of SVMPs on the ECM also results in the release of ECM-derived biologically-active peptides that exert diverse actions in the tissue, some of which might be associated with reparative events or with further tissue damage. The study of the effects of SVMP on the ECM is an open field of research which may bring a renewed understanding of snake venom-induced pathology.
Collapse
Affiliation(s)
- José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Teresa Escalante
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Alexandra Rucavado
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Cristina Herrera
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
- Facultad de Farmacia, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Jay W Fox
- School of Medicine, University of Virginia, Charlottesville, VA 22959, USA.
| |
Collapse
|
9
|
Novel apigenin based small molecule that targets snake venom metalloproteases. PLoS One 2014; 9:e106364. [PMID: 25184206 PMCID: PMC4153592 DOI: 10.1371/journal.pone.0106364] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 07/31/2014] [Indexed: 02/07/2023] Open
Abstract
The classical antivenom therapy has appreciably reduced snakebite mortality rate and thus is the only savior drug available. Unfortunately, it considerably fails to shield the viper bite complications like hemorrhage, local tissue degradation and necrosis responsible for severe morbidity. Moreover, the therapy is also tagged with limitations including anaphylaxis, serum sickness and poor availability. Over the last decade, snake venom metalloproteases (SVMPs) are reported to be the primary component responsible for hemorrhage and tissue degradation at bitten site. Thus, antivenom inability to offset viper venom-induced local toxicity has been a basis for an insistent search for SVMP inhibitors. Here we report the inhibitory effect of compound 5d, an apigenin based molecule against SVMPs both in silico and in vivo. Several apigenin analogues are synthesized using multicomponent Ugi reactions. Among them, compound 5d effectively abrogated Echis carinatus (EC) venom-induced local hemorrhage, tissue necrosis and myotoxicity in a dose dependant fashion. The histopathological study further conferred effective inhibition of basement membrane degradation, and accumulation of inflammatory leucocytes at the site of EC venom inoculation. The compound also protected EC venom-induced fibrin and fibrinogen degradation. The molecular docking of compound 5d and bothropasin demonstrated the direct interaction of hydroxyl group of compound with Glu146 present in hydrophobic pocket of active site and does not chelate Zn2+. Hence, it is concluded that compound 5d could be a potent agent in viper bite management.
Collapse
|
10
|
Yamashita KM, Alves AF, Barbaro KC, Santoro ML. Bothrops jararaca venom metalloproteinases are essential for coagulopathy and increase plasma tissue factor levels during envenomation. PLoS Negl Trop Dis 2014; 8:e2814. [PMID: 24831016 PMCID: PMC4022520 DOI: 10.1371/journal.pntd.0002814] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 03/10/2014] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND/AIMS Bleeding tendency, coagulopathy and platelet disorders are recurrent manifestations in snakebites occurring worldwide. We reasoned that by damaging tissues and/or activating cells at the site of the bite and systemically, snake venom toxins might release or decrypt tissue factor (TF), resulting in activation of blood coagulation and aggravation of the bleeding tendency. Thus, we addressed (a) whether TF and protein disulfide isomerase (PDI), an oxireductase involved in TF encryption/decryption, were altered in experimental snake envenomation; (b) the involvement and significance of snake venom metalloproteinases (SVMP) and serine proteinases (SVSP) to hemostatic disturbances. METHODS/PRINCIPAL FINDINGS Crude Bothrops jararaca venom (BjV) was preincubated with Na2-EDTA or AEBSF, which are inhibitors of SVMP and SVSP, respectively, and injected subcutaneously or intravenously into rats to analyze the contribution of local lesion to the development of hemostatic disturbances. Samples of blood, lung and skin were collected and analyzed at 3 and 6 h. Platelet counts were markedly diminished in rats, and neither Na2-EDTA nor AEBSF could effectively abrogate this fall. However, Na2-EDTA markedly reduced plasma fibrinogen consumption and hemorrhage at the site of BjV inoculation. Na2-EDTA also abolished the marked elevation in TF levels in plasma at 3 and 6 h, by both administration routes. Moreover, increased TF activity was also noticed in lung and skin tissue samples at 6 h. However, factor VII levels did not decrease over time. PDI expression in skin was normal at 3 h, and downregulated at 6 h in all groups treated with BjV. CONCLUSIONS SVMP induce coagulopathy, hemorrhage and increased TF levels in plasma, but neither SVMP nor SVSP are directly involved in thrombocytopenia. High levels of TF in plasma and TF decryption occur during snake envenomation, like true disseminated intravascular coagulation syndrome, and might be implicated in engendering bleeding manifestations in severely-envenomed patients.
