1
|
Macpherson CV, Daisley BA, Mallory E, Allen-Vercoe E. The untapped potential of cell culture in disentangling insect-microbial relationships. MICROBIOME RESEARCH REPORTS 2024; 3:20. [PMID: 38841412 PMCID: PMC11149091 DOI: 10.20517/mrr.2023.66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/27/2024] [Accepted: 02/22/2024] [Indexed: 06/07/2024]
Abstract
Cell culture is a powerful technique for the investigation of molecular mechanisms fundamental to health and disease in a diverse array of organisms. Cell lines offer several advantages, namely their simplistic approach and high degree of reproducibility. One field where cell culture has proven particularly useful is the study of the microbiome, where cell culture has led to the illumination of microbial influences on host immunity, nutrition, and physiology. Thus far, researchers have focused cell culture work predominantly on humans, but the growing field of insect microbiome research stands to benefit greatly from its application. Insects constitute one of Earth's most diverse and ancient life forms and, just as with humans, possess microbiomes with great significance to their health. Insects, which play critical roles in supporting food security and ecological stability, are facing increasing threats from agricultural intensification, climate change, and pesticide use. As the microbiome is closely tied to host health, gaining a more robust understanding is of increasing importance. In this review, we assert that the cultivation and utilization of insect gut cell lines in microbiome research will bridge critical knowledge gaps essential for informing insect management practices in a world under pressure.
Collapse
Affiliation(s)
| | | | | | - Emma Allen-Vercoe
- Department of Molecular and Cellular Biology, University of Guelph, Guelph N1G 2W1, ON, Canada
| |
Collapse
|
2
|
He X, Lu L, Huang P, Yu B, Peng L, Zou L, Ren Y. Insect Cell-Based Models: Cell Line Establishment and Application in Insecticide Screening and Toxicology Research. INSECTS 2023; 14:104. [PMID: 36835673 PMCID: PMC9965340 DOI: 10.3390/insects14020104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/07/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
During the past decades, research on insect cell culture has grown tremendously. Thousands of lines have been established from different species of insect orders, originating from several tissue sources. These cell lines have often been employed in insect science research. In particular, they have played important roles in pest management, where they have been used as tools to evaluate the activity and explore the toxic mechanisms of insecticide candidate compounds. This review intends to first briefly summarize the progression of insect cell line establishment. Then, several recent studies based on insect cell lines coupled with advanced technologies are introduced. These investigations revealed that insect cell lines can be exploited as novel models with unique advantages such as increased efficiency and reduced cost compared with traditional insecticide research. Most notably, the insect cell line-based models provide a global and in-depth perspective to study the toxicology mechanisms of insecticides. However, challenges and limitations still exist, especially in the connection between in vitro activity and in vivo effectiveness. Despite all this, recent advances have suggested that insect cell line-based models promote the progress and sensible application of insecticides, which benefits pest management.
Collapse
|
3
|
Arya SK, Goodman CL, Stanley D, Palli SR. A database of crop pest cell lines. In Vitro Cell Dev Biol Anim 2022; 58:719-757. [PMID: 35994130 DOI: 10.1007/s11626-022-00710-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/13/2022] [Indexed: 11/27/2022]
Abstract
We have developed an online database describing the known cell lines from Coleoptera, Diptera, Hemiptera, Hymenoptera, and Lepidoptera that were developed from agricultural pests. Cell line information has been primarily obtained from previous compilations of insect cell lines. We conducted in-depth Internet literature searches and drew on Internet sources such as the Cellosaurus database (https://web.expasy.org/cellosaurus/), and inventories from cell line depositories. Here, we report on a new database of insect cell lines, which covers 719 cell lines from 86 species. We have not included cell lines developed from Drosophila because they are already known from published databases, such as https://dgrc.bio.indiana.edu/cells/Catalog. We provide the designation, tissue and species of origin, cell line developer, unique characteristics, its use in various applications, publications, and patents, and, when known, insect virus susceptibility. This information has been assembled and organized into a searchable database available at the link https://entomology.ca.uky.edu/aginsectcellsdatabase which will be updated on an ongoing basis.
Collapse
Affiliation(s)
- Surjeet Kumar Arya
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
| | - Cynthia L Goodman
- Biological Control of Insects Research Laboratory, United States Department of Agriculture, Agricultural Research Service, Columbia, Missouri, 65203, USA
| | - David Stanley
- Biological Control of Insects Research Laboratory, United States Department of Agriculture, Agricultural Research Service, Columbia, Missouri, 65203, USA
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
4
|
Vorgia E, Lamprousi M, Denecke S, Vogelsang K, Geibel S, Vontas J, Douris V. Functional characterization and transcriptomic profiling of a spheroid-forming midgut cell line from Helicoverpa zea (Lepidoptera: Noctuidae). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 128:103510. [PMID: 33276037 DOI: 10.1016/j.ibmb.2020.103510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/15/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Insect cell lines have been frequently used in insect science research in recent years. Establishment of cell lines from specialized tissues like the lepidopteran midgut is expected to facilitate research efforts towards the understanding of uptake and metabolic properties, as well as the design of assays for use in pesticide discovery. However, the number of available lines from specialized tissues of insects and the level of understanding of the biological processes taking place in insect cells is far behind mammalian systems. In this study we examine two established cell lines of insect midgut origin, investigate their growth parameters and amenability to transfection and genetic manipulation, and test their potential to form spheroid-like 3D structures. Our results indicate that a midgut-derived cell line from Helicoverpa zea, RP-HzGUT-AW1, is amenable to genetic manipulation by transfection with a standard insect expression vector and has excellent ability to form spheroids. To further investigate the differentiation status of this line, we examined for expression of several candidate marker genes from different midgut cell types, enterocytes (ECs), Goblet cells (GCs), enteroendocrine cells (EEs) and intestinal stem cells (ISCs), indicating that both certain ISC and certain differentiated cell markers were present. To acquire a more detailed perspective of the differentiation landscape of the specific cells, we performed an RNAseq analysis of RP-HzGUT-AW1 grown either in 2D or 3D cultures. We hypothesize that RP-HzGUT-AW1 are in an "arrested" developmental stage between ISC and terminal differentiation. Furthermore, an enrichment of stress response and oxidoreductase genes was observed in the spheroid samples while no significant difference was evident in differentiation markers between cells grown in 2D and 3D. These results render RP-HzGUT-AW1 as the most well-characterized insect gut derived cell line so far, and lay the groundwork for future work investigating midgut cell lines application potential.
