1
|
Ahmed LA, Abdou FY, El Fiky AA, Shaaban EA, Ain-Shoka AA. Bradykinin-Potentiating Activity of a Gamma-Irradiated Bioactive Fraction Isolated from Scorpion (Leiurus quinquestriatus) Venom in Rats with Doxorubicin-Induced Acute Cardiotoxicity: Favorable Modulation of Oxidative Stress and Inflammatory, Fibrogenic and Apoptotic Pathways. Cardiovasc Toxicol 2021; 21:127-141. [PMID: 32860604 DOI: 10.1007/s12012-020-09602-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/18/2020] [Indexed: 10/23/2022]
Abstract
Although doxorubicin (Dox) is a backbone of chemotherapy, the search for an effective and safe therapy to revoke Dox-induced acute cardiotoxicity remains a critical matter in cardiology and oncology. The current study was the first to explore the probable protective effects of native and gamma-irradiated fractions with bradykinin-potentiating activity (BPA) isolated from scorpion (Leiurus quinquestriatus) venom against Dox-induced acute cardiotoxicity in rats. Native or irradiated fractions (1 μg/g) were administered intraperitoneally (i.p.) twice per week for 3 weeks, and Dox (15 mg/kg, i.p.) was administered on day 21 at 1 h after the last native or irradiated fraction treatment. Electrocardiographic (ECG) aberrations were ameliorated in the Dox-treated rats pretreated with the native fraction, and the irradiated fraction provided greater amelioration of ECG changes than that of the native fraction. The group pretreated with native protein with BPA also exhibited significant improvements in the levels of oxidative stress-related, inflammatory, angiogenic, fibrogenic, and apoptotic markers compared with those of the Dox group. Notably, the irradiated fraction restored these biomarkers to their normal levels. Additionally, the irradiated fraction ameliorated Dox-induced histological changes and alleviated the severity of cardiac injury to a greater extent than that of the native fraction. In conclusion, the gamma-irradiated detoxified fraction of scorpion venom elicited a better cardioprotective effect than that of the native fraction against Dox-induced acute cardiotoxicity in rats.
Collapse
Affiliation(s)
- Lamiaa A Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo, 11562, Egypt.
| | - Fatma Y Abdou
- Department of Drug Radiation Research, National Center for Radiation Research and Technology, Atomic Energy Authority, Nasr, Cairo, Egypt
| | - Abir A El Fiky
- ANDI Center of Excellence in Antivenom Research, Vacsera, Egypt
| | - Esmat A Shaaban
- Department of Drug Radiation Research, National Center for Radiation Research and Technology, Atomic Energy Authority, Nasr, Cairo, Egypt
| | - Afaf A Ain-Shoka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo, 11562, Egypt
| |
Collapse
|
2
|
Aird SD, da Silva NJ, Qiu L, Villar-Briones A, Saddi VA, Pires de Campos Telles M, Grau ML, Mikheyev AS. Coralsnake Venomics: Analyses of Venom Gland Transcriptomes and Proteomes of Six Brazilian Taxa. Toxins (Basel) 2017; 9:E187. [PMID: 28594382 PMCID: PMC5488037 DOI: 10.3390/toxins9060187] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 05/31/2017] [Accepted: 06/02/2017] [Indexed: 11/16/2022] Open
Abstract
Venom gland transcriptomes and proteomes of six Micrurus taxa (M. corallinus, M. lemniscatus carvalhoi, M. lemniscatus lemniscatus, M. paraensis, M. spixii spixii, and M. surinamensis) were investigated, providing the most comprehensive, quantitative data on Micrurus venom composition to date, and more than tripling the number of Micrurus venom protein sequences previously available. The six venomes differ dramatically. All are dominated by 2-6 toxin classes that account for 91-99% of the toxin transcripts. The M. s. spixii venome is compositionally the simplest. In it, three-finger toxins (3FTxs) and phospholipases A₂ (PLA₂s) comprise >99% of the toxin transcripts, which include only four additional toxin families at levels ≥0.1%. Micrurus l. lemniscatus venom is the most complex, with at least 17 toxin families. However, in each venome, multiple structural subclasses of 3FTXs and PLA₂s are present. These almost certainly differ in pharmacology as well. All venoms also contain phospholipase B and vascular endothelial growth factors. Minor components (0.1-2.0%) are found in all venoms except that of M. s. spixii. Other toxin families are present in all six venoms at trace levels (<0.005%). Minor and trace venom components differ in each venom. Numerous novel toxin chemistries include 3FTxs with previously unknown 8- and 10-cysteine arrangements, resulting in new 3D structures and target specificities. 9-cysteine toxins raise the possibility of covalent, homodimeric 3FTxs or heterodimeric toxins with unknown pharmacologies. Probable muscarinic sequences may be reptile-specific homologs that promote hypotension via vascular mAChRs. The first complete sequences are presented for 3FTxs putatively responsible for liberating glutamate from rat brain synaptosomes. Micrurus C-type lectin-like proteins may have 6-9 cysteine residues and may be monomers, or homo- or heterodimers of unknown pharmacology. Novel KSPIs, 3× longer than any seen previously, appear to have arisen in three species by gene duplication and fusion. Four species have transcripts homologous to the nociceptive toxin, (MitTx) α-subunit, but all six species had homologs to the β-subunit. The first non-neurotoxic, non-catalytic elapid phospholipase A₂s are reported. All are probably myonecrotic. Phylogenetic analysis indicates that the six taxa diverged 15-35 million years ago and that they split from their last common ancestor with Old World elapines nearly 55 million years ago. Given their early diversification, many cryptic micrurine taxa are anticipated.