Collapse
Affiliation(s)
- Karine M. Yamashita
- Laboratory of Pathophysiology, Institute Butantan, São Paulo, São Paulo, Brazil
- Department of Clinical Medicine, School of Medicine, University of São Paulo, São Paulo, São Paulo, Brazil
| | - André F. Alves
- Laboratory of Pathophysiology, Institute Butantan, São Paulo, São Paulo, Brazil
| | - Katia C. Barbaro
- Immunopathology, Institute Butantan, São Paulo, São Paulo, Brazil
| | - Marcelo L. Santoro
- Laboratory of Pathophysiology, Institute Butantan, São Paulo, São Paulo, Brazil
- Department of Clinical Medicine, School of Medicine, University of São Paulo, São Paulo, São Paulo, Brazil
- * E-mail: ,
| |
Collapse
|
11
|
Katkar GD, Sundaram MS, Hemshekhar M, Sharma DR, Santhosh MS, Sunitha K, Rangappa KS, Girish KS, Kemparaju K. Melatonin alleviates Echis carinatus venom-induced toxicities by modulating inflammatory mediators and oxidative stress. J Pineal Res 2014; 56:295-312. [PMID: 24499241 DOI: 10.1111/jpi.12123] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 01/31/2014] [Indexed: 01/14/2023]
Abstract
Viper bites cause high morbidity and mortality worldwide and regarded as a neglected tropical disease affecting a large healthy population. Classical antivenom therapy has appreciably reduced the snakebite mortality rate; it apparently fails to tackle viper venom-induced local manifestations that persist even after the administration of antivenom. Recently, viper venom-induced oxidative stress and vital organ damage is deemed as yet another reason for concern; these are considered as postmedicated complications of viper bite. Thus, treating viper bite has become a challenge demanding new treatment strategies, auxiliary to antivenin therapy. In the last decade, several studies have reported the use of plant products and clinically approved drugs to neutralize venom-induced pharmacology. However, very few attempts were undertaken to study oxidative stress and vital organ damage. Based on this background, the present study evaluated the protective efficacy of melatonin in Echis carinatus (EC) venom-induced tissue necrosis, oxidative stress, and organ toxicity. The results demonstrated that melatonin efficiently alleviated EC venom-induced hemorrhage and myonecrosis. It also mitigated the altered levels of inflammatory mediators and oxidative stress markers of blood components in liver and kidney homogenates, and documented renal and hepatoprotective action of melatonin. The histopathology of skin, muscle, liver, and kidney tissues further substantiated the overall protection offered by melatonin against viper bite toxicities. Besides the inability of antivenoms to block local effects and the fact that melatonin is already a widely used drug promulgating a multitude of therapeutic functionalities, its use in viper bite management is of high interest and should be seriously considered.
Collapse
Affiliation(s)
- G D Katkar
- Department of Studies in Biochemistry, University of Mysore, Mysore, India
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Effects of N-acetyl-L-cysteine on redox status and markers of renal function in mice inoculated with Bothrops jararaca and Crotalus durissus terrificus venoms. Toxicon 2014; 79:1-10. [PMID: 24412461 DOI: 10.1016/j.toxicon.2013.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 12/18/2013] [Accepted: 12/30/2013] [Indexed: 01/31/2023]
Abstract
Renal dysfunction is an important aggravating factor in accidents caused by Crotalus durissus terrificus (Cdt) and Bothrops jararaca (Bj) bites. N-acetyl-l-cysteine (NAC) is well known as a nephroprotective antioxidant with low toxicity. The present study investigated the effects of NAC on redox status and markers of renal function in mice that received vehicle (controls) or venoms (v) of Cdt and Bj. In controls NAC promoted hypercreatinemia, hypouremia, hyperosmolality with decreased urea in urine, hyperproteinuria, decreased protein and increased dipeptidyl peptidase IV (DPPIV) in membrane-bound fraction (MF) from renal cortex (RC) and medulla (RM). NAC ameliorated or normalized altered creatinuria, proteinemia and aminopeptidase (AP) acid in MF, AP basic (APB) in soluble fraction (SF), and neutral AP in SF and MF from RC and RM in vBj envenomation. NAC ameliorated or normalized altered neutral AP in SF from RC and RM, and DPPIV and protein in MF from RC in vCdt envenomation. NAC ameliorated or restored renal redox status respectively in vCdt and vBj, and normalized uricemia in both envenomations. These data are promising perspectives that recommend the clinical evaluation of NAC as potential coadjuvant in the anti venom serotherapy for accidents with these snake's genera.
Collapse
|
13
|
Wahby A, Mahdy ESM, EL-mezayen HA, Salama WH, Ebrahim NM, Abdel-Aty AM, Fahmy AS. Role of hyaluronidase inhibitors in the neutralization of toxicity of Egyptian horned viper Cerastes cerastes venom. JOURNAL OF GENETIC ENGINEERING AND BIOTECHNOLOGY 2012. [DOI: 10.1016/j.jgeb.2012.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
Biochemical and enzymatic characterization of BpMP-I, a fibrinogenolytic metalloproteinase isolated from Bothropoides pauloensis snake venom. Comp Biochem Physiol B Biochem Mol Biol 2012; 161:102-9. [DOI: 10.1016/j.cbpb.2011.10.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 10/04/2011] [Accepted: 10/05/2011] [Indexed: 11/22/2022]
|
15
|