Collapse
Affiliation(s)
- Elena Vorgia
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, 700 13, Heraklion Crete, Greece
| | - Mantha Lamprousi
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, 700 13, Heraklion Crete, Greece; Department of Biology, University of Crete, Vassilika Vouton, 71409, Heraklion, Crete, Greece
| | - Shane Denecke
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, 700 13, Heraklion Crete, Greece
| | - Kathrin Vogelsang
- Bayer AG, CropScience Division, R&D Pest Control, D-40789 Monheim, Germany
| | - Sven Geibel
- Bayer AG, CropScience Division, R&D Pest Control, D-40789 Monheim, Germany
| | - John Vontas
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, 700 13, Heraklion Crete, Greece; Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, Greece
| | - Vassilis Douris
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, 700 13, Heraklion Crete, Greece; Department of Biological Applications and Technology, University of Ioannina, 45110, Ioannina, Greece.
| |
Collapse
|
5
|
Guo Y, Goodman CL, Stanley DW, Bonning BC. Cell Lines for Honey Bee Virus Research. Viruses 2020; 12:E236. [PMID: 32093360 PMCID: PMC7077248 DOI: 10.3390/v12020236] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 12/25/2022] Open
Abstract
With ongoing colony losses driven in part by the Varroa mite and the associated exacerbation of the virus load, there is an urgent need to protect honey bees (Apis mellifera) from fatal levels of virus infection and from the non-target effects of insecticides used in agricultural settings. A continuously replicating cell line derived from the honey bee would provide a valuable tool for the study of molecular mechanisms of virus-host interaction, for the screening of antiviral agents for potential use within the hive, and for the assessment of the risk of current and candidate insecticides to the honey bee. However, the establishment of a continuously replicating honey bee cell line has proved challenging. Here, we provide an overview of attempts to establish primary and continuously replicating hymenopteran cell lines, methods (including recent results) of establishing honey bee cell lines, challenges associated with the presence of latent viruses (especially Deformed wing virus) in established cell lines and methods to establish virus-free cell lines. We also describe the potential use of honey bee cell lines in conjunction with infectious clones of honey bee viruses for examination of fundamental virology.
Collapse
Affiliation(s)
- Ya Guo
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611, USA;
| | - Cynthia L. Goodman
- Biological Control of Insects Research Laboratory, USDA/Agricultural Research Service, Columbia, MO 65203, USA; (C.L.G.); (D.W.S.)
| | - David W. Stanley
- Biological Control of Insects Research Laboratory, USDA/Agricultural Research Service, Columbia, MO 65203, USA; (C.L.G.); (D.W.S.)
| | - Bryony C. Bonning
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611, USA;
| |
Collapse
|
6
|
Zhou K, Goodman CL, Ringbauer J, Song Q, Beerntsen B, Stanley D. Establishment of two midgut cell lines from the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). In Vitro Cell Dev Biol Anim 2019; 56:10-14. [PMID: 31792802 DOI: 10.1007/s11626-019-00420-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/04/2019] [Indexed: 11/30/2022]
Abstract
Two cell lines were generated from larval midguts of Spodoptera frugiperda and have been 26 passaged over 50 times. The CT/BCIRL-SfMG1-0611-KZ line was established from 27 trypsinized, minced whole midgut tissues: the CT/BCIRL-SfMG-0617-KZ line from isolated 28 midgut muscle tissue (containing some residual epithelial cells). Additional midgut cultures were 29 generated from isolated epithelial cells; some passaged not more than three times, which grew 30 very slowly and survived longer than 1 year. The continuously replicating cell lines contain 31 firmly adhering cells with different morphologies, including elongated, spherical, and/or 32 rectangular. The mean diameters of these cell lines are 9.3 ± 4.0 μm (SfMG1-0611) and 9.2 ± 3.9 33 μm (SfMG-0617). Growth curves for the two lines have relatively lengthy doubling times of 73.9 34 h and 50.4 h for SfMG1-0611 and SfMG-0617, respectively. We confirmed the identity of these 35 lines using DNA amplification fingerprinting (DAF-PCR) and noted that the DNA patterns for 36 each cell line were similar to their host tissues but distinctly different from other cell lines or 37 tissues from different insect species. Amplification of genomic DNA with species-specific 38 primers yielded DNA fragments of the expected sizes and with sequences nearly identical to 39 those from the S. frugiperda genome. Both cell lines were exposed to selected Bt Cry proteins 40 with minimal impact. These lines are currently available to researchers worldwide.
Collapse
Affiliation(s)
- Kaile Zhou
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Cynthia L Goodman
- Biological Control of Insects Research Laboratory, USDA/Agricultural Research Service, 1503 S. Providence Road, Columbia, MO, 65203, USA.
| | - Joseph Ringbauer
- Biological Control of Insects Research Laboratory, USDA/Agricultural Research Service, 1503 S. Providence Road, Columbia, MO, 65203, USA
| | - Qisheng Song
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Brenda Beerntsen
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, 65211, USA
| | - David Stanley
- Biological Control of Insects Research Laboratory, USDA/Agricultural Research Service, 1503 S. Providence Road, Columbia, MO, 65203, USA
| |
Collapse
|
7
|
Reuter G, Várallyay É, Baráth D, Földvári G, Szekeres S, Boros Á, Kapusinszky B, Delwart E, Pankovics P. Analysis of a novel RNA virus in a wild northern white-breasted hedgehog (Erinaceus roumanicus). Arch Virol 2019; 164:3065-3071. [PMID: 31549303 PMCID: PMC6823297 DOI: 10.1007/s00705-019-04414-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/23/2019] [Indexed: 11/02/2022]
Abstract
Tombusviruses are generally considered plant viruses. A novel tombus-/carmotetravirus-like RNA virus was identified in a faecal sample and blood and muscle tissues from a wild northern white-breasted hedgehog (Erinaceus roumanicus). The complete genome of the virus, called H14-hedgehog/2015/HUN (GenBank accession number MN044446), is 4,118 nucleotides in length with a readthrough stop codon of type/group 1 in ORF1 and lacks a poly(A) tract at the 3' end. The predicted ORF1-RT (RdRp) and the capsid proteins had low (31-33%) amino acid sequence identity to unclassified tombus-/noda-like viruses (Hubei tombus-like virus 12 and Beihai noda-like virus 10), respectively, discovered recently in invertebrate animals. An in vivo experimental plant inoculation study showed that an in vitro-transcribed H14-hedgehog/2015/HUN viral RNA did not replicate in Nicotiana benthamiana, Chenopodium quinoa, or Chenopodium murale, the most susceptible hosts for plant-origin tombusviruses.
Collapse
Affiliation(s)
- Gábor Reuter
- Department of Medical Microbiology and Immunology, Medical Center, University of Pécs, Szigeti út 12, Pecs, 7624, Hungary.
| | - Éva Várallyay
- Agricultural Biotechnology Institute, National Agricultural Research and Innovation Centre, Gödöllő, Hungary
| | - Dániel Baráth
- Agricultural Biotechnology Institute, National Agricultural Research and Innovation Centre, Gödöllő, Hungary
| | - Gábor Földvári
- Evolutionary Systems Research Group MTA Centre for Ecological Research, Tihany, Hungary.,Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary
| | - Sándor Szekeres
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary
| | - Ákos Boros
- Department of Medical Microbiology and Immunology, Medical Center, University of Pécs, Szigeti út 12, Pecs, 7624, Hungary
| | | | - Eric Delwart
- Vitalant Research Institute, San Francisco, CA, USA.,University of California, San Francisco, San Francisco, CA, USA
| | - Péter Pankovics
- Department of Medical Microbiology and Immunology, Medical Center, University of Pécs, Szigeti út 12, Pecs, 7624, Hungary
| |
Collapse
|
8
|
Jiwaji M, Matcher GF, de Bruyn MM, Awando JA, Moodley H, Waterworth D, Jarvie RA, Dorrington RA. Providence virus: An animal virus that replicates in plants or a plant virus that infects and replicates in animal cells? PLoS One 2019; 14:e0217494. [PMID: 31163039 PMCID: PMC6548363 DOI: 10.1371/journal.pone.0217494] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/13/2019] [Indexed: 12/11/2022] Open
Abstract
Introduction Emerging viral diseases, most of which are zoonotic, pose a significant threat to global health. There is a critical need to identify potential new viral pathogens and the challenge is to identify the reservoirs from which these viruses might emerge. Deep sequencing of invertebrate transcriptomes has revealed a plethora of viruses, many of which represent novel lineages representing both plant and animal viruses and little is known about the potential threat that these viruses pose. Methods Providence virus, an insect virus, was used to establish a productive infection in Vigna unguiculata (cowpea) plants. Providence virus particles purified from these cowpea plants were used to infect two mammalian cell lines. Findings Here, we present evidence that Providence virus, a non-enveloped insect RNA virus, isolated from a lepidopteran midgut cell line can establish a productive infection in plants as well as in animal cells. The observation that Providence virus can readily infect both plants and mammalian cell culture lines demonstrates the ability of an insect RNA virus to establish productive infections across two kingdoms, in plants and invertebrate and vertebrate animal cell lines. Conclusions The study highlights the potential of phytophagous insects as reservoirs for viral re-assortment and that plants should be considered as reservoirs for emerging viruses that may be potentially pathogenic to humans.