Collapse
Affiliation(s)
- Steven D Aird
- Division of Faculty Affairs, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa-ken 904-0495, Japan.
- Ecology and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa-ken 904-0495, Japan.
| | - Nelson Jorge da Silva
- Programa de Pós-Graduação em Ciências Ambientais e Saúde, Pontifícia Universidade Católica de Goiás, Goiânia, Goiás 74605-140, Brazil.
| | - Lijun Qiu
- Ecology and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa-ken 904-0495, Japan.
| | - Alejandro Villar-Briones
- Research Support Division, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa-ken 904-0495, Japan.
| | - Vera Aparecida Saddi
- Programa de Pós-Graduação em Ciências Ambientais e Saúde, Pontifícia Universidade Católica de Goiás, Goiânia, Goiás 74605-140, Brazil.
- Laboratório de Oncogenética e Radiobiologia da Associação de Combate ao Câncer em Goiás, Universidade Federal de Goiás, Rua 239 no. 52-Setor Universitário, Goiânia, Goiás 74065-070, Brazil.
| | - Mariana Pires de Campos Telles
- Programa de Pós-Graduação em Ciências Ambientais e Saúde, Pontifícia Universidade Católica de Goiás, Goiânia, Goiás 74605-140, Brazil.
- Laboratório de Genética & Biodiversidade, Universidade Federal de Goiás, Goiânia, Goiás 74690-900, Brazil.
| | - Miguel L Grau
- Ecology and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa-ken 904-0495, Japan.
| | - Alexander S Mikheyev
- Ecology and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa-ken 904-0495, Japan.
| |
Collapse
|
3
|
Boldrini-França J, Cologna CT, Pucca MB, Bordon KDCF, Amorim FG, Anjolette FAP, Cordeiro FA, Wiezel GA, Cerni FA, Pinheiro-Junior EL, Shibao PYT, Ferreira IG, de Oliveira IS, Cardoso IA, Arantes EC. Minor snake venom proteins: Structure, function and potential applications. Biochim Biophys Acta Gen Subj 2017; 1861:824-838. [DOI: 10.1016/j.bbagen.2016.12.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 12/12/2016] [Accepted: 12/20/2016] [Indexed: 12/20/2022]
|
4
|
Aird SD, Watanabe Y, Villar-Briones A, Roy MC, Terada K, Mikheyev AS. Quantitative high-throughput profiling of snake venom gland transcriptomes and proteomes (Ovophis okinavensis and Protobothrops flavoviridis). BMC Genomics 2013; 14:790. [PMID: 24224955 PMCID: PMC3840601 DOI: 10.1186/1471-2164-14-790] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 10/26/2013] [Indexed: 01/20/2023] Open
Abstract
Background Advances in DNA sequencing and proteomics have facilitated quantitative comparisons of snake venom composition. Most studies have employed one approach or the other. Here, both Illumina cDNA sequencing and LC/MS were used to compare the transcriptomes and proteomes of two pit vipers, Protobothrops flavoviridis and Ovophis okinavensis, which differ greatly in their biology. Results Sequencing of venom gland cDNA produced 104,830 transcripts. The Protobothrops transcriptome contained transcripts for 103 venom-related proteins, while the Ovophis transcriptome contained 95. In both, transcript abundances spanned six orders of magnitude. Mass spectrometry identified peptides from 100% of transcripts that occurred at higher than contaminant (e.g. human keratin) levels, including a number of proteins never before sequenced from snakes. These transcriptomes reveal fundamentally different envenomation strategies. Adult Protobothrops venom promotes hemorrhage, hypotension, incoagulable blood, and prey digestion, consistent with mammalian predation. Ovophis venom composition is less readily interpreted, owing to insufficient pharmacological data for venom serine and metalloproteases, which comprise more than 97.3% of Ovophis transcripts, but only 38.0% of Protobothrops transcripts. Ovophis venom apparently represents a hybrid strategy optimized for frogs and small mammals. Conclusions This study illustrates the power of cDNA sequencing combined with MS profiling. The former quantifies transcript composition, allowing detection of novel proteins, but cannot indicate which proteins are actually secreted, as does MS. We show, for the first time, that transcript and peptide abundances are correlated. This means that MS can be used for quantitative, non-invasive venom profiling, which will be beneficial for studies of endangered species.