Sunitha K, Hemshekhar M, Gaonkar SL, Sebastin Santhosh M, Suresh Kumar M, Basappa, Priya BS, Kemparaju K, Rangappa KS, Nanjunda Swamy S, Girish KS. Neutralization of Haemorrhagic Activity of Viper Venoms by 1-(3-Dimethylaminopropyl)-1-(4-Fluorophenyl)-3-Oxo-1,3-Dihydroisobenzofuran-5-Carbonitrile. Basic Clin Pharmacol Toxicol 2011; 109:292-9. [DOI: 10.1111/j.1742-7843.2011.00725.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Experimental pathology of local tissue damage induced by Bothrops asper snake venom. Toxicon 2009; 54:958-75. [DOI: 10.1016/j.toxicon.2009.01.038] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 01/22/2009] [Accepted: 01/23/2009] [Indexed: 01/01/2023]
|
17
|
Ushanandini S, Nagaraju S, Nayaka SC, Kumar KH, Kemparaju K, Girish KS. The anti-ophidian properties ofAnacardium occidentalebark extract. Immunopharmacol Immunotoxicol 2009; 31:607-15. [DOI: 10.3109/08923970902911909] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
18
|
Mendes MM, Vale LHF, Lucena MN, Vieira SAPB, Izidoro LFM, Junior RJO, Soares AM, Alcântara TM, Hamaguchi A, Homsi-Brandeburgo MI, Rodrigues VM. Acute toxicity of Schizolobium parahyba
aqueous extract in mice. Phytother Res 2009; 24:459-62. [DOI: 10.1002/ptr.2956] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
19
|
Pornmanee P, Sánchez EE, López G, Petsom A, Khow O, Pakmanee N, Chanhome L, Sangvanich P, Pérez JC. Neutralization of lethality and proteolytic activities of Malayan pit viper (Calloselasma rhodostoma) venom with North American Virginia opossum (Didelphis virginiana) serum. Toxicon 2008; 52:186-9. [PMID: 18617212 DOI: 10.1016/j.toxicon.2008.04.163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 04/05/2008] [Accepted: 04/07/2008] [Indexed: 11/29/2022]
Abstract
Malayan pit viper (Calloselasma rhodostoma) envenomation is a major health problem in South East Asia. During envenomation, venom components mainly affect the hemostatic system. The sera from the North American Virginia opossums (Didelphis virginiana) were able to neutralize the venom of the Malayan pit viper. These natural inhibitors could be explored as potential therapeutics against envenomations of a variety of venomous snake species in different geographical habitats.
Collapse
Affiliation(s)
- Piboon Pornmanee
- Program of Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Mendes MM, Oliveira CF, Lopes DS, Vale LHF, Alcântara TM, Izidoro LFM, Hamaguchi A, Homsi-Brandeburgo MI, Soares AM, Rodrigues VM. Anti-snake venom properties ofSchizolobium parahyba(Caesalpinoideae) aqueous leaves extract. Phytother Res 2008; 22:859-66. [DOI: 10.1002/ptr.2371] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Ushanandini S, Nagaraju S, Harish Kumar K, Vedavathi M, Machiah DK, Kemparaju K, Vishwanath BS, Gowda TV, Girish KS. The anti-snake venom properties ofTamarindus indica(leguminosae) seed extract. Phytother Res 2006; 20:851-8. [PMID: 16847999 DOI: 10.1002/ptr.1951] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In Indian traditional medicine, various plants have been used widely as a remedy for treating snake bites. The aim of this study was to evaluate the effect of Tamarindus indica seed extract on the pharmacological as well as the enzymatic effects induced by V. russelli venom. Tamarind seed extract inhibited the PLA(2), protease, hyaluronidase, l-amino acid oxidase and 5'-nucleotidase enzyme activities of venom in a dose-dependent manner. These are the major hydrolytic enzymes responsible for the early effects of envenomation, such as local tissue damage, inflammation and hypotension. Furthermore, the extract neutralized the degradation of the Bbeta chain of human fibrinogen and indirect hemolysis caused by venom. It was also observed that the extract exerted a moderate effect on the clotting time, prolonging it only to a small extent. Edema, hemorrhage and myotoxic effects including lethality, induced by venom were neutralized significantly when different doses of the extract were preincubated with venom before the assays. On the other hand, animals that received extract 10 min after the injection of venom were protected from venom induced toxicity. Since it inhibits hydrolytic enzymes and pharmacological effects, it may be used as an alternative treatment to serum therapy and, in addition, as a rich source of potential inhibitors of PLA(2), metalloproteinases, serine proteases, hyaluronidases and 5 cent-nucleotidases, the enzymes involved in several physiopathological human and animal diseases.
Collapse
Affiliation(s)
- S Ushanandini
- Department of Biochemistry, University of Mysore, Manasaganothri, Mysore, India-560 006
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
The diffusion of toxins from the site of a bite into the circulation is essential for successful envenomation. Degradation of hyaluronic acid in the extracellular matrix (ECM) by venom hyaluronidase is a key factor in this diffusion. Hyaluronidase not only increases the potency of other toxins but also damages the local tissue. In spite of its important role, little attention has been paid to this enzyme. Hyaluronidase exists in various isoforms and generates a wide range of hyaluronic acid degradation products. This suggests that beyond its role as a spreading factor venom hyaluronidase deserves to be explored as a possible therapeutic target for inhibiting the systemic distribution of venom and also for minimizing local tissue destruction at the site of the bite.
