1
|
The effects of reduced ambient lighting on lens compensation in infant rhesus monkeys. Vision Res 2021; 187:14-26. [PMID: 34144362 DOI: 10.1016/j.visres.2021.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/21/2021] [Accepted: 05/31/2021] [Indexed: 11/22/2022]
Abstract
Although reduced ambient lighting (~50 lx) does not increase the degree of form-deprivation myopia (FDM) in chickens or infant monkeys, it does reduce the probability that monkeys will recover from FDM and that the normal age-dependent reduction in hyperopia will occur in monkeys reared with unrestricted vision. These findings suggest that low ambient lighting levels affect the regulatory mechanism responsible for emmetropization. To study this issue, infant rhesus monkeys (age ~ 24 days) were reared under dim light (55 ± 9 lx) with monocular -3D (dim-light lens-induced myopia, DL-LIM, n = 8) or +3D spectacle lenses (dim-light lens-induced hyperopia, DL-LIH, n = 7) until approximately 150 days of age. Refractive errors, ocular parameters and sub-foveal choroidal thickness were measured periodically and compared with normal-light-reared, lens-control monkeys (NL-LIM, n = 16; NL-LIH, n = 7). Dim light rearing significantly attenuated the degree of compensatory anisometropias in both the DL-LIM (-0.63 ± 0.77D vs. -2.11 ± 1.10D in NL-LIM) and DL-LIH treatment groups (-0.18 ± 1.93D vs. +1.71 ± 0.39D in NL-LIH). These effects came about because the treated and fellow control eyes had a lower probability of responding appropriately to the eye's effective refractive state. Vision-induced interocular differences in choroidal thickness were only observed in monkeys that exhibited compensating refractive changes, suggesting that failures in detecting the relative magnitude of optical errors underlay the abnormal refractive responses. Our findings suggest that low ambient lighting levels reduce the efficacy of the vision-dependent mechanisms that regulate refractive development.
Collapse
|
2
|
She Z, Hung LF, Arumugam B, Beach KM, Smith EL. The development of and recovery from form-deprivation myopia in infant rhesus monkeys reared under reduced ambient lighting. Vision Res 2021; 183:106-117. [PMID: 33799131 DOI: 10.1016/j.visres.2021.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 12/23/2022]
Abstract
Although reduced ambient lighting ("dim" light) can cause myopia in emmetropizing chicks, it does not necessarily lead to myopic changes in emmetropizing rhesus monkeys. Because myopia is rarely spontaneous, a question remained whether dim light would hasten the progression of visually induced myopia. To determine the effects of dim light on the development of and recovery from form-deprivation myopia (FDM), seven 3-week-old infant rhesus monkeys were reared under dim light (mean ± SD = 55 ± 9 lx) with monocular diffuser spectacles until ~154 days of age, then maintained in dim light with unrestricted vision until ~337 days of age to allow for recovery. Refractive errors, corneal powers, ocular axial dimensions and sub-foveal choroidal thicknesses were measured longitudinally and compared to those obtained from form-deprived monkeys reared under typical laboratory lighting (504 ± 168 lx). Five of the seven subjects developed FDMs that were similar to those observed among their normal-light-reared counterparts. The average degree of form-deprivation-induced myopic anisometropia did not differ significantly between dim-light subjects (-3.88 ± 3.26D) and normal-light subjects (-4.45 ± 3.75D). However, three of the five dim-light subjects that developed obvious FDM failed to exhibit any signs of recovery and the two monkeys that were isometropic at the end of the treatment period manifest abnormal refractive errors during the recovery period. All refractive changes were associated with alterations in vitreous chamber elongation rates. It appears that dim light is not a strong myopiagenic stimulus by itself, but it can impair the optical regulation of refractive development in primates.