Collapse
Affiliation(s)
- Steven D Aird
- Okinawa Institute of Science and Technology, Tancha 1919-1, Onna-son, Kunigami-gun, Okinawa-ken 904-0412, Japan.
| | | | | | | | | | | |
Collapse
|
5
|
Armugam A, Koh DCI, Ching CS, Chandrasekaran K, Kaur P, Jeyaseelan K. Pro-domain in precursor nerve growth factor mediates cell death. Neurochem Int 2012; 60:852-63. [PMID: 22480846 DOI: 10.1016/j.neuint.2012.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 03/05/2012] [Accepted: 03/08/2012] [Indexed: 11/30/2022]
Abstract
Nerve growth factor (NGF) is synthesized as a precursor, proNGF that undergoes post-translational processing to generate the biologically active mature NGF. While the neurotrophic function of NGF is well established, the activity of the proNGF precursor is still unclear. In this study, we have cloned the pro-domain of the precursor NGF molecule and have elucidated its function. We have used both mature and the furin resistant pro((R/G))NGF as controls in our experiments. Both pro((R/G))NGF and mature NGF (NGF) exhibited neurotrophic activity on PC12 cells while the pro-domain itself promoted cell death. The pro-domain, has been found to mediate apoptosis possibly by promoting the formation of a signaling complex comprising of endogenous p75(NTR) receptor, Bim/Bcl2 group of proteins and JNK and MEK1/2 signaling pathways.
Collapse
Affiliation(s)
- Arunmozhiarasi Armugam
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | | | | | | | | |
Collapse
|
6
|
Earl STH, Birrell GW, Wallis TP, St Pierre LD, Masci PP, de Jersey J, Gorman JJ, Lavin MF. Post-translational modification accounts for the presence of varied forms of nerve growth factor in Australian elapid snake venoms. Proteomics 2006; 6:6554-65. [PMID: 17109379 DOI: 10.1002/pmic.200600263] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Australian elapid snakes are amongst the most venomous snakes in the world, but much less is known about the overall venom composition in comparison to Asian and American snakes. We have used a combined approach of cDNA cloning and 2-DE with MS to identify nerve growth factor (NGF) in venoms of the Australian elapid snakes and demonstrate its neurite outgrowth activity. While a single 730 nucleotide ORF, coding for a 243 amino acid precursor protein was detected in all snakes, use of 2-DE identified NGF proteins with considerable variation in molecular size within and between the different snakes. The variation in size can be explained at least in part by N-linked glycosylation. It is possible that these modifications alter the stability, activity and other characteristics of the snake NGFs. Further characterisation is necessary to delineate the function of the individual NGF isoforms.
Collapse
Affiliation(s)
- Stephen T H Earl
- The Queensland Institute of Medical Research, PO Royal Brisbane Hospital, Brisbane, Australia
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Benito-Gutiérrez E, Garcia-Fernàndez J, Comella JX. Origin and evolution of the Trk family of neurotrophic receptors. Mol Cell Neurosci 2005; 31:179-92. [PMID: 16253518 DOI: 10.1016/j.mcn.2005.09.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Revised: 08/11/2005] [Accepted: 09/08/2005] [Indexed: 01/19/2023] Open
Abstract
Among the numerous tyrosine kinase receptors, those belonging to the Trk family are distinctively involved in the development of complex traits within the vertebrate nervous system. Until recently, the lack of a proper Nt/Trk system in invertebrates has lead to the belief that they were a vertebrate innovation. Recent data, however, have challenged the field, and proved that bona fide Trk receptors do exist in invertebrates. Here, we review and discuss the evolutionary history of the Trk receptor family, and draw a comprehensive scenario that situates the origin of the Nt/Trk signalling prior to the origin of vertebrates. Probably, a ProtoTrk receptor was invented by means of domain and exon shuffling from pieces of ancient genes, generating the unique combination of domains found in extant Trk receptors. It is suggestive to propose that subtle protein mutations, gene duplications, and co-options in particular territories of a primitive Nt/Trk system were instrumental to the development of a complex vertebrate nervous system.
