1
|
Matsumoto S, Wynyard S, Giovannangelo M, Hemdev SL, Abalovich A, Carulla ME, Wechsler CJ. Long-term follow-up for the microbiological safety of clinical microencapsulated neonatal porcine islet transplantation. Xenotransplantation 2020; 27:e12631. [PMID: 32691966 DOI: 10.1111/xen.12631] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 12/13/2022]
Abstract
Enrollment in three clinical trials for microencapsulated neonatal porcine islet xenotransplantation to treat unstable type 1 diabetic patients concluded in November 2014. In this study, we report a long-term follow-up assessment of microbiological safety for these trials. Thirty-eight type 1 diabetic patients received microencapsulated neonatal porcine islet transplants. Islets were isolated and prepared from the pancreata of New Zealand (NZ) based designated pathogen-free (DPF) pigs under GMP conditions. Blood samples of thirty-six patients were collected from 5 to 7 years post-first transplant and were tested by real-time PCR for porcine circovirus-1 (PCV1), porcine circovirus-2 (PCV2), porcine lymphotropic herpesvirus 1 (PLHV1), porcine lymphotropic herpesvirus 2 (PLHV2), and porcine cytomegalovirus (PCMV). To detect porcine endogenous retrovirus (PERV), specific real-time PCR and product enhanced reserve transcriptase (PERT) assays were performed. PCV1, PCV2, PLHV1, PLHV2, PCMV, PERV, and reverse transcriptase (RT) activity remained undetected in all tested samples indicating no viral transmission. Except for one patient that died due to complications unrelated to the transplant, there were no significant adverse events. Microbiological safety was demonstrated for microencapsulated neonatal porcine islet xenotransplantation from 5-7 years post-transplantation consistent with earlier reports.
Collapse
Affiliation(s)
- Shinichi Matsumoto
- Diatranz Otsuka Ltd, Auckland, New Zealand.,Otsuka Pharmaceutical Factory Inc., Naruto, Japan
| | | | | | | | | | | | | |
Collapse
|
2
|
Abstract
Retroviruses infect a broad range of vertebrate hosts that includes amphibians, reptiles, fish, birds and mammals. In addition, a typical vertebrate genome contains thousands of loci composed of ancient retroviral sequences known as endogenous retroviruses (ERVs). ERVs are molecular remnants of ancient retroviruses and proof that the ongoing relationship between retroviruses and their vertebrate hosts began hundreds of millions of years ago. The long-term impact of retroviruses on vertebrate evolution is twofold: first, as with other viruses, retroviruses act as agents of selection, driving the evolution of host genes that block viral infection or that mitigate pathogenesis, and second, through the phenomenon of endogenization, retroviruses contribute an abundance of genetic novelty to host genomes, including unique protein-coding genes and cis-acting regulatory elements. This Review describes ERV origins, their diversity and their relationships to retroviruses and discusses the potential for ERVs to reveal virus-host interactions on evolutionary timescales. It also describes some of the many examples of cellular functions, including protein-coding genes and regulatory elements, that have evolved from ERVs.