Collapse
Affiliation(s)
- Zhihui She
- College of Optometry, University of Houston, Houston, TX, United States
| | - Li-Fang Hung
- College of Optometry, University of Houston, Houston, TX, United States; Brien Holden Vision Institute, Sydney, NSW, Australia
| | - Baskar Arumugam
- College of Optometry, University of Houston, Houston, TX, United States; Former employee of University of Houston, Houston, TX, United States
| | - Krista M Beach
- College of Optometry, University of Houston, Houston, TX, United States
| | - Earl L Smith
- College of Optometry, University of Houston, Houston, TX, United States; Brien Holden Vision Institute, Sydney, NSW, Australia.
| |
Collapse
|
3
|
Smith EL, Hung LF, She Z, Beach K, Ostrin LA, Jong M. Topically instilled caffeine selectively alters emmetropizing responses in infant rhesus monkeys. Exp Eye Res 2021; 203:108438. [PMID: 33428866 DOI: 10.1016/j.exer.2021.108438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/30/2020] [Accepted: 01/02/2021] [Indexed: 11/30/2022]
Abstract
Oral administration of the adenosine receptor (ADOR) antagonist, 7-methylxanthine (7-MX), reduces both form-deprivation and lens-induced myopia in mammalian animal models. We investigated whether topically instilled caffeine, another non-selective ADOR antagonist, retards vision-induced axial elongation in monkeys. Beginning at 24 days of age, a 1.4% caffeine solution was instilled in both eyes of 14 rhesus monkeys twice each day until the age of 135 days. Concurrent with the caffeine regimen, the monkeys were fitted with helmets that held either -3 D (-3D/pl caffeine, n = 8) or +3 D spectacle lenses (+3D/pl caffeine, n = 6) in front of their lens-treated eyes and zero-powered lenses in front of their fellow-control eyes. Refractive errors and ocular dimensions were measured at baseline and periodically throughout the lens-rearing period. Control data were obtained from 8 vehicle-treated animals also reared with monocular -3 D spectacles (-3D/pl vehicle). In addition, historical comparison data were available for otherwise untreated lens-reared controls (-3D/pl controls, n = 20; +3D/pl controls, n = 9) and 41 normal monkeys. The vehicle controls and the untreated lens-reared controls consistently developed compensating axial anisometropias (-3D/pl vehicle = -1.44 ± 1.04 D; -3D/pl controls = -1.85 ± 1.20 D; +3D/pl controls = +1.92 ± 0.56 D). The caffeine regime did not interfere with hyperopic compensation in response to +3 D of anisometropia (+1.93 ± 0.82 D), however, it reduced the likelihood that animals would compensate for -3 D of anisometropia (+0.58 ± 1.82 D). The caffeine regimen also promoted hyperopic shifts in both the lens-treated and fellow-control eyes; 26 of the 28 caffeine-treated eyes became more hyperopic than the median normal monkey (mean (±SD) relative hyperopia = +2.27 ± 1.65 D; range = +0.31 to +6.37 D). The effects of topical caffeine on refractive development, which were qualitatively similar to those produced by oral administration of 7-MX, indicate that ADOR antagonists have potential in treatment strategies for preventing and/or reducing myopia progression.
Collapse
Affiliation(s)
- Earl L Smith
- College of Optometry, University of Houston, Houston, TX, United States; Brien Holden Vision Institute, Sydney, Australia.
| | - Li-Fang Hung
- College of Optometry, University of Houston, Houston, TX, United States; Brien Holden Vision Institute, Sydney, Australia
| | - Zhihui She
- College of Optometry, University of Houston, Houston, TX, United States
| | - Krista Beach
- College of Optometry, University of Houston, Houston, TX, United States
| | - Lisa A Ostrin
- College of Optometry, University of Houston, Houston, TX, United States
| | - Monica Jong
- Brien Holden Vision Institute, Sydney, Australia; Discipline of Optometry and Vision Science, University of Canberra, Canberra, Australia
| |
Collapse
|
4
|
She Z, Hung LF, Arumugam B, Beach KM, Smith EL. Effects of low intensity ambient lighting on refractive development in infant rhesus monkeys (Macaca mulatta). Vision Res 2020; 176:48-59. [PMID: 32777589 PMCID: PMC7487012 DOI: 10.1016/j.visres.2020.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/02/2020] [Accepted: 07/09/2020] [Indexed: 02/06/2023]
Abstract
Studies in chickens suggest low intensity ambient lighting causes myopia. The purpose of this experiment was to examine the effects of low intensity ambient lighting (dim light) on normal refractive development in macaque monkeys. Seven infant rhesus monkeys were reared under dim light (room illumination level: ~55 lx) from 24 to ~310 days of age with otherwise unrestricted vision. Refractive error, corneal power, ocular axial dimensions, and choroidal thickness were measured in anesthetized animals at the onset of the experiment and periodically throughout the dim-light-rearing period, and were compared with those of normal-light-reared monkeys. We found that dim light did not produce myopia; instead, dim-light monkeys were hyperopic relative to normal-light monkeys (median refractive errors at ~155 days, OD: +3.13 D vs. +2.31 D; OS: +3.31D vs. +2.44 D; at ~310 days, OD: +2.75D vs. +1.78D, OS: +3.00D vs. +1.75D). In addition, dim-light rearing caused sustained thickening in the choroid, but it did not alter corneal power development, nor did it change the axial nature of the refractive errors. These results showed that, for rhesus monkeys and possibly other primates, low ambient lighting by itself is not necessarily myopiagenic, but might compromise the efficiency of emmetropization.