Collapse
Affiliation(s)
- Meesbah Jiwaji
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
- * E-mail:
| | | | - Mart-Mari de Bruyn
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| | - Janet Awino Awando
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| | - Holisha Moodley
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| | - Dylan Waterworth
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| | - Rachel Anne Jarvie
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| | | |
Collapse
|
9
|
Wang L, Cappelle K, Santos D, Vanden Broeck J, Smagghe G, Swevers L. Short-term persistence precedes pathogenic infection: Infection kinetics of cricket paralysis virus in silkworm-derived Bm5 cells. JOURNAL OF INSECT PHYSIOLOGY 2019; 115:1-11. [PMID: 30905610 DOI: 10.1016/j.jinsphys.2019.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/16/2019] [Accepted: 03/16/2019] [Indexed: 06/09/2023]
Abstract
Next generation sequencing has revealed the widespread occurrence of persistent virus infections in insects but little is known regarding to what extent persistent infections can affect cellular physiology and how they might contribute to the development of disease. In contrast to the pathogenic infections occurring in Drosophila S2 cells, it was observed that Cricket Paralysis virus (CrPV; Dicistroviridae) causes persistent infections in 9 lepidopteran and 2 coleopteran cell lines. The status of the persistent infection was subsequently investigated in more detail using silkworm-derived Bm5 cells, where the infection eventually becomes pathogenic after 3-4 weeks. The short-term persistence period in Bm5 cells is characterized by low levels of viral replication and virion production as well as by the production of viral siRNAs. However, during this period cellular physiology also becomes altered since the cells become susceptible to infection by the nodavirus Flock House virus (FHV). Pathogenicity and widespread mortality at 4 weeks is preceded by a large increase in virion production and the transcriptional activation of immune-related genes encoding RNAi factors and transcription factors in the Toll, Imd and Jak-STAT pathways. During the infection of Bm5 cells, the infective properties of CrPV are not altered, indicating changes in the physiology of the host cells during the transition from short-term persistence to pathogenicity. The in vitro system of Bm5 cells persistently infected with CrPV can therefore be presented as an easily accessible model to study the nature of persistent virus infections and the processes that trigger the transition to pathogenicity, for instance through the application of different "omics" approaches (transcriptomics, proteomics, metabolomics). The different factors that can cause the transition from persistence to pathogenicity in the Bm5-CrPV infection model are discussed.
Collapse
Affiliation(s)
- Luoluo Wang
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| | - Kaat Cappelle
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| | - Dulce Santos
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Leuven, Belgium.
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Leuven, Belgium.
| | - Guy Smagghe
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece.
| |
Collapse
|
10
|
Wei J, Liang G, Wu K, Gu S, Guo Y, Ni X, Li X. Cytotoxicity and binding profiles of activated Cry1Ac and Cry2Ab to three insect cell lines. INSECT SCIENCE 2018; 25:655-666. [PMID: 28247982 DOI: 10.1111/1744-7917.12451] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 11/24/2016] [Accepted: 01/03/2017] [Indexed: 06/06/2023]
Abstract
While Cry1Ac has been known to bind with larval midgut proteins cadherin, APN (amino peptidase N), ALP (alkaline phosphatase) and ABCC2 (adenosine triphosphate-binding cassette transporter subfamily C2), little is known about the receptors of Cry2Ab. To provide a clue to the receptors of Cry2Ab, we tested the baseline cytotoxicity of activated Cry1Ac and Cry2Ab against the midgut and fat body cell lines of Helicoverpa zea and the ovary cell line of Spodoptera frugiperda (SF9). As expected, the descending order of cytotoxicity of Cry1Ac against the three cell lines in terms of 50% lethal concetration (LC50 ) was midgut (31.0 μg/mL) > fat body (59.0 μg/mL) and SF9 cell (99.6 μg/mL). By contrast, the fat body cell line (LC50 = 7.55 μg/mL) was about twice more susceptible to Cry2Ab than the midgut cell line (16.0 μg/mL), the susceptibility of which was not significantly greater than that of SF9 cells (27.0 μg/mL). Further, ligand blot showed the binding differences between Cry1Ac and Cry2Ab in the three cell lines. These results indicated that the receptors of Cry2Ab were enriched in fat body cells and thus largely different from the receptors of Cry1Ac, which were enriched in midgut cells.
Collapse
Affiliation(s)
- Jizhen Wei
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Entomology and BIO5 Institute, University of Arizona, Tucson, AZ, USA
| | - Gemei Liang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kongming Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shaohua Gu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuyuan Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinzhi Ni
- USDA-ARS, Crop Genetics and Breeding Research Unit, Tifton, GA, USA
| | - Xianchun Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Entomology and BIO5 Institute, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
11
|
Sadeghi M, Popov V, Guzman H, Phan TG, Vasilakis N, Tesh R, Delwart E. Genomes of viral isolates derived from different mosquitos species. Virus Res 2017; 242:49-57. [PMID: 28855097 DOI: 10.1016/j.virusres.2017.08.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/10/2017] [Accepted: 08/23/2017] [Indexed: 10/19/2022]
Abstract
Eleven viral isolates derived mostly in albopictus C6/36 cells from mosquito pools collected in Southeast Asia and the Americas between 1966 and 2014 contained particles with electron microscopy morphology typical of reoviruses. Metagenomics analysis yielded the near complete genomes of three novel reoviruses, Big Cypress orbivirus, Ninarumi virus, and High Island virus and a new tetravirus, Sarawak virus. Strains of previously characterized Sathuvarachi, Yunnan, Banna and Parry's Lagoon viruses (Reoviridae), Bontang virus (Mesoniviridae), and Culex theileri flavivirus (Flaviviridae) were also characterized. The availability of these mosquito virus genomes will facilitate their detection by metagenomics or PCR to better determine their geographic range, extent of host tropism, and possible association with arthropod or vertebrate disease.