Collapse
|
3
|
McGregor CGA, Takeuchi Y, Scobie L, Byrne G. PERVading strategies and infectious risk for clinical xenotransplantation. Xenotransplantation 2019; 25:e12402. [PMID: 30264876 PMCID: PMC6174873 DOI: 10.1111/xen.12402] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 04/16/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Christopher G A McGregor
- Institute of Cardiovascular Science, University College London, London, UK.,Department of Surgery, University of Alabama Birmingham, Birmingham, AL, USA.,Department of Cardiovascular Surgery, Mayo Clinic, Rochester, MN, USA
| | - Yasu Takeuchi
- Division of Infection and Immunity, University College London, London, UK.,Division of Advanced Therapies, National Institute for Biological Standards and Control, South Mims, UK
| | - Linda Scobie
- School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Guerard Byrne
- Institute of Cardiovascular Science, University College London, London, UK.,Department of Surgery, University of Alabama Birmingham, Birmingham, AL, USA.,Department of Cardiovascular Surgery, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
4
|
Denner J, Scobie L, Schuurman HJ. Is it currently possible to evaluate the risk posed by PERVs for clinical xenotransplantation? Xenotransplantation 2018; 25:e12403. [DOI: 10.1111/xen.12403] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 04/13/2018] [Indexed: 12/23/2022]
Affiliation(s)
| | - Linda Scobie
- School of Health and Life Sciences; Glasgow Caledonian University; Glasgow UK
| | | |
Collapse
|
5
|
Łopata K, Wojdas E, Nowak R, Łopata P, Mazurek U. Porcine Endogenous Retrovirus (PERV) - Molecular Structure and Replication Strategy in the Context of Retroviral Infection Risk of Human Cells. Front Microbiol 2018; 9:730. [PMID: 29755422 PMCID: PMC5932395 DOI: 10.3389/fmicb.2018.00730] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 03/28/2018] [Indexed: 12/28/2022] Open
Abstract
The xenotransplantation of porcine tissues may help overcome the shortage of human organs for transplantation. However, there are some concerns about recipient safety because the risk of porcine endogenous retrovirus (PERV) transmission to human cells remains unknown. Although, to date, no PERV infections have been noted in vivo, the possibility of such infections has been confirmed in vitro. Better understanding of the structure and replication cycle of PERVs is a prerequisite for determining the risk of infection and planning PERV-detection strategies. This review presents the current state of knowledge about the structure and replication cycle of PERVs in the context of retroviral infection risk.
Collapse
Affiliation(s)
- Krzysztof Łopata
- Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Emilia Wojdas
- Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland.,Department of Instrumental Analysis, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Roman Nowak
- Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Paweł Łopata
- Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Urszula Mazurek
- Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
6
|
How Active Are Porcine Endogenous Retroviruses (PERVs)? Viruses 2016; 8:v8080215. [PMID: 27527207 PMCID: PMC4997577 DOI: 10.3390/v8080215] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 07/04/2016] [Accepted: 07/22/2016] [Indexed: 01/12/2023] Open
Abstract
Porcine endogenous retroviruses (PERVs) represent a risk factor if porcine cells, tissues, or organs were to be transplanted into human recipients to alleviate the shortage of human transplants; a procedure called xenotransplantation. In contrast to human endogenous retroviruses (HERVs), which are mostly defective and not replication-competent, PERVs are released from normal pig cells and are infectious. PERV-A and PERV-B are polytropic viruses infecting cells of several species, among them humans; whereas PERV-C is an ecotropic virus infecting only pig cells. Virus infection was shown in co-culture experiments, but also in vivo, in the pig, leading to de novo integration of proviruses in certain organs. This was shown by measurement of the copy number per cell, finding different numbers in different organs. In addition, recombinations between PERV-A and PERV-C were observed and the recombinant PERV-A/C were found to be integrated in cells of different organs, but not in the germ line of the animals. Here, the evidence for such in vivo activities of PERVs, including expression as mRNA, protein and virus particles, de novo infection and recombination, will be summarised. These activities make screening of pigs for provirus number and PERV expression level difficult, especially when only blood or ear biopsies are available for analysis. Highly sensitive methods to measure the copy number and the expression level will be required when selecting pigs with low copy number and low expression of PERV as well as when inactivating PERVs using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease (CRISPR/Cas) technology.