Collapse
Affiliation(s)
- Elia Benito-Gutiérrez
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal 645, Barcelona E-08028, Spain.
| | | | | |
Collapse
|
8
|
Koh DI, Armugam A, Jeyaseelan K. Sputa nerve growth factor forms a preferable substitute to mouse 7S-beta nerve growth factor. Biochem J 2005; 383:149-58. [PMID: 15225125 PMCID: PMC1134053 DOI: 10.1042/bj20040569] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2004] [Revised: 06/28/2004] [Accepted: 06/30/2004] [Indexed: 11/17/2022]
Abstract
The NGF (nerve growth factor) from Naja sputatrix has been purified by gel filtration followed by reversed-phase HPLC. The protein showed a very high ability to induce neurite formation in PC12 cells relative to the mouse NGF. Two cDNAs encoding isoforms of NGF have been cloned and an active recombinant NGF, sputa NGF, has been produced in Escherichia coli as a His-tagged fusion protein. Sputa NGF has been found to be non-toxic under both in vivo and in vitro conditions. The induction of neurite outgrowth by this NGF has been found to involve the high-affinity trkA-p75NTR complex of receptors. The pro-survival mechanism of p75NTR has been mediated by the activation of nuclear factor kappaB gene by a corresponding down-regulation of inhibitory kappaB gene. Real-time PCR and protein profiling (by surface-enhanced laser-desorption-ionization time-of-flight) have confirmed that sputa NGF up-regulates the expression of the endogenous NGF in PC12 cells. Preliminary microarray analysis has also shown that sputa NGF is capable of promoting additional beneficial effects such as the up-regulation of arginine vasopressin receptor 1A, voltage-dependent T-type calcium channel. Hence, sputa NGF forms a new and useful NGF.
Collapse
Affiliation(s)
- Dawn C.-I. Koh
- Department of Biochemistry, Faculty of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | - A. Armugam
- Department of Biochemistry, Faculty of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | - K. Jeyaseelan
- Department of Biochemistry, Faculty of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
- To whom correspondence should be addressed (email )
| |
Collapse
|
9
|
El-Saadani MAM, El-Sayed MF. A bradykinin potentiating peptide from Egyptian cobra venom strongly affects rat atrium contractile force and cellular calcium regulation. Comp Biochem Physiol C Toxicol Pharmacol 2003; 136:387-95. [PMID: 15012910 DOI: 10.1016/j.cca.2003.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2003] [Revised: 10/24/2003] [Accepted: 11/04/2003] [Indexed: 10/26/2022]
Abstract
Peptide fractions were isolated from venoms of the Egyptian snake Naja haje haje (cobra BPP) and the scorpions Buthus occitanus (BPP(B)) and Leirus quenquestriatus (BPP(L)). The pharmacological effects of these peptides were bioassayed and showed bradykinin potentiating activities. Amino acid analysis revealed that 14 amino acids contribute to the structure of BPP(B) and 16 for BPP(L), while cobra BPP was composed of 15 amino acids. Treatment of rat atrial preparations with 50 microg/ml of cobra BPP caused a significant reduction (P<0.001) in myocardial force. Elevation of extracellular calcium concentration from 1.25 to 5 mM antagonized the effect of cobra BPP in a way that restored the atrial force development. Na(+)-channel blockers did not change the force development at 5 mM Ca(2+). Experiments with (45)Ca revealed that Ca(2+) uptake of cobra BPP treated atria was 0.52+/-0.07 microM/g wet mass and the force at the end of the uptake period was 55.0+/-2.0%. The corresponding values for non-treated preparations were 0.56+/-0.04 microM/g and 92.0%+/-3.0%, respectively. Our results revealed that cobra BPP did not exhibit any effect on Ca(2+) uptake by rat atrial preparations, but strongly affected cellular Ca(2+) regulation.