Collapse
Affiliation(s)
- Zhihui She
- College of Optometry, University of Houston, Houston, TX, United States
| | - Li-Fang Hung
- College of Optometry, University of Houston, Houston, TX, United States; Brien Holden Vision Institute, Sydney, NSW, Australia
| | - Baskar Arumugam
- College of Optometry, University of Houston, Houston, TX, United States
| | - Krista M Beach
- College of Optometry, University of Houston, Houston, TX, United States
| | - Earl L Smith
- College of Optometry, University of Houston, Houston, TX, United States; Brien Holden Vision Institute, Sydney, NSW, Australia.
| |
Collapse
|
5
|
Troilo D, Smith EL, Nickla DL, Ashby R, Tkatchenko AV, Ostrin LA, Gawne TJ, Pardue MT, Summers JA, Kee CS, Schroedl F, Wahl S, Jones L. IMI - Report on Experimental Models of Emmetropization and Myopia. Invest Ophthalmol Vis Sci 2019; 60:M31-M88. [PMID: 30817827 PMCID: PMC6738517 DOI: 10.1167/iovs.18-25967] [Citation(s) in RCA: 231] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 10/20/2018] [Indexed: 11/24/2022] Open
Abstract
The results of many studies in a variety of species have significantly advanced our understanding of the role of visual experience and the mechanisms of postnatal eye growth, and the development of myopia. This paper surveys and reviews the major contributions that experimental studies using animal models have made to our thinking about emmetropization and development of myopia. These studies established important concepts informing our knowledge of the visual regulation of eye growth and refractive development and have transformed treatment strategies for myopia. Several major findings have come from studies of experimental animal models. These include the eye's ability to detect the sign of retinal defocus and undergo compensatory growth, the local retinal control of eye growth, regulatory changes in choroidal thickness, and the identification of components in the biochemistry of eye growth leading to the characterization of signal cascades regulating eye growth and refractive state. Several of these findings provided the proofs of concepts that form the scientific basis of new and effective clinical treatments for controlling myopia progression in humans. Experimental animal models continue to provide new insights into the cellular and molecular mechanisms of eye growth control, including the identification of potential new targets for drug development and future treatments needed to stem the increasing prevalence of myopia and the vision-threatening conditions associated with this disease.