Collapse
Affiliation(s)
- K Kemparaju
- Department of Biochemistry, University of Mysore, Mysore--570 006, India.
| | | |
Collapse
|
23
|
Biardi JE, Chien DC, Coss RG. California Ground Squirrel (Spermophilus beecheyi) Defenses Against Rattlesnake Venom Digestive and Hemostatic Toxins. J Chem Ecol 2006; 32:137-54. [PMID: 16525875 DOI: 10.1007/s10886-006-9357-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2004] [Revised: 08/02/2005] [Accepted: 10/03/2005] [Indexed: 10/24/2022]
Abstract
Previous studies have shown that some mammals are able to neutralize venom from snake predators. California ground squirrels (Spermophilus beecheyi) show variation among populations in their ability to bind venom and minimize damage from northern Pacific rattlesnakes (Crotalus oreganus), but the venom toxins targeted by resistance have not been investigated. Four California ground squirrel populations, selected for differences in local density or type of rattlesnake predators, were assayed for their ability to neutralize digestive and hemostatic effects of venom from three rattlesnake species. In Douglas ground squirrels (S. b. douglasii), we found that animals from a location where snakes are common showed greater inhibition of venom metalloprotease and hemolytic activity than animals from a location where snakes are rare. Effects on general proteolysis were not different. Douglas ground squirrels also reduced the metalloprotease activity of venom from sympatric northern Pacific rattlesnakes (C. o. oreganus) more than the activity of venom from allopatric western diamondback rattlesnakes (C. atrox), but enhanced the fibrinolysis of sympatric venom almost 1.8 times above baseline levels. Two Beechey ground squirrel (S. b. beecheyi) populations had similar inhibition of venoms from northern and southern Pacific rattlesnakes (C. o. helleri), despite differences between the populations in the locally prevalent predator. However, the venom toxins inhibited by Beechey squirrels varied among venom from Pacific rattlesnake subspecies, and between these venoms and venom from allopatric western diamondback rattlesnakes. Blood plasma from Beechey squirrels showed highest inhibition of metalloprotease activity of northern Pacific rattlesnake venom, general proteolytic activity and hemolysis of southern Pacific rattlesnake venom, and hemolysis by allopatric western diamondback venom. These results reveal previously cryptic variation in venom activity against resistant prey that suggests reciprocal adaptation at the molecular level.
Collapse
Affiliation(s)
- James E Biardi
- PROF Postdoctoral Program and Department of Chemistry, University of California, 1 Shields Avenue, Davis, CA 95616, USA.
| | | | | |
Collapse
|
24
|
Girish KS, Kemparaju K. Inhibition of Naja naja venom hyaluronidase: Role in the management of poisonous bite. Life Sci 2006; 78:1433-40. [PMID: 16253285 DOI: 10.1016/j.lfs.2005.07.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Accepted: 07/12/2005] [Indexed: 11/28/2022]
Abstract
Hyaluronidase is present virtually in all snake venoms and has been known as a "spreading factor." The enzyme damages the extracellular matrix at the site of the bite, leading to severe morbidity. In this study, the benefits of inhibiting the hyaluronidase activity of Indian cobra (Naja naja) venom have been investigated. Anti-NNH1 and aristolochic acid both inhibited the in vitro activity of the purified hyaluronidase, (NNH1) and the hyaluronidase activity of whole venom in a dose-dependent manner. Both anti-NNH1 and aristolochic acid abolished the degradation of hyaluronan in human skin tissue sections by NNH1 and by whole venom. Aristolochic acid quenched the fluorescent emission of NNH1. A non-competitive mechanism of NNH1 inhibition was observed with aristolochic acid. NNH1 potentiates the toxicity of Daboia russellii VRV-PL-VIII myotoxin and hemorrhagic complex-I. However, the potentiation of toxicity was inhibited dose-dependently by anti-NNH1 and aristolochic acid. Further, mice injected with whole venom which had been preincubated with anti-NNH1/aristolochic acid, showed more than a two-fold increase in survival time, compared to mice injected with venom alone. A more moderate increase in survival time was observed when mice were injected with anti-NNH1/aristolochic acid 10 min after whole venom injection. This study illustrates the significance of venom hyaluronidase in the pathophysiology of snake venom poisoning and the therapeutic value of its inhibition.
Collapse
Affiliation(s)
- K S Girish
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysore-570 006, India
| | | |
Collapse
|
25
|
Biardi JE, Chien DC, Coss RG. California ground squirrel (Spermophilus beecheyi) defenses against rattlesnake venom digestive and hemostatic toxins. J Chem Ecol 2005; 31:2501-18. [PMID: 16273425 DOI: 10.1007/s10886-005-7610-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2004] [Revised: 06/20/2005] [Accepted: 07/21/2005] [Indexed: 10/25/2022]
Abstract
Previous studies have shown that some mammals are able to neutralize venom from snake predators. California ground squirrels (Spermophilus beecheyi) show variation among populations in their ability to bind venom and minimize damage from northern Pacific rattlesnakes (Crotalus oreganus), but the venom toxins targeted by resistance have not been investigated. Four California ground squirrel populations, selected for differences in local density or type of rattlesnake predators, were assayed for their ability to neutralize digestive and hemostatic effects of venom from three rattlesnake species. In Douglas ground squirrels (S. b. douglasii), we found that animals from a location where snakes are common showed greater inhibition of venom metalloprotease and hemolytic activity than animals from a location where snakes are rare. Effects on general proteolysis were not different. Douglas ground squirrels also reduced the metalloprotease activity of venom from sympatric northern Pacific rattlesnakes (Crotalus oreganus oreganus) more than the activity of venom from allopatric western diamondback rattlesnakes (C. atrox), but enhanced fibrinolysis of sympatric venom almost 1.8 times above baseline levels. Two Beechey ground squirrel (S. b. beecheyi) populations had similar inhibition of venoms from northern and southern Pacific rattlesnakes (C. o. helleri), despite differences between the populations in the locally prevalent predator. However, the venom toxins inhibited by Beechey squirrels did vary among venom from Pacific rattlesnake subspecies, and between these venoms and venom from allopatric western diamondback rattlesnakes. Blood plasma from Beechey squirrels showed highest inhibition of metalloprotease activity of northern Pacific rattlesnake venom, general proteolytic activity and hemolysis of southern Pacific rattlesnake venom, and hemolysis by allopatric western diamondback venom. These results reveal previously cryptic variation in venom activity against resistant prey that suggests reciprocal adaptation at the molecular level.