Collapse
Affiliation(s)
- Mohammadreza Sadeghi
- Blood Systems Research Institute, San Francisco, CA, USA; Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA; Department of Virology, University of Helsinki, Helsinki, Finland
| | - Vsevolod Popov
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA
| | - Hilda Guzman
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA
| | - Tung Gia Phan
- Blood Systems Research Institute, San Francisco, CA, USA; Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Nikos Vasilakis
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA; Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Robert Tesh
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA; Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, CA, USA; Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
12
|
Jiwaji M, Short JR, Dorrington RA. Expanding the host range of small insect RNA viruses: Providence virus (Carmotetraviridae) infects and replicates in a human tissue culture cell line. J Gen Virol 2016; 97:2763-2768. [PMID: 27521161 DOI: 10.1099/jgv.0.000578] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Tetraviruses are small, positive (+ve)-sense ssRNA viruses that infect the midgut cells of lepidopteran larvae. Providence virus (PrV) is the only member of the family Carmotetraviridae (previously Tetraviridae). PrV particles exhibit the characteristic tetraviral T=4 icosahedral symmetry, but PrV is distinct from other tetraviruses with respect to genome organization and viral non-structural proteins. Currently, PrV is the only tetravirus known to infect and replicate in lepidopteran cell culture lines. In this report we demonstrate, using immunofluorescence microscopy, that PrV infects and replicates in a human tissue culture cell line (HeLa), producing infectious virus particles. We also provide evidence for PrV replication in vitro in insect, mammalian and plant cell-free systems. This study challenges the long-held view that tetraviruses have a narrow host range confined to one or a few lepidopteran species and highlights the need to consider the potential for apparently non-infectious viruses to be transferred to new hosts in the laboratory.
Collapse
Affiliation(s)
- Meesbah Jiwaji
- Department of Biochemistry and Microbiology, Rhodes University, PO Box 94, Grahamstown 6140, South Africa
| | - James Roswell Short
- Department of Biochemistry and Microbiology, Rhodes University, PO Box 94, Grahamstown 6140, South Africa
| | - Rosemary Ann Dorrington
- Department of Biochemistry and Microbiology, Rhodes University, PO Box 94, Grahamstown 6140, South Africa
| |
Collapse
|
13
|
Genetic Characterization of Providence Virus Isolated from Bat Guano in Hungary. GENOME ANNOUNCEMENTS 2016; 4:4/3/e00403-16. [PMID: 27198029 PMCID: PMC4888983 DOI: 10.1128/genomea.00403-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
We report the complete genome sequence and genetic characterization of a novel strain of Providence virus, detected in Barbastella barbastellus bat guano, collected in Hungary in 2014. Our data may facilitate the understanding of the evolutionary processes of this unique viral family of Carmotetraviridae.
Collapse
|
14
|
Establishment and characterization of a novel cell line from midgut tissue of Helicoverpa armigera (Lepidoptera: Noctuidae). In Vitro Cell Dev Biol Anim 2015; 51:562-71. [DOI: 10.1007/s11626-015-9870-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 01/09/2015] [Indexed: 12/27/2022]
|
15
|
Neuman BW, Angelini MM, Buchmeier MJ. Does form meet function in the coronavirus replicative organelle? Trends Microbiol 2014; 22:642-7. [PMID: 25037114 PMCID: PMC7127430 DOI: 10.1016/j.tim.2014.06.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 06/10/2014] [Accepted: 06/13/2014] [Indexed: 12/14/2022]
Abstract
If we use the analogy of a virus as a living entity, then the replicative organelle is the part of the body where its metabolic and reproductive activities are concentrated. Recent studies have illuminated the intricately complex replicative organelles of coronaviruses, a group that includes the largest known RNA virus genomes. This review takes a virus-centric look at the coronavirus replication transcription complex organelle in the context of the wider world of positive sense RNA viruses, examining how the mechanisms of protein expression and function act to produce the factories that power the viral replication cycle.
Collapse
Affiliation(s)
- Benjamin W Neuman
- School of Biological Sciences, University of Reading, Reading, Berkshire, UK.
| | - Megan M Angelini
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
| | - Michael J Buchmeier
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA; Department of Medicine, Division of Infectious Disease, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
16
|
Assembly and maturation of a T = 4 quasi-equivalent virus is guided by electrostatic and mechanical forces. Viruses 2014; 6:3348-62. [PMID: 25153346 PMCID: PMC4147699 DOI: 10.3390/v6083348] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/15/2014] [Accepted: 08/18/2014] [Indexed: 11/17/2022] Open
Abstract
Nudaurelia capensis w virus (NωV) is a eukaryotic RNA virus that is well suited for the study of virus maturation. The virus initially assembles at pH 7.6 into a marginally stable 480-Å procapsid formed by 240 copies of a single type of protein subunit. During maturation, which occurs during apoptosis at pH 5.0, electrostatic forces guide subunit trajectories into a robust 410-Å virion that is buttressed by subunit associated molecular switches. We discuss the competing factors in the virus capsid of requiring near-reversible interactions during initial assembly to avoid kinetic traps, while requiring robust stability to survive in the extra-cellular environment. In addition, viruses have a variety of mechanisms to deliver the genome, which must remain off while still inside the infected cell, yet turn on under the proper conditions of infection. We conclude that maturation is the process that provides a solution to these conflicting requirements through a program that is encoded in the procapsid and that leads to stability and infectivity.
Collapse
|
17
|
Short JR, Nakayinga R, Hughes GE, Walter CT, Dorrington RA. Providence virus (family: Carmotetraviridae) replicates vRNA in association with the Golgi apparatus and secretory vesicles. J Gen Virol 2013; 94:1073-1078. [PMID: 23343628 DOI: 10.1099/vir.0.047647-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Providence virus (PrV) is the sole member of the family Carmotetraviridae (formerly Tetraviridae) sharing the characteristic T=4 capsid architecture with other tetravirus families. Despite significant structural similarities, PrV differs from other tetraviruses in terms of genome organization, non-structural protein sequence and regulation of gene expression. In addition, it is the only tetravirus that infects tissue culture cells. Previous studies showed that in persistently infected Helicoverpa zea MG8 cells, the PrV replicase associates with detergent-resistant membranes in punctate cytosolic structures, which is similar to the distribution of an alpha-like tetravirus replicase (Helicoverpa armigera stunt virus). Here, we demonstrate that the site of PrV vRNA replication coincides with the presence of PrV p40/p104 proteins in infected cells and that these replication proteins associate with the Golgi apparatus and secretory vesicles in transfected cells.
Collapse
Affiliation(s)
- James R Short
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown 6140, South Africa
| | - Ritah Nakayinga
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown 6140, South Africa
| | - Gareth E Hughes
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown 6140, South Africa
| | - Cheryl T Walter
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown 6140, South Africa
| | - Rosemary A Dorrington
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown 6140, South Africa
| |
Collapse
|
18
|
Short JR, Dorrington RA. Membrane targeting of an alpha-like tetravirus replicase is directed by a region within the RNA-dependent RNA polymerase domain. J Gen Virol 2012; 93:1706-1716. [PMID: 22535773 DOI: 10.1099/vir.0.038992-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The members of the family Tetraviridae are small positive-sense insect RNA viruses that exhibit stringent host specificity and a high degree of tissue tropism, suggesting that complex virus-host interactions are likely to occur during infection and viral replication. The alpha-like replicase of Helicoverpa armigera stunt virus (HaSV) (genus Omegatetravirus) has been proposed to associate with membranes of the endocytic pathway, which is similar to Semliki Forest virus, Sindbis virus and rubella virus. Here, we have used replicase-EGFP fusion proteins and recombinant baculovirus expression to demonstrate that the HaSV replicase associates strongly with cellular membranes, including detergent-resistant membranes, and that this association is maintained through a novel membrane targeting domain within the C-terminal region of the RNA-dependent RNA polymerase domain. We show a similar subcellular localization and strong association with detergent-resistant membranes for the carmo-like replicase of another tetravirus, Providence virus, in replicating cells, suggesting a common site of replication for these two tetraviruses.