Collapse
|
7
|
Choi J, Kim HM, Yoon JK, Cho Y, Lee HJ, Kim KC, Kim CK, Kim GW, Kim YB. Identification of Porcine Endogenous Retrovirus (PERV) packaging sequence and development of PERV packaging viral vector system. J Microbiol 2015; 53:348-53. [PMID: 25935307 DOI: 10.1007/s12275-015-5134-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 04/09/2015] [Accepted: 04/13/2015] [Indexed: 12/11/2022]
Abstract
Studies of the retroviruses have focused on the specific interaction of the nucleocapsid protein with a packaging signal in the viral RNA as important for this selectivity, but the packaging signal in porcine endogenous retrovirus (PERV) has not been defined. Herein, we identified and analyzed this packaging signal in PERV and found hairpin structures with conserved tetranucleotides in their loops and nucleocapsid recognition sequences; both of which are key elements in the viral packaging signal of MLV. We evaluated packaging efficiency of sequence variants isolated from viral and proviral integrated genomes. All viral packaging sequences (Ψ) were identical, while five distinct packaging sequences were identified from proviral sources. One proviral sequence (Ψ1) was identical to that of the viral Ψ and had the highest packaging efficiency. Three variants (Ψ2, Ψ3, Ψ4) maintained key elements of the viral packaging signal, but had nucleotide replacements and consequently demonstrated reduced packaging efficiency. Despite of the same overall hairpin structure, the proviral variant (Ψ5) had only one GACG sequence in the hairpin loop and showed the lowest packaging efficiency other than ∆Ψ, in which the essential packaging sequence was removed. This result, thus, defined the packaging sequences in PERV and emphasized the importance of nucleotide sequence and RNA structure in the determination of packaging efficiency. In addition, we demonstrate efficient infection and gene expression from the PERV based viral vector, which may serve as a novel alternative to current retroviral expression systems.
Collapse
Affiliation(s)
- Jiwon Choi
- Department of Bioindustrial Technologies, Konkuk University, Seoul, 143-701, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Schuurman HJ, Patience C. Screening pigs for xenotransplantation: prevalence and expression of porcine endogenous retroviruses in Göttingen minipigs. Xenotransplantation 2013; 20:135-7. [PMID: 23611434 DOI: 10.1111/xen.12039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Denner J, Tönjes RR. Infection barriers to successful xenotransplantation focusing on porcine endogenous retroviruses. Clin Microbiol Rev 2012; 25:318-43. [PMID: 22491774 PMCID: PMC3346299 DOI: 10.1128/cmr.05011-11] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Xenotransplantation may be a solution to overcome the shortage of organs for the treatment of patients with organ failure, but it may be associated with the transmission of porcine microorganisms and the development of xenozoonoses. Whereas most microorganisms may be eliminated by pathogen-free breeding of the donor animals, porcine endogenous retroviruses (PERVs) cannot be eliminated, since these are integrated into the genomes of all pigs. Human-tropic PERV-A and -B are present in all pigs and are able to infect human cells. Infection of ecotropic PERV-C is limited to pig cells. PERVs may adapt to host cells by varying the number of LTR-binding transcription factor binding sites. Like all retroviruses, they may induce tumors and/or immunodeficiencies. To date, all experimental, preclinical, and clinical xenotransplantations using pig cells, tissues, and organs have not shown transmission of PERV. Highly sensitive and specific methods have been developed to analyze the PERV status of donor pigs and to monitor recipients for PERV infection. Strategies have been developed to prevent PERV transmission, including selection of PERV-C-negative, low-producer pigs, generation of an effective vaccine, selection of effective antiretrovirals, and generation of animals transgenic for a PERV-specific short hairpin RNA inhibiting PERV expression by RNA interference.
Collapse
|
10
|
Quereda JJ, Herrero-Medrano JM, Abellaneda JM, García-Nicolás O, Martínez-Alarcón L, Pallarés FJ, Ramírez P, Muñoz A, Ramis G. Porcine endogenous retrovirus copy number in different pig breeds is not related to genetic diversity. Zoonoses Public Health 2012; 59:401-7. [PMID: 22348392 DOI: 10.1111/j.1863-2378.2012.01467.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The risk of zoonoses is a major obstacle to xenotransplantation. Porcine endogenous retrovirus (PERV) poses a potential risk of zoonotic infection, and its control is a prerequisite for the development of clinical xenotransplantation. The copy number of PERV varies among different breeds, and it has been suggested that the PERV integrations number is increased by inbreeding. The purpose of this study was (i) to examine the copy number of PERV in different Spanish pig breeds, Spanish wild boar and commercial cross-bred pigs from five different farms and genetic background (CCP1-CCP5) and (ii) to investigate the correlation between PERV copy number and the genetic background of the pigs in order to improve the selection of pigs for xenotransplantation. PERV copy number was determined by quantitative, real-time polymerase chain reactions. Thirty-four microsatellite markers were genotyped to describe the genetic diversity within populations (observed and expected heterozygosities, Ho and He, respectively) and the inbreeding coefficient (F). Pearson's correlation coefficient was used to determine the relationship between PERV copy number and Ho, He and F. The copy number of PERV among different pig breeds was estimated to range between three (CCP1) and 43 copies (Iberian Pig). Statistical differences were found among the studied populations concerning PERV copy number. No correlation was found between the PERV copy number and the heterozygosity (calculated at an individual level or at a population level) or the inbreeding coefficient of each population. Our data suggest that pigs inbreeding does not increase PERV copy number and support the idea that careful selection of pigs for organ donation with reduced PERV copy number will minimize the risk of retrovirus transmission to the human receptor.