Collapse
Affiliation(s)
- James E Biardi
- Postdoctoral Program and Department of Chemistry, University of California, 1 Shields Avenue, Davis, CA 95616, USA.
| | | | | |
Collapse
|
26
|
Khanum SA, Murari SK, Vishwanth BS, Shashikanth S. Synthesis of benzoyl phenyl benzoates as effective inhibitors for phospholipase A2 and hyaluronidase enzymes. Bioorg Med Chem Lett 2005; 15:4100-4. [PMID: 15993585 DOI: 10.1016/j.bmcl.2005.06.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Revised: 05/28/2005] [Accepted: 06/03/2005] [Indexed: 11/20/2022]
Abstract
Benzoylation of (hydroxy phenyl) phenyl methanone 2a-g to benzoyl phenyl benzoates 4a-g, a benzophenone analogue, was achieved in good yield. All the newly synthesized compounds were evaluated for their phospholipase A2 [E.C. 3.1.1.4] and hyaluronidase [E.C. 3.2.1.35] enzyme inhibitory activity in snake venom as source and their structure-activity relationship with respect to different groups is reported for the first time. The in vitro PLA2 enzyme inhibitory activity and in vivo anti-inflammatory activity studies of benzoyl phenyl benzoates are illustrated.
Collapse
Affiliation(s)
- Shaukath Ara Khanum
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India
| | | | | | | |
Collapse
|
27
|
Girish KS, Kemparaju K. Inhibition of Naja naja Venom Hyaluronidase by Plant-Derived Bioactive Components and Polysaccharides. BIOCHEMISTRY (MOSCOW) 2005; 70:948-52. [PMID: 16212553 DOI: 10.1007/s10541-005-0207-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The inhibitory effect of several bioactive compounds on the activity of hyaluronidase enzyme purified from Naja naja venom was investigated in vitro. Compounds were found to inhibit the hyaluronidase activity dose dependently. Among glycosaminoglycans, heparin, heparan sulfate, and dermatan sulfate showed maximum inhibition compared to chondroitin sulfates. Different molecular forms of chitosan inhibit the enzyme, and inhibition appears to depend on the chain length. In addition, plant-derived bioactive compounds also inhibited the activity of hyaluronidase dose dependently. Among those tested, aristolochic acid, indomethacin, quercetin, curcumin, tannic acid, and flavone exhibited inhibition, with aristolochic acid and quercetin completely inhibiting the enzyme activity. It is concluded that the inhibitors of hyaluronidase could be used as potent first aid agents in snakebite therapy. Furthermore, these inhibitors not only reduce the local tissue damage but also retard the easy diffusion of systemic toxins and hence increase survival time.
Collapse
Affiliation(s)
- K S Girish
- Department of Biochemistry, University of Mysore, Mysore, 570 006, India
| | | |
Collapse
|
28
|
Murari SK, Frey FJ, Frey BM, Gowda TV, Vishwanath BS. Use of Pavo cristatus feather extract for the better management of snakebites: neutralization of inflammatory reactions. JOURNAL OF ETHNOPHARMACOLOGY 2005; 99:229-37. [PMID: 15894132 DOI: 10.1016/j.jep.2005.02.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2004] [Revised: 02/03/2005] [Accepted: 02/12/2005] [Indexed: 05/02/2023]
Abstract
In Indian traditional medicine, peacock feather in the form of ash (Bhasma) or water extract are used against snakebite and to treat various problems associated with lungs. This study was aimed to evaluate the water extract of peacock feather (PCF) against the local tissue damage caused due to snakebite. PCF water extract showed inhibition towards phospholipase A2 enzyme activity from snake venom (Naja naja and Vipera russelii), inflammatory fluids (synovial, pleural, ascites) and normal serum in a dose-dependent manner. Hyaluronidase and proteases are other major enzymes in snake venoms responsible for local tissue damage. PCF water extract inhibited hyaluronidase and proteolytic enzyme activities from Vipera russelii, Naja naja and Trimeresurus malabaricus venom. The active principle is a hydrophilic molecule easily extractable in water or polar solvents. PCF water extract gave positive results for the presence of protein and secondary metabolites like carotenoids and steroids. Analysis of metal ions revealed that iron is the major ion (> 20-fold). Other metal ions detected in smaller amount are copper, chromium, zinc and nickel. The least amount of ion detected is gold. Co-injection of PCF water extract with snake venom and inflammatory PLA2 enzymes neutralize the edema inducing activity of all the PLA2 enzymes studied. Since it inhibits hyaluronidase and proteases enzyme activity from snake venom PCF water extract is a powerful neutralizing agent, which has therapeutic application against venom toxicity.