Collapse
|
10
|
Kashima S, Soares AM, Roberto PG, Pereira JO, Astolfi-Filho S, Cintra AO, Fontes MRM, Giglio JR, de Castro França S. cDNA sequence and molecular modeling of a nerve growth factor from Bothrops jararacussu venomous gland. Biochimie 2002; 84:675-80. [PMID: 12453640 DOI: 10.1016/s0300-9084(02)01429-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The complete nucleotide sequence of a nerve growth factor precursor from Bothrops jararacussu snake (Bj-NGF) was determined by DNA sequencing of a clone from cDNA library prepared from the poly(A) + RNA of the venom gland of B. jararacussu. cDNA encoding Bj-NGF precursor contained 723 bp in length, which encoded a prepro-NGF molecule with 241 amino acid residues. The mature Bj-NGF molecule was composed of 118 amino acid residues with theoretical pI and molecular weight of 8.31 and 13,537, respectively. Its amino acid sequence showed 97%, 96%, 93%, 86%, 78%, 74%, 76%, 76% and 55% sequential similarities with NGFs from Crotalus durissus terrificus, Agkistrodon halys pallas, Daboia (Vipera) russelli russelli, Bungarus multicinctus, Naja sp., mouse, human, bovine and cat, respectively. Phylogenetic analyses based on the amino acid sequences of 15 NGFs separate the Elapidae family (Naja and Bungarus) from those Crotalidae snakes (Bothrops, Crotalus and Agkistrodon). The three-dimensional structure of mature Bj-NGF was modeled based on the crystal structure of the human NGF. The model reveals that the core of NGF, formed by a pair of beta-sheets, is highly conserved and the major mutations are both at the three beta-hairpin loops and at the reverse turn.
Collapse
Affiliation(s)
- Simone Kashima
- Departamento de Biotecnologia, Universidade de Ribeirão Preto, UNAERP, Av Costábile Romano, 2201, 14096-380 Ribeirão Preto, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Snake envenomation employs three well integrated strategies: prey immobilization via hypotension, prey immobilization via paralysis, and prey digestion. Purines (adenosine, guanosine and inosine) evidently play a central role in the envenomation strategies of most advanced snakes. Purines constitute the perfect multifunctional toxins, participating simultaneously in all three envenomation strategies. Because they are endogenous regulatory compounds in all vertebrates, it is impossible for any prey organism to develop resistance to them. Purine generation from endogenous precursors in the prey explains the presence of many hitherto unexplained enzyme activities in snake venoms: 5'-nucleotidase, endonucleases (including ribonuclease), phosphodiesterase, ATPase, ADPase, phosphomonoesterase, and NADase. Phospholipases A(2), cytotoxins, myotoxins, and heparinase also participate in purine liberation, in addition to their better known functions. Adenosine contributes to prey immobilization by activation of neuronal adenosine A(1) receptors, suppressing acetylcholine release from motor neurons and excitatory neurotransmitters from central sites. It also exacerbates venom-induced hypotension by activating A(2) receptors in the vasculature. Adenosine and inosine both activate mast cell A(3) receptors, liberating vasoactive substances and increasing vascular permeability. Guanosine probably contributes to hypotension, by augmenting vascular endothelial cGMP levels via an unknown mechanism. Novel functions are suggested for toxins that act upon blood coagulation factors, including nitric oxide production, using the prey's carboxypeptidases. Leucine aminopeptidase may link venom hemorrhagic metalloproteases and endogenous chymotrypsin-like proteases with venom L-amino acid oxidase (LAO), accelerating the latter. The primary function of LAO is probably to promote prey hypotension by activating soluble guanylate cyclase in the presence of superoxide dismutase. LAO's apoptotic activity, too slow to be relevant to prey capture, is undoubtedly secondary and probably serves principally a digestive function. It is concluded that the principal function of L-type Ca(2+) channel antagonists and muscarinic toxins, in Dendroaspis venoms, and acetylcholinesterase in other elapid venoms, is to promote hypotension. Venom dipeptidyl peptidase IV-like enzymes probably also contribute to hypotension by destroying vasoconstrictive peptides such as Peptide YY, neuropeptide Y and substance P. Purines apparently bind to other toxins which then serve as molecular chaperones to deposit the bound purines at specific subsets of purine receptors. The assignment of pharmacological activities such as transient neurotransmitter suppression, histamine release and antinociception, to a variety of proteinaceous toxins, is probably erroneous. Such effects are probably due instead to purines bound to these toxins, and/or to free venom purines.
Collapse
Affiliation(s)
- Steven D Aird
- Laboratório de Toxinas Naturais, Universidade Estadual do Ceará, Avenida Paranjana, 1700, Itaperí, 60740-000, Fortaleza, CE, Brazil.
| |
Collapse
|