Collapse
Affiliation(s)
- J J Quereda
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de Murcia, Murcia, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Menéndez-Arias L. Evidence and controversies on the role of XMRV in prostate cancer and chronic fatigue syndrome. Rev Med Virol 2010; 21:3-17. [PMID: 21294212 DOI: 10.1002/rmv.673] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 10/13/2010] [Accepted: 10/13/2010] [Indexed: 12/11/2022]
Abstract
The recent discovery of xenotropic murine leukaemia virus-related virus (XMRV) in prostate cancer tissues and in the blood of individuals suffering from chronic fatigue syndrome has attracted considerable interest. However, the relevance and significance of XMRV to human disease remain unclear, since the association has not been confirmed in other studies. XMRV is the first gammaretrovirus to be found in humans. XMRV and murine leukaemia viruses share similar structures and genomic organisation. Human restriction factors such as APOBEC3 or tetherin inhibit XMRV replication. Although XMRV induces low rates of transformation in cell culture, it might be able to induce cancer by low-frequency insertional activation of oncogenes or through the generation of highly active transforming viruses. A preference for regulatory regions of transcriptional active genes has been observed after a genomic-wide analysis of XMRV integration sites. Genes related to carcinogenesis and androgen signalling have been identified in the vicinity of integration sites. The XMRV genome contains a glucocorticoid responsive element, and androgens could modulate viral replication in the prostate. Evidence supporting the involvement of XMRV in chronic fatigue syndrome is still very weak, and needs further confirmation and validation. Currently approved anti-retroviral drugs such as zidovudine, tenofovir and raltegravir are efficient inhibitors of XMRV replication in vitro. These drugs might be useful to treat XMRV infection in humans. The identification of XMRV has potentially serious health implications for the implementation of novel techniques including gene therapy or xenotransplantation, while raising concerns on the need for screening donated blood to prevent transmission through transfusion.
Collapse
Affiliation(s)
- Luis Menéndez-Arias
- Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
12
|
Denner J. Detection of a gammaretrovirus, XMRV, in the human population: open questions and implications for xenotransplantation. Retrovirology 2010; 7:16. [PMID: 20219088 PMCID: PMC2841096 DOI: 10.1186/1742-4690-7-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Accepted: 03/10/2010] [Indexed: 11/10/2022] Open
Abstract
XMRV (xenotropic murine leukaemia virus-related virus) is a gammaretrovirus that has been detected in human patients with prostate carcinoma, chronic fatigue syndrome (CFS) and also in a small percentage of clinically healthy individuals. It is not yet clear whether the distribution of this virus is primarily limited to the USA or whether it is causally associated with human disease. If future investigations confirm a broad distribution of XMRV and its association with disease, this would have an impact on xenotransplantation of porcine tissues and organs. Xenotransplantation is currently being developed to compensate for the increasing shortage of human material for the treatment of tissue and organ failure but could result in the transmission of porcine pathogens. Maintenance of pathogen-free donor animals will dramatically reduce this risk, but some of the porcine endogenous retroviruses (PERVs) found in the genome of all pigs, can produce infectious virus and infect cultured human cells. PERVs are closely related to XMRV so it is critical to develop tests that discriminate between them. Since recombination can occur between viruses, and recombinants can exhibit synergism, recipients should be tested for XMRV before xenotransplantation.