Collapse
Affiliation(s)
- James R Short
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, PO Box 94, Grahamstown, 6140, South Africa
| | - Rosemary A Dorrington
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, PO Box 94, Grahamstown, 6140, South Africa
| |
Collapse
|
19
|
Tetraviridae. VIRUS TAXONOMY 2012. [PMCID: PMC7149323 DOI: 10.1016/b978-0-12-384684-6.00094-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This chapter describes the Tetraviridae family. The virions of the Betatetravirus genus are nonenveloped, roughly spherical, of about 40 nm in diameter and exhibit T = 4 icosahedral shell quasi-symmetry. The genome consists of ssRNA and the viruses in the genus Betatetravirus have monopartite genomes. Betatetraviruses replicate in the cytoplasm and has three distinct types of genomic organization. Most of the members of the group are serologically interrelated but distinguishable. The majority of the isolates were identified on the basis of their serological reaction with antiserum raised against NβV. All the virus species were isolated from Lepidoptera species (moths and butterflies), principally from Saturniid, Limacodid, and Noctuid moths, and no replication in other animals has been detected. In larvae, virus replication is restricted predominantly to the cells of the midgut. With the exception of PrV, no infections by members of the Betatetravirus genus have been achieved in cultured cells, even when gRNA was transfected directly into cells. At high host densities, horizontal spread appears to be the major route of infection. Suggestive evidence exists for vertical transmission, which could be responsible for the observed persistence of tetraviruses within insect populations. The viruses replicate primarily in the cytoplasm of gut cells of several Lepidoptera species. The virons of omegatetravirus genus are nonenveloped, roughly spherical, about 40 nm in diameter and exhibit T = 4 icosahedral shell quasi-symmetry. Unlike viruses in the genus Betatetravirus, viruses in the genus Omegatetravirus have bipartite genomes. As with the betatetraviruses, omegatetraviruses replicate in the cytoplasm and studies in tissue culture cells show that the HaSV replicase is localized within the cytoplasm and associates with membranes derived from the endocytic pathway.
Collapse
|
20
|
Speir JA, Taylor DJ, Natarajan P, Pringle FM, Ball LA, Johnson JE. Evolution in action: N and C termini of subunits in related T = 4 viruses exchange roles as molecular switches. Structure 2010; 18:700-9. [PMID: 20541507 DOI: 10.1016/j.str.2010.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 03/04/2010] [Accepted: 03/06/2010] [Indexed: 10/19/2022]
Abstract
The T = 4 tetravirus and T = 3 nodavirus capsid proteins undergo closely similar autoproteolysis to produce the N-terminal beta and C-terminal, lipophilic gamma polypeptides. The gamma peptides and the N termini of beta also act as molecular switches that determine their quasi equivalent capsid structures. The crystal structure of Providence virus (PrV), only the second of a tetravirus (the first was NomegaV), reveals conserved folds and cleavage sites, but the protein termini have completely different structures and the opposite functions of those in NomegaV. N termini of beta form the molecular switch in PrV, whereas gamma peptides play this role in NomegaV. PrV gamma peptides instead interact with packaged RNA at the particle two-folds by using a repeating sequence pattern found in only four other RNA- or membrane-binding proteins. The disposition of peptide termini in PrV is closely related to those in nodaviruses, suggesting that PrV may be closer to the primordial T = 4 particle than NomegaV.
Collapse
Affiliation(s)
- Jeffrey A Speir
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
21
|
Walter CT, Pringle FM, Nakayinga R, de Felipe P, Ryan MD, Ball LA, Dorrington RA. Genome organization and translation products of Providence virus: insight into a unique tetravirus. J Gen Virol 2010; 91:2826-35. [PMID: 20702652 DOI: 10.1099/vir.0.023796-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Providence virus (PrV) is a member of the family Tetraviridae, a family of small, positive-sense, ssRNA viruses that exclusively infect lepidopteran insects. PrV is the only known tetravirus that replicates in tissue culture. We have analysed the genome and characterized the viral translation products, showing that PrV has a monopartite genome encoding three ORFs: (i) p130, unique to PrV and of unknown function; (ii) p104, which contains a read-through stop signal, producing an N-terminal product of 40 kDa (p40) and (iii) the capsid protein precursor (p81). There are three 2A-like processing sequences: one at the N terminus of p130 (PrV-2A₁) and two more (PrV-2A₂ and PrV-2A₃) at the N terminus of p81. Metabolic radiolabelling identified viral translation products corresponding to all three ORFs in persistently infected cells and showed that the read-through stop in p104 and PrV-2A₃ in p81 are functional in vivo and these results were confirmed by in vitro translation experiments. The RNA-dependent RNA polymerase domain of the PrV replicase is phylogenetically most closely related to members of the families Tombusviridae and Umbraviridae rather than to members of the family Tetraviridae. The unique genome organization, translational control systems and phylogenetic relationship with the replicases of (+ve) plant viruses lead us to propose that PrV represents a novel family of small insect RNA viruses, distinct from current members of the family Tetraviridae.
Collapse
Affiliation(s)
- Cheryl T Walter
- Dept of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown 6140, South Africa
| | | | | | | | | | | | | |
Collapse
|
22
|
Short JR, Knox C, Dorrington RA. Subcellular localization and live-cell imaging of the Helicoverpa armigera stunt virus replicase in mammalian and Spodoptera frugiperda cells. J Gen Virol 2010; 91:1514-23. [PMID: 20107015 DOI: 10.1099/vir.0.020156-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Whilst their structure has been well studied, there is little information on the replication biology of tetraviruses because of the lack of suitable tissue-culture cell lines that support virus replication. In this study, the potential site of Helicoverpa armigera stunt virus replication was investigated by transient expression of the replicase protein fused to enhanced green fluorescent protein (EGFP) in mammalian and insect cells. When EGFP was present at the C terminus of the protein, fluorescence was located in punctate cytoplasmic structures that were distinct from the peripheral Golgi, endoplasmic reticulum, early endosomes, lysosomes and mitochondria, but overlapped partially with late endosomes. In experiments where targeting to endosomal compartments was examined further by using Cascade Blue-dextran in live cells, no overlap between the replicase and active endocytic organelles was apparent. Analysis of the punctate structures using time-lapse imaging in live cells revealed that they undergo fusion, fission and 'kiss-and-run' events. Whilst the source of the membranes used to form the punctate structures remains unclear, we propose that the replicase sequesters membranes from the late endosomes and actively excludes host proteins, either by normal recycling processes or by a replicase-dependent mechanism that may result in the destabilization of the associated membranes and a release of luminal contents into the cytosol. This is the first study describing the localization of a tetravirus.