Collapse
Affiliation(s)
- David Troilo
- SUNY College of Optometry, State University of New York, New York, New York, United States
| | - Earl L. Smith
- College of Optometry, University of Houston, Houston, Texas, United States
| | - Debora L. Nickla
- Biomedical Sciences and Disease, New England College of Optometry, Boston, Massachusetts, United States
| | - Regan Ashby
- Health Research Institute, University of Canberra, Canberra, Australia
| | - Andrei V. Tkatchenko
- Department of Ophthalmology, Department of Pathology and Cell Biology, Columbia University, New York, New York, United States
| | - Lisa A. Ostrin
- College of Optometry, University of Houston, Houston, Texas, United States
| | - Timothy J. Gawne
- School of Optometry, University of Alabama Birmingham, Birmingham, Alabama, United States
| | - Machelle T. Pardue
- Biomedical Engineering, Georgia Tech College of Engineering, Atlanta, Georgia, United States31
| | - Jody A. Summers
- College of Medicine, University of Oklahoma, Oklahoma City, Oklahoma, United States
| | - Chea-su Kee
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Falk Schroedl
- Departments of Ophthalmology and Anatomy, Paracelsus Medical University, Salzburg, Austria
| | - Siegfried Wahl
- Institute for Ophthalmic Research, University of Tuebingen, Zeiss Vision Science Laboratory, Tuebingen, Germany
| | - Lyndon Jones
- CORE, School of Optometry and Vision Science, University of Waterloo, Ontario, Canada
| |
Collapse
|
6
|
Hung LF, Arumugam B, Ostrin L, Patel N, Trier K, Jong M, Smith EL. The Adenosine Receptor Antagonist, 7-Methylxanthine, Alters Emmetropizing Responses in Infant Macaques. Invest Ophthalmol Vis Sci 2018; 59:472-486. [PMID: 29368006 PMCID: PMC5786285 DOI: 10.1167/iovs.17-22337] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose Previous studies suggest that the adenosine receptor antagonist, 7-methylxanthine (7-MX), retards myopia progression. Our aim was to determine whether 7-MX alters the compensating refractive changes produced by defocus in rhesus monkeys. Methods Starting at age 3 weeks, monkeys were reared with −3 diopter (D; n = 10; 7-MX −3D/pl) or +3D (n = 6; 7-MX +3D/pl) spectacles over their treated eyes and zero-powered lenses over their fellow eyes. In addition, they were given 100 mg/kg of 7-MX orally twice daily throughout the lens-rearing period (age 147 ± 4 days). Comparison data were obtained from lens-reared controls (−3D/pl, n = 17; +3D/pl, n = 9) and normal monkeys (n = 37) maintained on a standard diet. Refractive status, corneal power, and axial dimensions were assessed biweekly. Results The −3D/pl and +3D/pl lens-reared controls developed compensating myopic (−2.10 ± 1.07 D) and hyperopic anisometropias (+1.86 ± 0.54 D), respectively. While the 7-MX +3D/pl monkeys developed hyperopic anisometropias (+1.79 ± 1.11 D) that were similar to those observed in +3D/pl controls, the 7-MX −3D/pl animals did not consistently exhibit compensating myopia in their treated eyes and were on average isometropic (+0.35 ± 1.96 D). The median refractive errors for both eyes of the 7-MX −3D/pl (+5.47 D and +4.38 D) and 7-MX +3D/pl (+5.28 and +3.84 D) monkeys were significantly more hyperopic than that for normal monkeys (+2.47 D). These 7-MX–induced hyperopic ametropias were associated with shorter vitreous chambers and thicker choroids. Conclusions In primates, 7-MX reduced the axial myopia produced by hyperopic defocus, augmented hyperopic shifts in response to myopic defocus, and induced hyperopia in control eyes. The results suggest that 7-MX has therapeutic potential in efforts to slow myopia progression.
Collapse
Affiliation(s)
- Li-Fang Hung
- College of Optometry, University of Houston, Houston, Texas, United States.,Brien Holden Vision Institute, Sydney, Australia
| | - Baskar Arumugam
- College of Optometry, University of Houston, Houston, Texas, United States.,Brien Holden Vision Institute, Sydney, Australia
| | - Lisa Ostrin
- College of Optometry, University of Houston, Houston, Texas, United States
| | - Nimesh Patel
- College of Optometry, University of Houston, Houston, Texas, United States
| | - Klaus Trier
- Trier Research Laboratories, Hellerup, Denmark
| | - Monica Jong
- Brien Holden Vision Institute, Sydney, Australia.,Department of Optometry and Vision Science, University of New South Wales, Kensington, New South Wales, Australia
| | - Earl L Smith
- College of Optometry, University of Houston, Houston, Texas, United States.,Brien Holden Vision Institute, Sydney, Australia.,Trier Research Laboratories, Hellerup, Denmark.,Department of Optometry and Vision Science, University of New South Wales, Kensington, New South Wales, Australia
| |
Collapse
|
7
|