Collapse
Affiliation(s)
- Joachim Denner
- Retrovirus induced immunosuppression, Robert Koch Institute, Nordufer 20, D-13353 Berlin, Germany.
| |
Collapse
|
13
|
|
14
|
Louz D, Bergmans HE, Loos BP, Hoeben RC. Reappraisal of biosafety risks posed by PERVs in xenotransplantation. Rev Med Virol 2008; 18:53-65. [PMID: 17987669 DOI: 10.1002/rmv.559] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Donor materials of porcine origin could potentially provide an alternative source of cells, tissues or whole organs for transplantation to humans, but is hampered by the health risk posed by infection with porcine viruses. Although pigs can be bred in such a way that all known exogenous microorganisms are eliminated, this is not feasible for all endogenous pathogens, such as the porcine endogenous retroviruses (PERVs) which are present in the germline of pigs as proviruses. Upon transplantation, PERV proviruses would be transferred to the human recipient along with the xenograft. If xenotransplantation stimulates or facilitates replication of PERVs in the new hosts, a risk exists for adaptation of the virus to humans and subsequent spread of these viruses. In a worst-case scenario, this might result in the emergence of a new viral disease. Although the concerns for disease potential of PERVs are easing, only limited pre-clinical and clinical data are available. Small-scale, well-designed and carefully controlled clinical trials would provide more evidence on the safety of this approach and allow a better appreciation of the risks involved. It is therefore important to have a framework of protective measures and monitoring protocols in place to facilitate such initially small scale clinical trials. This framework will raise ethical and social considerations regarding acceptability.
Collapse
Affiliation(s)
- Derrick Louz
- GMO office, Substances Expertise Centre of the National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.
| | | | | | | |
Collapse
|
15
|
Shi M, Wang X, De Clercq E, Takao S, Baba M. Selective inhibition of porcine endogenous retrovirus replication in human cells by acyclic nucleoside phosphonates. Antimicrob Agents Chemother 2007; 51:2600-4. [PMID: 17470654 PMCID: PMC1913248 DOI: 10.1128/aac.00212-07] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several anti-human immunodeficiency virus type 1 reverse transcriptase inhibitors were evaluated for their antiviral activities against porcine endogenous retrovirus in human cells. Among the test compounds, zidovudine was found to be the most active. The order of potency was zidovudine > phosphonylmethoxyethoxydiaminopyrimidine = phosphonylmethoxypropyldiaminopurine > tenofovir > or = adefovir > stavudine.
Collapse
Affiliation(s)
- Minyi Shi
- Frontier Science Research Center, Kagoshima University, Kagoshima 890-8544, Japan
| | | | | | | | | |
Collapse
|
16
|
Martina Y, Kurian S, Cherqui S, Evanoff G, Wilson C, Salomon DR. Pseudotyping of porcine endogenous retrovirus by xenotropic murine leukemia virus in a pig islet xenotransplantation model. Am J Transplant 2005; 5:1837-47. [PMID: 15996230 DOI: 10.1111/j.1600-6143.2005.00978.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The potential of porcine endogenous retrovirus (PERV) as a human pathogen, particularly as a public health risk, is a major concern for xenotransplantation. In vitroPERV transmission to human cells is well established. Evidence from human/pig hematopoietic chimeras in immunodeficient mice suggests PERV transmission from pig to human cells in vivo. However, recently Yang et al. demonstrated in such a model that PERV-C, a nonhuman-tropic class, could be transmitted via pseudotyping by xenotropic murine leukemia virus (X-MLV). We developed a mouse pig islet xenotransplant model, where pig and human cells are located in physically separate compartments, to directly assess PERV transmission from a functional pig xenograft. X-MLV efficiently pseudotypes all three classes of PERV, including PERV-A and -B that are known to productively infect human cell lines and PERV-C that is normally not infectious for human cells. Pseudotyping also extends PERV's natural tropism to nonpermissive, nonhuman primate cells. X-MLV is activated locally by the surgical procedure involved in the tissue transplants. Thus, the presence and activation of endogenous X-MLV in immunodeficient mice limits the clinical significance of previous reports of in vivo PERV transmission from pig tissues to human cells.