Collapse
Affiliation(s)
- James Roswell Short
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, 6140 Grahamstown, South Africa
| | | | | |
Collapse
|
23
|
Euprosterna elaeasa virus genome sequence and evolution of the Tetraviridae family: emergence of bipartite genomes and conservation of the VPg signal with the dsRNA Birnaviridae family. Virology 2009; 397:145-54. [PMID: 19954807 DOI: 10.1016/j.virol.2009.10.042] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 10/08/2009] [Accepted: 10/28/2009] [Indexed: 11/21/2022]
Abstract
The Tetraviridae is a family of non-enveloped positive-stranded RNA insect viruses that is defined by the T=4 symmetry of virions. We report the complete Euprosterna elaeasa virus (EeV) genome sequence of 5698 nt with no poly(A) tail and two overlapping open reading frames, encoding the replicase and capsid precursor, with approximately 67% amino acid identity to Thosea asigna virus (TaV). The N-terminally positioned 17 kDa protein is released from the capsid precursor by a NPGP motif. EeV has 40 nm non-enveloped isometric particles composed of 58 and 7 kDa proteins. The 3'-end of TaV/EeV is predicted to form a conserved pseudoknot. Replicases of TaV and EeV include a newly delineated VPg signal mediating the protein priming of RNA synthesis in dsRNA Birnaviridae. Results of rooted phylogenetic analysis of replicase and capsid proteins are presented to implicate recombination between monopartite tetraviruses, involving autonomization of a sgRNA, in the emergence of bipartite tetraviruses. They are also used to revise the Tetraviridae taxonomy.
Collapse
|
24
|
Ambrose RL, Lander GC, Maaty WS, Bothner B, Johnson JE, Johnson KN. Drosophila A virus is an unusual RNA virus with a T=3 icosahedral core and permuted RNA-dependent RNA polymerase. J Gen Virol 2009; 90:2191-200. [PMID: 19474243 DOI: 10.1099/vir.0.012104-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The vinegar fly, Drosophila melanogaster, is a popular model for the study of invertebrate antiviral immune responses. Several picorna-like viruses are commonly found in both wild and laboratory populations of D. melanogaster. The best-studied and most pathogenic of these is the dicistrovirus Drosophila C virus. Among the uncharacterized small RNA viruses of D. melanogaster, Drosophila A virus (DAV) is the least pathogenic. Historically, DAV has been labelled as a picorna-like virus based on its particle size and the content of its RNA genome. Here, we describe the characterization of both the genome and the virion structure of DAV. Unexpectedly, the DAV genome was shown to encode a circular permutation in the palm-domain motifs of the RNA-dependent RNA polymerase. This arrangement has only been described previously for a subset of viruses from the double-stranded RNA virus family Birnaviridae and the T=4 single-stranded RNA virus family Tetraviridae. The 8 A (0.8 nm) DAV virion structure computed from cryo-electron microscopy and image reconstruction indicates that the virus structural protein forms two discrete domains within the capsid. The inner domain is formed from a clear T=3 lattice with similarity to the beta-sandwich domain of tomato bushy stunt virus, whilst the outer domain is not ordered icosahedrally, but forms a cage-like structure that surrounds the core domain. Taken together, this indicates that DAV is highly divergent from previously described viruses.
Collapse
Affiliation(s)
- Rebecca L Ambrose
- School of Biological Sciences, The University of Queensland, Brisbane, Australia
| | | | | | | | | | | |
Collapse
|
25
|
Insect cell culture and applications to research and pest management. In Vitro Cell Dev Biol Anim 2009; 45:93-105. [DOI: 10.1007/s11626-009-9181-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Accepted: 01/05/2009] [Indexed: 12/11/2022]
|
26
|
Luke GA, Escuin H, Felipe PD, Ryan MD. 2A to the Fore – Research, Technology and Applications. Biotechnol Genet Eng Rev 2009; 26:223-60. [DOI: 10.5661/bger-26-223] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
27
|
Luke GA, de Felipe P, Lukashev A, Kallioinen SE, Bruno EA, Ryan MD. Occurrence, function and evolutionary origins of '2A-like' sequences in virus genomes. J Gen Virol 2008; 89:1036-1042. [PMID: 18343847 PMCID: PMC2885027 DOI: 10.1099/vir.0.83428-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
2A is an oligopeptide sequence mediating a ribosome ‘skipping’ effect, producing an apparent ‘cleavage’ of polyproteins. First identified and characterized in picornaviruses, ‘2A-like’ sequences are found in other mammalian viruses and a wide range of insect viruses. Databases were analysed using a motif conserved amongst 2A/2A-like sequences. The newly identified 2A-like sequences (30 aa) were inserted into a reporter polyprotein to determine their cleavage activity. Our analyses showed that these sequences fall into two categories. The majority mediated very high (complete) cleavage to separate proteins and a few sequences mediated cleavage with lower efficiency, generating appreciable levels of the uncleaved form. Phylogenetic analyses of 2A-like sequences and RNA-dependent RNA polymerases (RdRps) indicated multiple, independent, acquisitions of these sequences at different stages during virus evolution. Within a virus family, 2A sequences are (probably) homologous, but diverge due to other evolutionary pressures. Amongst different families, however, 2A/2A-like sequences appear to be homoplasic.
Collapse
Affiliation(s)
- Garry A Luke
- Centre for Biomolecular Sciences, School of Biology, Biomolecular Sciences Building, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK
| | - Pablo de Felipe
- Centre for Biomolecular Sciences, School of Biology, Biomolecular Sciences Building, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK
| | - Alexander Lukashev
- Institute of Poliomyelitis and Viral Encephalitides, Russian Academy of Medical Sciences, Moscow 142782, Russia
| | - Susanna E Kallioinen
- Centre for Biomolecular Sciences, School of Biology, Biomolecular Sciences Building, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK
| | - Elizabeth A Bruno
- Centre for Biomolecular Sciences, School of Biology, Biomolecular Sciences Building, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK
| | - Martin D Ryan
- Centre for Biomolecular Sciences, School of Biology, Biomolecular Sciences Building, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK
| |
Collapse
|
28
|
Tomasicchio M, Venter PA, H J Gordon K, N Hanzlik T, Dorrington RA. Induction of apoptosis in Saccharomyces cerevisiae results in the spontaneous maturation of tetravirus procapsids in vivo. J Gen Virol 2007; 88:1576-1582. [PMID: 17412989 DOI: 10.1099/vir.0.82250-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Tetraviridae are a family of small, non-enveloped, insect RNA viruses consisting of one or two single-stranded, positive-sense genomic RNAs encapsidated in an icosahedral capsid with T=4 symmetry. Tetravirus procapsids undergo maturation when exposed to a low pH environment in vitro. While the structural biology of the conformational changes that mediate acid-dependent maturation is well understood, little is known about the significance of acid-dependent maturation in vivo. To address this question, the capsid-coding sequence of the tetravirus Helicoverpa armigera stunt virus was expressed in Saccharomyces cerevisiae cells. Virus-like particles were shown to assemble as procapsids that matured spontaneously in vivo as the cells began to age. Growth in the presence of hydrogen peroxide or acetic acid, which induced apoptosis or programmed cell death in the yeast cells, resulted in virus-like particle maturation. The results demonstrate that assembly-dependent maturation of tetravirus procapsids in vivo is linked to the onset of apoptosis in yeast cells. We propose that the reduction in pH required for tetraviral maturation may be the result of cytosolic acidification, which is associated with the early onset of programmed cell death in infected cells.