Collapse
Affiliation(s)
- Satish K Murari
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysore 570006, Karnataka, India
| | | | | | | | | |
Collapse
|
29
|
Girish KS, Kemparaju K. A Low Molecular Weight Isoform of Hyaluronidase: Purification from Indian Cobra (Naja naja) Venom and Partial Characterization. BIOCHEMISTRY (MOSCOW) 2005; 70:708-12. [PMID: 16038614 DOI: 10.1007/s10541-005-0172-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A low molecular weight isoform of hyaluronidase (NNH2) has been isolated from Indian cobra (Naja naja) venom by successive chromatography on Sephadex G-75 and CM-Sephadex C-25 columns. The apparent molecular weight determined by SDS-PAGE is 52 kD, and the pI value is 9.7. NNH2 is an endoglycosidase and exhibits in vitro absolute specificity for hyaluronan; it also hydrolyzed hyaluronan in human skin sections. NNH2 is nontoxic, but it indirectly potentiates the hemorrhagic activity of hemorrhagic complex-I. Curcumin, indomethacin, and tannic acid inhibited dose dependently the degradation of hyaluronan by NNH2.
Collapse
Affiliation(s)
- K S Girish
- Department of Biochemistry, University of Mysore, Mysore 570 006, India
| | | |
Collapse
|
30
|
Girish KS, Shashidharamurthy R, Nagaraju S, Gowda TV, Kemparaju K. Isolation and characterization of hyaluronidase a "spreading factor" from Indian cobra (Naja naja) venom. Biochimie 2005; 86:193-202. [PMID: 15134834 DOI: 10.1016/j.biochi.2004.02.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Revised: 02/02/2004] [Accepted: 02/27/2004] [Indexed: 10/26/2022]
Abstract
Hyaluronidase, ubiquitous enzyme in snake venoms, known originally as "spreading factor", has not been well studied. The present study describes the purification and characterization of hyaluronidase from Indian cobra (Naja naja) venom and provides systematic evaluation of the spreading property of the enzyme. Hyaluronidase (NNH1) has been purified through gel permeation and ion exchange chromatography. The molecular mass was found to be 70.406 kDa by MALDI-TOF mass spectrometry and with the (p)i pI of 9.2. The amino acid sequence of the N-terminus was found to be NEQSTHGAYV. The enzyme shows absolute specificity for hyaluronan and belongs to the group of neutral active enzymes. Tetrasaccharides are the final product of hyaluronan digestion. The enzyme cleaves beta 1,4-glycosidic linkage and belongs to a group of endo-beta-N-acetyl hexosaminidases. Hyaluronidase indirectly potentiates the myotoxicity of VRV-PL-VIII, a phospholipolytic myotoxin, and also the hemorrhagic potency of a hemorrhagic complex-I. Localization of hyaluronan in human skin section and selective degradation by venom hyaluronidase (NNH1) corroborate the plausible in vivo degradation of hyaluronan in the extracellular matrix (ECM) resulting in easy dissemination of VRV-PL-VIII myotoxin and hemorrhagic complex-I.
Collapse
Affiliation(s)
- K S Girish
- Department of Biochemistry, University of Mysore, Manasagangotri, Mysore 570 006, India
| | | | | | | | | |
Collapse
|
31
|
Rucavado A, Escalante T, Gutiérrez JM. Effect of the metalloproteinase inhibitor batimastat in the systemic toxicity induced by Bothrops asper snake venom: understanding the role of metalloproteinases in envenomation. Toxicon 2004; 43:417-24. [PMID: 15051405 DOI: 10.1016/j.toxicon.2004.01.016] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2003] [Accepted: 01/24/2004] [Indexed: 10/26/2022]
Abstract
The peptidomimetic hydroxamate metalloproteinase inhibitor batimastat (BB-94) was assessed for its ability to neutralize the systemic effects (lethality, hemorrhage and coagulopathy) induced by the venom of Bothrops asper, the most important snake from a medical standpoint in Central America. Batimastat inhibited lethality when a venom challenge dose of two LD(50)s was used by intraperitoneal and intravenous routes, with ED(50)s of 250 and 22 microM, respectively. With a challenge dose of three LD(50)s, lethality was not abrogated, but a conspicuous and dose-dependent delay in the time of death was observed in mice injected with mixtures of venom plus batimastat. Upon incubation with 500 microM batimastat, venom LD(50) increased 2.86-fold (intraperitoneal route) and 2.37-fold (intravenous route), when compared with LD(50) of venom alone. Batimastat also inhibited the hemorrhagic effect induced by venom in the lungs after intravenous injection. Moreover, batimastat exerted a significant inhibition of in vitro coagulant and in vivo defibrinogenating effects of venom, evidencing that metalloproteinases play a key role in the coagulopathy characteristic of B. asper envenomation. The remaining uninhibited coagulant effect is due to serine proteinases, i.e. thrombin-like enzymes, since this effect was completely abrogated by the combination of batimastat and PMSF. Our results stress the view that metalloproteinases play a relevant role in the systemic pathophysiology of B. asper envenomation and that metalloproteinase inhibitors may become a therapeutic alternative in this pathology.