Hung LF, Arumugam B, She Z, Ostrin L, Smith EL. Narrow-band, long-wavelength lighting promotes hyperopia and retards vision-induced myopia in infant rhesus monkeys. Exp Eye Res 2018; 176:147-160. [PMID: 29981345 DOI: 10.1016/j.exer.2018.07.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/28/2018] [Accepted: 07/03/2018] [Indexed: 11/16/2022]
Abstract
The purpose of this investigation was to determine the effects of narrow band, long-wavelength lighting on normal refractive development and the phenomena of lens compensation and form-deprivation myopia (FDM) in infant rhesus monkeys. Starting at 24 and continuing until 151 days of age, 27 infant rhesus monkeys were reared under long-wavelength LED lighting (630 nm; illuminance = 274 ± 64 lux) with unrestricted vision (Red Light (RL) controls, n = 7) or a +3 D (+3D-RL, n = 7), -3 D (-3D-RL, n = 6) or diffuser lens (From Deprivation (FD-RL), n = 7) in front of one eye and a plano lens in front of the fellow eye. Refractive development, corneal power, and vitreous chamber depth were measured by retinoscopy, keratometry, and ultrasonography, respectively. Comparison data were obtained from normal monkeys (Normal Light (NL) controls, n = 39) and lens- (+3D-NL, n = 9; -3D-NL, n = 18) and diffuser-reared controls (FD-NL, n = 16) housed under white fluorescent lighting. At the end of the treatment period, median refractive errors for both eyes of all RL groups were significantly more hyperopic than that for NL groups (P = 0.0001 to 0.016). In contrast to fluorescent lighting, red ambient lighting greatly reduced the likelihood that infant monkeys would develop either FDM or compensating myopia in response to imposed hyperopic defocus. However, as in the +3D-NL monkeys, the treated eyes of the +3D-RL monkeys exhibited relative hyperopic shifts resulting in significant anisometropias that compensated for the monocular lens-imposed defocus (P = 0.001). The red-light-induced alterations in refractive development were associated with reduced vitreous chamber elongation and increases in choroidal thickness. The results suggest that chromatic cues play a role in vision-dependent emmetropization in primates. Narrow-band, long-wavelength lighting prevents the axial elongation typically produced by either form deprivation or hyperopic defocus, possibly by creating direction signals normally associated with myopic defocus.
Collapse
Affiliation(s)
- Li-Fang Hung
- College of Optometry, University of Houston, Houston, TX, USA; Brien Holden Vision Institute, Sydney, Australia
| | - Baskar Arumugam
- College of Optometry, University of Houston, Houston, TX, USA; Brien Holden Vision Institute, Sydney, Australia
| | - Zhihui She
- College of Optometry, University of Houston, Houston, TX, USA
| | - Lisa Ostrin
- College of Optometry, University of Houston, Houston, TX, USA
| | - Earl L Smith
- College of Optometry, University of Houston, Houston, TX, USA; Brien Holden Vision Institute, Sydney, Australia.
| |
Collapse
|
8
|
Arumugam B, Hung LF, To CH, Sankaridurg P, Smith EL. The Effects of the Relative Strength of Simultaneous Competing Defocus Signals on Emmetropization in Infant Rhesus Monkeys. Invest Ophthalmol Vis Sci 2017; 57:3949-60. [PMID: 27479812 PMCID: PMC4978150 DOI: 10.1167/iovs.16-19704] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Purpose We investigated how the relative surface area devoted to the more positive-powered component in dual-focus lenses influences emmetropization in rhesus monkeys. Methods From 3 to 21 weeks of age, macaques were reared with binocular dual-focus spectacles. The treatment lenses had central 2-mm zones of zero-power and concentric annular zones that had alternating powers of either +3.0 diopters (D) and 0 D (+3 D/pL) or −3.0 D and 0 D (−3 D/pL). The relative widths of the powered and plano zones varied from 50:50 to 18:82 between treatment groups. Refractive status, corneal curvature, and axial dimensions were assessed biweekly throughout the lens-rearing period. Comparison data were obtained from monkeys reared with binocular full-field single-vision lenses (FF+3D, n = 6; FF−3D, n = 10) and from 35 normal controls. Results The median refractive errors for all of the +3 D/pL lens groups were similar to that for the FF+3D group (+4.63 D versus +4.31 D to +5.25 D; P = 0.18–0.96), but significantly more hyperopic than that for controls (+2.44 D; P = 0.0002–0.003). In the −3 D/pL monkeys, refractive development was dominated by the zero-powered portions of the treatment lenses; the −3 D/pL animals (+2.94 D to +3.13 D) were more hyperopic than the FF−3D monkeys (−0.78 D; P = 0.004–0.006), but similar to controls (+2.44 D; P = 0.14–0.22). Conclusions The results demonstrate that even when the more positive-powered zones make up only one-fifth of a dual-focus lens' surface area, refractive development is still dominated by relative myopic defocus. Overall, the results emphasize that myopic defocus distributed across the visual field evokes strong signals to slow eye growth in primates.
