Porrett PM, Lee MK, Lian MM, Wang J, Caton AJ, Deng S, Markmann JF, Moore DJ. A direct comparison of rejection by CD8 and CD4 T cells in a transgenic model of allotransplantation.
Arch Immunol Ther Exp (Warsz) 2008;
56:193-200. [PMID:
18512028 PMCID:
PMC2766493 DOI:
10.1007/s00005-008-0019-0]
[Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Accepted: 01/08/2008] [Indexed: 11/25/2022]
Abstract
Introduction:
The relative contributions of CD4+ and CD8+ T cells to transplant rejection remain unknown. The authors integrated a previous model of CD4-mediated graft rejection with a complementary model of CD8-mediated rejection to directly compare the function of graft-reactive CD4+ and CD8+ lymphocytes in vivo in a model where rejection requires transgenic T cells. These studies allow direct comparison of CD4 and CD8 T cell responses to the same antigen without the confounding effects of T cell depletion or homeostatic proliferation.
Materials and Methods:
Clone 4 and TS1 mice possess MHC class I- and II-restricted CD8+ and CD4+ T cells, respectively, which express transgenic T cell receptors that recognize the influenza hemagglutinin antigen (HA). We compared the in vivo response of CFSE-labeled, HA-specific transgenic CD8+ and CD4+ T cells after adoptive transfer into syngeneic BALB/c mice grafted with HA-expressing skin.
Results:
As in the authors’ CD4+ model, HA104 skin was consistently rejected by both Clone 4 mice (n=9, MST: 14.2) and by 5×105 Clone 4 lymphocytes transferred to naive BALB/c hosts that do not otherwise reject HA+ grafts. Rejection correlated with extensive proliferation of either graft-reactive T cell subset in the draining lymph nodes, and antigen-specific CD4+ and CD8+ cells acquired effector function and proliferated with similar kinetics.
Conclusions:
These data extend the authors’ unique transgenic transplantation model to the investigation of CD8 T cell function. The initial results confirm fundamental functional similarity between the CD4 and CD8 T cell subsets and provide insight into the considerable redundancy underlying T cell mechanisms mediating allograft rejection.
Collapse