Collapse
Affiliation(s)
- Michele Tomasicchio
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, PO Box 94, Grahamstown 6140, South Africa
| | - Philip Arno Venter
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, PO Box 94, Grahamstown 6140, South Africa
| | | | | | - Rosemary Ann Dorrington
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, PO Box 94, Grahamstown 6140, South Africa
| |
Collapse
|
29
|
Abstract
Since the introduction of DDT in the 1940s, arthropod pest control has relied heavily upon chemical insecticides. However, the development of insect resistance, an increased awareness of the real and perceived environmental and health impacts of these chemicals, and the need for systems with a smaller environmental footprint has stimulated the search for new insecticidal compounds, novel molecular targets, and alternative control methods. In recent decades a variety of biocontrol methods employing peptidic or proteinaceous insect-specific toxins derived from microbes, plants and animals have been examined in the laboratory and field with varying results. Among the many interdependent factors involved with the production of a cost-effective pesticide--production expense, kill efficiency, environmental persistence, pest-specificity, pest resistance-development, public perception and ease of delivery--sprayable biopesticides have not yet found equal competitive footing with chemical counterparts. However, while protein/peptide-based biopesticides continue to have limitations, advances in the technology, particularly of genetically modified organisms as biopesticidal delivery systems, has continually progressed. This review highlights the varieties of delivery methods currently practiced, examining the strengths and weaknesses of each method.
Collapse
|
30
|
Zhou L, Zhang J, Wang X, Jiang H, Yi F, Hu Y. Expression and characterization of RNA-dependent RNA polymerase of Dendrolimus punctatus tetravirus. BMB Rep 2006; 39:571-7. [PMID: 17002878 DOI: 10.5483/bmbrep.2006.39.5.571] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dendrolimus punctatus tetravirus (DpTV) has been identified as a new member of the genus Omegatetravirus of the family Tetraviridae that may be related serologically to Nudaurelia capensis virus (NomegaV). To establish the function of DpTV RNA genome and to better understand the mechanism of viral replication, the putative RNA-dependent RNA polymerase (RdRp) domain has been cloned and expressed in Escherichia coli. The recombinant protein was purified on a Ni-chelating HisTrap affinity column and demonstrated to initiate viral RNA synthesis in a primer-independent manner but not by terminal nucleotidyle transferase activity in the presence of Mg2+ and RNA template. Mutation of the GDD to GAA interferes with the residues at the polymerase active site and metal ions, and thus renders the polymerase inactive.
Collapse
Affiliation(s)
- Liang Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, P R China
| | | | | | | | | | | |
Collapse
|
31
|
Boyapalle S, Pal N, Miller WA, Bonning BC. A glassy-winged sharpshooter cell line supports replication of Rhopalosiphum padi virus (Dicistroviridae). J Invertebr Pathol 2006; 94:130-9. [PMID: 17113099 DOI: 10.1016/j.jip.2006.09.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Revised: 09/18/2006] [Accepted: 09/26/2006] [Indexed: 11/28/2022]
Abstract
Rhopalosiphum padi virus (RhPV) (family Dicistroviridae; genus Cripavirus) is an icosahedral aphid virus with a 10kb positive-sense RNA genome. To study the molecular biology of RhPV, identification of a cell line that supports replication of the virus is essential. We screened nine cell lines derived from species within the Lepidoptera, Diptera and Hemiptera for susceptibility to RhPV following RNA transfection. We observed cytopathic effects (CPE) only in cell lines derived from hemipterans, specifically GWSS-Z10 cells derived from the glassy winged sharp shooter, Homalodisca coagulata and DMII-AM cells derived from the corn leaf hopper, Dalbulus maidis. Translation and appropriate processing of viral gene products, RNA replication and packaging of virus particles in the cytoplasm of GWSS-Z10 cells were examined by Western blot analysis, Northern blot hybridization and electron microscopy. Infectivity of the GWSS-Z10 cell derived-virus particles to the bird cherry-oat aphid, R. padi, was confirmed by RT-PCR and Western blot. The GWSS-Z10 cell line provides a valuable tool to investigate replication, structure and assembly of RhPV.
Collapse
Affiliation(s)
- Sandhya Boyapalle
- Department of Entomology, Iowa State University, 418 Science II, Ames, IA 50011-3222, USA
| | | | | | | |
Collapse
|
32
|
Maree HJ, van der Walt E, Tiedt FAC, Hanzlik TN, Appel M. Surface display of an internal His-tag on virus-like particles of Nudaurelia capensis ω virus (NωV) produced in a baculovirus expression system. J Virol Methods 2006; 136:283-8. [PMID: 16797733 DOI: 10.1016/j.jviromet.2006.05.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 05/14/2006] [Accepted: 05/16/2006] [Indexed: 11/17/2022]
Abstract
Nudaurelia capensis omega virus (NomegaV) is a member of the Tetraviridae, a family of small, icosahedral, non-enveloped, (+) sense single-stranded RNA insect viruses with T = 4 symmetry. NomegaV virus-like particles (VLPs), which are morphologically indistinguishable from native virions and capable of packaging heterologous RNA, may be produced in the baculovirus expression system. As a first step towards manipulating the tropism of tetraviral nanoparticles (Capsivectors), a (His)6-tag was inserted into the GH loop (between Ala 378 and Gly 379) of the surface-exposed Ig-like domain of NomegaV capsid protein (p70). His-tagged p70 produced in a baculovirus expression system self-assembled into omegaHis VLPs that exhibited similar morphological and RNA encapsidation properties as wild-type NomegaV VLPs produced in the same system. Two assays using paramagnetic pre-charged nickel beads confirmed that multiple affinity tags were present on the surface of omegaHis VLPs and were capable of binding. These results indicate that the GH loop is a suitable site for the retargeting of NomegaV particles for potential biotechnological applications.
Collapse
Affiliation(s)
- Hans J Maree
- Shimoda Biotech (Pty) Ltd., Greenacres, Port Elizabeth 6057, South Africa.
| | | | | | | | | |
Collapse
|
33
|
Abstract
Interest in insect small RNA viruses (SRVs) has grown slowly but steadily. A number of new viruses have been analyzed at the sequence level, adding to our knowledge of their diversity at the level of both individual virus species and families. In particular, a number of possible new virus families have emerged. This research has largely been driven by interest in their potential for pest control, as well as in their importance as the causal agents of disease in beneficial arthropods. At the same time, research into known viruses has made valuable contributions to our understanding of an emerging new field of central importance to molecular biology-the existence of RNA-based gene silencing, developmental control, and adaptive immune systems in eukaryotes. Subject to RNA-based adaptive immune responses in their hosts, viruses have evolved a variety of genes encoding proteins capable of suppressing the immune response. Such genes were first identified in plant viruses, but the first examples known from animal viruses were identified in insect RNA viruses. This chapter will address the diversity of insect SRVs, and attempts to harness their simplicity in the engineering of transgenic plants expressing viruses for resistance to insect pests. We also describe RNA interference and antiviral pathways identified in plants and animals, how they have led viruses to evolve genes capable of suppressing such adaptive immunity, and the problems presented by these pathways for the strategy of expressing viruses in transgenic plants. Approaches for countering these problems are also discussed.