Collapse
Affiliation(s)
- Baskar Arumugam
- College of Optometry, University of Houston, Texas, United States 2Brien Holden Vision Institute, Sydney, Australia
| | - Li-Fang Hung
- College of Optometry, University of Houston, Texas, United States 2Brien Holden Vision Institute, Sydney, Australia
| | - Chi-Ho To
- Center for Myopia Research, School of Optometry, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 4State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat Sen University, Guangzhou, People's Republic of China
| | | | - Earl L Smith
- College of Optometry, University of Houston, Texas, United States 2Brien Holden Vision Institute, Sydney, Australia
| |
Collapse
|
9
|
Arumugam B, Hung LF, To CH, Holden B, Smith EL. The effects of simultaneous dual focus lenses on refractive development in infant monkeys. Invest Ophthalmol Vis Sci 2014; 55:7423-32. [PMID: 25324283 DOI: 10.1167/iovs.14-14250] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
PURPOSE We investigated the effects of two simultaneously imposed, competing focal planes on refractive development in monkeys. METHODS Starting at 3 weeks of age and continuing until 150 ± 4 days of age, rhesus monkeys were reared with binocular dual-focus spectacle lenses. The treatment lenses had central 2-mm zones of zero power and concentric annular zones with alternating powers of +3.0 diopter [D] and plano (pL or 0 D) (n = 7; +3D/pL) or -3.0 D and plano (n = 7; -3D/pL). Retinoscopy, keratometry, and A-scan ultrasonography were performed every 2 weeks throughout the treatment period. For comparison purposes data were obtained from monkeys reared with full field (FF) +3.0 (n = 4) or -3.0 D (n = 5) lenses over both eyes and 33 control animals reared with unrestricted vision. RESULTS The +3 D/pL lenses slowed eye growth resulting in hyperopic refractive errors that were similar to those produced by FF+3 D lenses (+3 D/pL = +5.25 D, FF +3 D = +4.63 D; P = 0.32), but significantly more hyperopic than those observed in control monkeys (+2.50 D, P = 0.0001). One -3 D/pL monkey developed compensating axial myopia; however, in the other -3 D/pL monkeys refractive development was dominated by the zero-powered portions of the treatment lenses. The refractive errors for the -3 D/pL monkeys were more hyperopic than those in the FF -3 D monkeys (-3 D/pL = +3.13 D, FF -3D = -1.69 D; P = 0.01), but similar to those in control animals (P = 0.15). CONCLUSIONS In the monkeys treated with dual-focus lenses, refractive development was dominated by the more anterior (i.e., relatively myopic) image plane. The results indicate that imposing relative myopic defocus over a large proportion of the retina is an effective means for slowing ocular growth.