Collapse
Affiliation(s)
- Alexandra Rucavado
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica.
| | | | | |
Collapse
|
32
|
Ribeiro Filho W, Sugiki M, Yoshida E, Maruyama M. Inhibition of hemorrhagic and edematogenic activities of snake venoms by a broad-spectrum protease inhibitor, murinoglobulin; the effect on venoms from five different genera in Viperidae family. Toxicon 2003; 42:173-81. [PMID: 12906888 DOI: 10.1016/s0041-0101(03)00130-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In order to obtain basic data on the effect of broad-spectrum protease inhibitor against local symptoms of Viperidae snake envenomation, inhibitory capacity of rat murinoglobulin on local hemorrhagic and edematogenic activities of venoms from Crotalus atrox, Bothrops jararaca, Lachesis muta muta, Trimeresurus flavoviridis and Echis carinatus sochureki were examined. Murinoglobulin, pre-incubated with the crude venoms at 37 degrees C for 15 min, inhibited hemorrhagic activity of all five venoms to various extents. The activity of C. atrox was almost completely inhibited at the murinoglobulin/venom ratio (w/w) of 20. The activity of B. jararaca, Lachesis muta muta and T. flavoviridis venoms was considerably inhibited at the ratio of 20 (77.2, 80.0 and 86.2% inhibition, respectively), however some of the activity still remained even at the ratio of 40 (84.2, 79.8 and 86.2% inhibition, respectively). Among the five venoms, E. c. sochureki venom is quite resistant to murinoglobulin treatment and statistically significant inhibition was only found at the ratio of 40 (64.1% inhibition). Fibrinolytic and gelatinase activities were more susceptible to murinoglobulin inhibition. The treatment at the ratios of 10 and 20 almost completely inhibited respectively the fibrinolytic and the gelatinase activities of all the venoms. Murinoglobulin treatment also significantly inhibited the edematogenic activity of L. muta muta, T. flavoviridis and Echis carinatus sochureki. The treatment of murinoglobulin at the ratio of 40 considerably suppressed the swelling up to 60 min after subcutaneous injection of L. muta muta and E. c. sochureki venoms, and up to 30 min after T. flavoviridis venom injection. Murinoglobulin is a potent inhibitor against local effects of multiple snake venoms in Viperidae family.
Collapse
Affiliation(s)
- Wilker Ribeiro Filho
- Department of Physiology, Miyazaki Medical College, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | | | | | | |
Collapse
|
33
|
de Roodt AR, Litwin S, Vidal JC. Hemorrhagic activity of Bothrops venoms determined by two different methods and relationship with proteolytic activity on gelatin and lethality. Toxicon 2003; 41:949-58. [PMID: 12875868 DOI: 10.1016/s0041-0101(02)00392-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The changes in hemorrhagic activity, proteolytic activity on gelatin and the lethal potency of four Bothrops venoms treated at different pH values or with EDTA were studied. Venoms from B. alternatus, B. jararaca, B. moojeni and B. neuwiedii of Argentina were preincubated at pH 5.8, 5.1 or 3.8 or with EDTA and the hemorrhagic activity expressed as size of the hemorrhagic lesion or as the amount of hemoglobin extracted, the proteolytic activity on gelatin and the lethal potency were determined. Although the MHDs recorded in rats were 19-56 fold higher than those recorded in mice, the A(550) extracted per gram of hemorrhagic haloes was very similar in rats or mice independent of the venom dose. Inhibition of proteolytic activity after preincubation at pH 5.1 or 3.8, agrees with the decreased amount of hemoglobin extracted from the hemorrhagic haloes, and with the increase in mean survival time after the i.p. injection to mice. Preincubation with EDTA resulted in 80% inhibition of hemorrhagic activity of B. jararaca venom and complete inhibition with the other Bothrops venoms tested. Measurement of the amount of hemoglobin extracted gives significant information in comparative studies, not available by measurement of the size of hemorrhagic haloes.
Collapse
Affiliation(s)
- Adolfo Rafael de Roodt
- Instituto Nacional de Producción de Biológicos-ANLIS, Dr Carlos G Malbrán, Av Vélez Sarsfield 563, CP 1281, Buenos Aires, Argentina.
| | | | | |
Collapse
|
34
|
Harrison RA, Wüster W, Theakston RDG. The conserved structure of snake venom toxins confers extensive immunological cross-reactivity to toxin-specific antibody. Toxicon 2003; 41:441-9. [PMID: 12657313 DOI: 10.1016/s0041-0101(02)00360-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have demonstrated previously that antisera from mice immunised with DNA encoding the carboxy-terminal domain (JD9) of a potent haemorrhagic metalloproteinase, jararhagin, neutralised over 70% of the haemorrhagic activity of the whole Bothrops jararaca venom. Here, we demonstrate that the JD9-specific antibody possesses extensive immunological reactivity to venom components in snakes of distinct species and genera. The polyspecific immunological reactivity of the antibody showed a correlation with amino acid sequence identity and with predicted antigenic domains of JD9-analogues in venoms of snakes with closest phylogenetic links to B. jararaca. This study further promotes the potential of DNA immunisation to generate toxin-specific antibodies with polyspecific cover. An analysis of the reactivity of the JD9-specific antisera to B. atrox complex venoms that exhibited intraspecific variation in the venom proteome revealed, however, that the toxin-specific approach to antivenom development requires a more in-depth knowledge of the target molecules than is required for conventional antivenoms.