Collapse
Affiliation(s)
- Yuri Martina
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA
| | | | | | | | | | | |
Collapse
|
17
|
Bartosch B, Stefanidis D, Myers R, Weiss R, Patience C, Takeuchi Y. Evidence and consequence of porcine endogenous retrovirus recombination. J Virol 2004; 78:13880-90. [PMID: 15564496 PMCID: PMC533951 DOI: 10.1128/jvi.78.24.13880-13890.2004] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genetic nature and biological effects of recombination between porcine endogenous retroviruses (PERV) were studied. An infectious molecular clone was generated from a high-titer, human-tropic PERV isolate, PERV-A 14/220 (B. A. Oldmixon, et al. J. Virol. 76:3045-3048, 2002; T. A. Ericsson et al. Proc. Natl. Acad. Sci. USA 100:6759-6764, 2003). To analyze this sequence and 15 available full-length PERV nucleotide sequences, we developed a sequence comparison program, LOHA(TM) to calculate local sequence homology between two sequences. This analysis determined that PERV-A 14/220 arose by homologous recombination of a PERV-C genome replacing an 850-bp region around the pol-env junction with that of a PERV-A sequence. This 850-bp PERV-A sequence encompasses the env receptor binding domain, thereby conferring a wide host range including human cells. In addition, we determined that multiple regions derived from PERV-C are responsible for the increased infectious titer of PERV-A 14/220. Thus, a single recombination event may be a fast and effective way to generate high-titer, potentially harmful PERV. Further, local homology and phylogenetic analyses between 16 full-length sequences revealed evidence for other recombination events in the past that give rise to other PERV genomes that possess the PERV-A, but not the PERV-B, env gene. These results indicate that PERV-A env is more prone to recombination with heterogeneous backbone genomes than PERV-B env. Such recombination events that generate more active PERV-A appear to occur in pigs rather frequently, which increases the potential risk of zoonotic PERV transmission. In this context, pigs lacking non-human-tropic PERV-C would be more suitable as donor animals for clinical xenotransplantation.
Collapse
Affiliation(s)
- Birke Bartosch
- Wohl Virion Centre, Division of Infection of Immunity, University College London, 46 Cleveland St., London W1T 4JF, United Kingdom
| | | | | | | | | | | |
Collapse
|
18
|
Binette TM, Seeberger KL, Lyon JG, Rajotte RV, Korbutt GS. Porcine endogenous retroviral nucleic acid in peripheral tissues is associated with migration of porcine cells post islet transplant. Am J Transplant 2004; 4:1051-60. [PMID: 15196061 DOI: 10.1111/j.1600-6143.2004.00460.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Porcine islets represent an alternative source of insulin-producing tissue, however, porcine endogenous retrovirus (PERV) remains a concern. In this study, SCID mice were transplanted with nonencapsulated (non-EC), microencapsulated (EC) or macroencapsulated (in a TheraCyte trade mark device) neonatal porcine islets (NPIs), and peripheral tissues were screened for presence of viral DNA and mRNA. To understand the role of an intact immune system in PERV incidence, mice with established NPI grafts were reconstituted with splenocytes. Peripheral tissues were screened for PERV and porcine DNA using PCR. Tissues with positive DNA were analyzed for PERV mRNA using RT-PCR. No significant difference was observed between non-EC and EC transplants regarding presence of PERV or porcine-specific DNA or mRNA. In reconstituted animals, little PERV or porcine DNA, and no PERV mRNA was detected. No PERV or porcine-specific DNA was observed in animals implanted with a TheraCyte trade mark device. In conclusion, an intact immune system significantly lowered the presence of PERV. Microencapsulation of islets did not alter PERV presence, however, macroencapsulation in the TheraCyte device did. Lower PERV incidence coincided with lower porcine DNA in peripheral tissues, linking the presence of PERV to migration of porcine cells.
Collapse
Affiliation(s)
- Tanya M Binette
- Surgical-Medical Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
19
|
|
20
|
Buhler L. Xenotransplantation literature update. January-October, 2003. Xenotransplantation 2004; 11:3-10. [PMID: 14962287 DOI: 10.1046/j.1399-3089.2003.00110.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Leo Buhler
- Department of Surgery, University Hospital Geneva, Geneva, Switzerland.
| |
Collapse
|