Collapse
|
34
|
Taylor DJ, Speir JA, Reddy V, Cingolani G, Pringle FM, Ball LA, Johnson JE. Preliminary x-ray characterization of authentic providence virus and attempts to express its coat protein gene in recombinant baculovirus. Arch Virol 2005; 151:155-65. [PMID: 16211330 DOI: 10.1007/s00705-005-0637-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Accepted: 04/01/2005] [Indexed: 11/27/2022]
Abstract
Providence Virus (PrV) is a non-envoloped, T = 4 icosahedral beta-tetravirus that undergoes autocatalytic cleavage of its coat protein precursor after capsid assembly. This is also a well characterized function of Nudaurelia capensis omega virus (NomegaV), a member of the related omegatetraviruses, whose x-ray structure has been determined. Virus-like particle (VLP) production of PrV in a recombinant baculovirus expression system was attempted to obtain high VLP yields for comparison of structural and autocatalytic active site properties between these virus groups. This resulted in insoluble aggregates of PrV coat protein even though NomegaV VLPs have been successfully produced in the same system. Betatetraviruses may be more dependent on compartmentalization and availability of their full-length genome for proper folding and assembly. However, crystals were grown of limited quantities of authentic PrV produced in cell culture and a partial X-ray data set collected to 3.8 A resolution. The virus particle position and orientation in the unit cell was determined by space group consideration and rotation function analysis. A phasing model, based on NomegaV, was developed to initiate the structure solution of PrV.
Collapse
Affiliation(s)
- D J Taylor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Taylor DJ, Johnson JE. Folding and particle assembly are disrupted by single-point mutations near the autocatalytic cleavage site of Nudaurelia capensis omega virus capsid protein. Protein Sci 2005; 14:401-8. [PMID: 15659373 PMCID: PMC2253427 DOI: 10.1110/ps.041054605] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Protein subunits of several RNA viruses are known to undergo post-assembly, autocatalytic cleavage that is required for infectivity. Nudaurelia capensis omega virus (Nomega V) is one of the simplest viruses to undergo an autocatalytic cleavage, making it an excellent model to understand both assembly and the mechanism of autoproteolysis. Heterologous expression of the coat protein gene of Nomega V in a baculovirus system results in the spontaneous assembly of virus-like particles (VLPs) that remain uncleaved when purified at neutral pH. After acidification to pH 5.0, the VLPs autocatalytically cleave at residue 570, providing an in vitro control of the cleavage. The crystal structure of Nomega V displays three residues near the scissile bond that were candidates for participation in the reaction. These were changed by site-directed mutagenesis to conservative and nonconservative residues and the products analyzed. Even conservative changes at the three residues dramatically reduced cleavage when the subunits assembled properly. Unexpectedly, we discovered that these residues are not only critical to the kinetics of Nomega V autoproteolysis, but are also necessary for proper folding of subunits and, ultimately, assembly of Nomega V VLPs.
Collapse
Affiliation(s)
- Derek J Taylor
- Department of Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
36
|
Yi F, Zhang J, Yu H, Liu C, Wang J, Hu Y. Isolation and identification of a new tetravirus from Dendrolimus punctatus larvae collected from Yunnan Province, China. J Gen Virol 2005; 86:789-796. [PMID: 15722541 DOI: 10.1099/vir.0.80543-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this study, Dendrolimus punctatus tetravirus (DpTV) has been identified as a new member of the genus Omegatetravirus of the family Tetraviridae that may be related serologically to Nudaurelia capensis omega virus (NomegaV). DpTV particles are isometric, with a diameter of about 40 nm and a buoyant density of 1.281 g cm(-3) in CsCl. The virus has two capsid proteins (of 62 500 and 6800 Da) and two single-stranded RNA molecules (RNA1 and RNA2), which are 5492 and 2490 nt long, respectively. RNA1 has a large open reading frame (ORF) encoding a polypeptide of 180 kDa; RNA2 contains two partially overlapping ORFs encoding polypeptides of 17 and 70 kDa. The 180 kDa protein, which contains consensus motifs of a putative methyltransferase, helicase and RNA-dependent RNA polymerase, shows significant similarity to those of other tetraviruses. The 17 kDa protein is a PEST (Pro/Glu/Ser/Thr) protein of unknown function. The 70 kDa protein is the coat protein precursor and is predicted to be cleaved at an Asn-Phe site located after residue 570. The 70 kDa protein shows 86 and 66 % identity to its homologues in NomegaV and Helicoverpa armigera stunt virus, respectively. Secondary-structure analysis revealed that the RNAs of DpTV have tRNA-like structures at their 3' termini.
Collapse
Affiliation(s)
- Fuming Yi
- Laboratory of Insect Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jiamin Zhang
- Laboratory of Insect Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Haiyang Yu
- Laboratory of Insect Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Chuanfeng Liu
- Laboratory of Insect Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Junping Wang
- Laboratory of Insect Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yuanyang Hu
- Laboratory of Insect Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
37
|
Grasela JJ, McIntosh AH. Application of inter-simple sequence repeats to insect cell lines: identification at the clonal and tissue-specific level. In Vitro Cell Dev Biol Anim 2004; 39:353-63. [PMID: 15038778 DOI: 10.1290/1543-706x(2003)039<0353:aoisrt>2.0.co;2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Inter-simple sequence repeat (ISSR) primers designed to anneal to microsatellites were used to obtain deoxyribonucleic acid (DNA) fingerprint profiles to distinguish among 16 established insect cell lines derived from an assortment of lepidopteran, dipteran, and coleopteran species. Three different levels of cell line comparison were made: (1) between parents and their clones, (2) among cell lines derived from different tissues from the same species, and (3) among cell lines derived from different insect species. Of the 16 repeat oligonucleotide primers used in this study, nine primers generated several unique markers to distinguish between parental cell lines and their clones. Four of the 16 primers also generated DNA profiles with a number of unique bands, enabling the distinction among cell lines derived from specific tissues from the same species. In addition, ISSR-generated DNA profiles provided the greatest number of unique markers to distinguish easily among insect cell lines derived from different species.
Collapse
Affiliation(s)
- James J Grasela
- Biological Control of Insects Research Laboratory, Agricultural Research Service, U.S. Department of Agriculture, 1503 S. Providence Road, Research Park, Columbia, Missouri 65203-3535, USA.
| | | |
Collapse
|
38
|
Goodman CL, Wang AA, Nabli H, McIntosh AH, Wittmeyer JL, Grasela JJ. DEVELOPMENT AND PARTIAL CHARACTERIZATION OF HELIOTHINE CELL LINES FROM EMBRYONIC AND DIFFERENTIATED TISSUES. ACTA ACUST UNITED AC 2004; 40:89-94. [PMID: 15311972 DOI: 10.1290/1543-706x(2004)040<0089:dapcoh>2.0.co;2] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The goal of this study was to generate cell lines from a variety of insect tissues that could be useful for developing in vitro assays with tissue-specific properties. In this article, we describe the establishment of new cell cultures from differentiated (primarily neural) and undifferentiated tissues (primarily embryonic) and their initial characterization. Cell lines were established from the following tissues of the budworm, Heliothis virescens, and the bollworm, Helicoverpa zea: larval ventral nerve cords (4 lines), larval midguts (1 line), adult ovaries (1 line), and embryonic tissues (11 lines). Cell lines were primarily characterized by morphological examination and polymerase chain reaction (PCR) (both deoxyribonucleic acid amplification fingerprinting and inter-simple sequence repeats PCR).
Collapse
Affiliation(s)
- Cynthia L Goodman
- Biological Control of Insects Research Laboratory, United States Department of Agriculture, Agricultural Research Service, Columbia, Missouri 65203-3535, USA.
| | | | | | | | | | | |
Collapse
|