Collapse
Affiliation(s)
- R A Harrison
- Alistair Reid Venom Research Unit, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK.
| | | | | |
Collapse
|
35
|
Sánchez EE, Galán JA, Perez JC, Rodríguez-Acosta A, Chase PB, Pérez JC. The efficacy of two antivenoms against the venom of North American snakes. Toxicon 2003; 41:357-65. [PMID: 12565759 DOI: 10.1016/s0041-0101(02)00330-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mortality due to snake envenomation is not a major problem in the United States with approximately 8-12 deaths per year, but envenomation is a serious problem that can result in functional disability, loss of extremities, and a costly recovery. Physicians encounter different clinical situations with each new snakebite victim because of the geographical variations in snake venoms. The best and most acceptable form of treatment is the use of antivenom; however, it must be administered as soon as possible since it is not so effective at reducing local signs of envenomation such as necrosis. The antivenom in the United States is in short supply, expensive and may not even be the most effective for neutralizing all North American snake venoms. In this study, we tested two antivenoms. The first was a Crotalidae Polyvalent Fab fragment with Ovine origin (FabO) manufactured in London, and the second was Antivipmyn, a Mexican manufactured antivenom that is F(ab')(2) fragment produced in horse (Fab(2)H). The efficacy of the two antivenoms was tested with 15 different snake venoms found in North America. Three different assays were used to test the efficacy of the antivenoms, the in vivo serum protection test (ED(50)), antihemorrhagic and anticoagulant. The Fab(2)H antivenom was most effective in neutralizing the hemorrhagic activity of 78% of the hemorrhagic venoms used in this study. In the ED(50) assay, the Fab(2)H antivenom was effective in neutralizing all venoms used in this study, while FabO neutralized all but C. m. molossus venom. However, in most cases, FabO required less antivenom than Fab(2)H antivenom to neutralize three LD(50).
Collapse
Affiliation(s)
- Elda E Sánchez
- Department of Biology, Natural Toxins Research Center (NTRC), Texas A&M University-Kingsville, MSC 158, Kingsville, TX 78363-8202, USA
| | | | | | | | | | | |
Collapse
|
36
|
Sánchez EE, Ramírez MS, Galán JA, López G, Rodríguez-Acosta A, Pérez JC. Cross reactivity of three antivenoms against North American snake venoms. Toxicon 2003; 41:315-20. [PMID: 12565754 DOI: 10.1016/s0041-0101(02)00293-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The antivenom in the United States today is in short supply, expensive and may not even be the most effective in neutralizing venoms from snakes in certain geographical locations. The ED(50) is considered to be the best indicator of antivenom efficacy, however, other tests are needed. In this study, three antivenoms (Antivipmyn (Fab(2)H), Crotalidae Polyvalent Immune Fab (Ovine) (FabO) and UCV (FabV) were used to test the effectiveness of neutralization of eight venoms (Agkistrodon piscivorus piscivorus, Bothrops asper, Crotalus adamanteus, C. durissus durissus, C. horridus atricaudatus, C. h. horridus, C. atrox, and C. molossus molossus). Four different assays were used to study the efficacy of the antivenoms: the antihemorrhagic, antigelatinase, antifibrinolytic and antihide powder azure. Fab(2)H antivenom was more effective in neutralizing the enzymatic activities of these eight venoms than FabO and FabV antivenoms.
Collapse
Affiliation(s)
- Elda E Sánchez
- Department of Biology, Natural Toxins Research Center (NTRC), Texas A&M University-Kingsville, MSC 158, Kingsville, TX 78363, USA
| | | | | | | | | | | |
Collapse
|
37
|
Girish KS, Jagadeesha DK, Rajeev KB, Kemparaju K. Snake venom hyaluronidase: an evidence for isoforms and extracellular matrix degradation. Mol Cell Biochem 2002; 240:105-10. [PMID: 12487377 DOI: 10.1023/a:1020651607164] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The present study attempts to establish the isoforms of hyaluronidase enzyme and their possible role in the spreading of toxins during envenomation. Screening of venoms of 15 snakes belonging to three different families revealed varied hyaluronidase activity in ELISA-like assay, but with relatively similar pH and temperature optima. The zymograms of individual venoms showed varied activity banding patterns and indicated the presence of at least two molecular forms of the enzyme. During envenomation, activity of hyaluronidase is considered crucial for the spreading of toxins and is presumed to distort the integrity of extracellular matrix through the degradation of hyaluronic acid in it. This property has been addressed through localization of hyaluronic acid in human skin and muscle tissue sections using the probe, biotinylated hyaluronic acid binding protein. Faint and discontinuous staining pattern of hyaluronidase treated tissue sections over intense staining of untreated tissue sections confirm the selective degradation of hyaluronic acid in extracellular matrix and thus provide an evidence for the spreading property of the enzyme.
Collapse
Affiliation(s)
- K S Girish
- Department of Biochemistry, University of Mysore, Manasagangothri, Mysore, India
| | | | | | | |
Collapse
|
38
|
Maruyama M, Sugiki M, Anai K, Yoshida E. N-terminal amino acid sequences and some characteristics of fibrinolytic/hemorrhagic metalloproteinases purified from Bothrops jararaca venom. Toxicon 2002; 40:1223-226. [PMID: 12165326 DOI: 10.1016/s0041-0101(02)00116-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We determined the N-terminal amino acid sequences of the fibrinolytic/hemorrhagic metalloproteinases (jararafibrases I, III and IV) purified from Bothrops jararaca venom. The N-terminal amino acid sequences of jararafibrase I and its degradation products were identical to those of jararhagin, another hemorrhagic metalloproteinase purified from the same snake venom. Together with enzymatic and immunological properties, we concluded that those two enzymes are identical. The N-terminal amino acid sequence of jararafibrase III was quite similar to C-type lectin isolated from Crotalus atrox, and the protein had a hemagglutinating activity on intact rat red blood cells.
Collapse
Affiliation(s)
- Masugi Maruyama
- Department of Physiology, Miyazaki Medical College, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan.
| | | | | | | |
Collapse
|