Collapse
Affiliation(s)
- Baskar Arumugam
- College of Optometry, University of Houston, Texas, United States Vision Cooperative Research Centre, Sydney, Australia
| | - Li-Fang Hung
- College of Optometry, University of Houston, Texas, United States Vision Cooperative Research Centre, Sydney, Australia
| | - Chi-Ho To
- Center for Myopia Research, School of Optometry, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Brien Holden
- Vision Cooperative Research Centre, Sydney, Australia
| | - Earl L Smith
- College of Optometry, University of Houston, Texas, United States Vision Cooperative Research Centre, Sydney, Australia
| |
Collapse
|
10
|
Smith EL, Hung LF, Huang J, Arumugam B. Effects of local myopic defocus on refractive development in monkeys. Optom Vis Sci 2013; 90:1176-86. [PMID: 24061154 PMCID: PMC3909941 DOI: 10.1097/opx.0000000000000038] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
PURPOSE Visual signals that produce myopia are mediated by local, regionally selective mechanisms. However, little is known about spatial integration for signals that slow eye growth. The purpose of this study was to determine whether the effects of myopic defocus are integrated in a local manner in primates. METHODS Beginning at 24 ± 2 days of age, seven rhesus monkeys were reared with monocular spectacles that produced 3 diopters (D) of relative myopic defocus in the nasal visual field of the treated eye but allowed unrestricted vision in the temporal field (NF monkeys). Seven monkeys were reared with monocular +3 D lenses that produced relative myopic defocus across the entire field of view (FF monkeys). Comparison data from previous studies were available for 11 control monkeys, 8 monkeys that experienced 3 D of hyperopic defocus in the nasal field, and 6 monkeys exposed to 3 D of hyperopic defocus across the entire field. Refractive development, corneal power, and axial dimensions were assessed at 2- to 4-week intervals using retinoscopy, keratometry, and ultrasonography, respectively. Eye shape was assessed using magnetic resonance imaging. RESULTS In response to full-field myopic defocus, the FF monkeys developed compensating hyperopic anisometropia, the degree of which was relatively constant across the horizontal meridian. In contrast, the NF monkeys exhibited compensating hyperopic changes in refractive error that were greatest in the nasal visual field. The changes in the pattern of peripheral refractions in the NF monkeys reflected interocular differences in vitreous chamber shape. CONCLUSIONS As with form deprivation and hyperopic defocus, the effects of myopic defocus are mediated by mechanisms that integrate visual signals in a local, regionally selective manner in primates. These results are in agreement with the hypothesis that peripheral vision can influence eye shape and potentially central refractive error in a manner that is independent of central visual experience.
Collapse
Affiliation(s)
- Earl L Smith
- *OD, PhD, FAAO †MD, OD, PhD, FAAO ‡OD, PhD College of Optometry, University of Houston, Houston, Texas (ELS, L-FH, BA); and Vision CRC, Sydney, New South Wales, Australia (ELS, L-FH, BA) College of Optometry, The Ohio State University, Columbus, Ohio (JH)
| | | | | | | |
Collapse
|
11
|
Smith EL, Hung LF, Arumugam B, Huang J. Negative lens-induced myopia in infant monkeys: effects of high ambient lighting. Invest Ophthalmol Vis Sci 2013; 54:2959-69. [PMID: 23557736 DOI: 10.1167/iovs.13-11713] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PURPOSE To determine whether high light levels, which have a protective effect against form-deprivation myopia, also retard the development of lens-induced myopia in primates. METHODS Hyperopic defocus was imposed on 27 monkeys by securing -3 diopter (D) lenses in front of one eye. The lens-rearing procedures were initiated at 24 days of age and continued for periods ranging from 50 to 123 days. Fifteen of the treated monkeys were exposed to normal laboratory light levels (∼350 lux). For the other 12 lens-reared monkeys, auxiliary lighting increased the illuminance to 25,000 lux for 6 hours during the middle of the daily 12 hour light cycle. Refractive development, corneal power, and axial dimensions were assessed by retinoscopy, keratometry, and ultrasonography, respectively. Data were also obtained from 37 control monkeys, four of which were exposed to high ambient lighting. RESULTS in normal- and high-light-reared monkeys, hyperopic defocus accelerated vitreous chamber elongation and produced myopic shifts in refractive error. the high light regimen did not alter the degree of myopia (high light: -1.69 ± 0.84 D versus normal light: -2.08 ± 1.12 D; P = 0.40) or the rate at which the treated eyes compensated for the imposed defocus. Following lens removal, the high light monkeys recovered from the induced myopia. The recovery process was not affected by the high lighting regimen. CONCLUSIONS In contrast to the protective effects that high ambient lighting has against form-deprivation myopia, high artificial lighting did not alter the course of compensation to imposed defocus. These results indicate that the mechanisms responsible for form-deprivation myopia and lens-induced myopia are not identical.
Collapse
Affiliation(s)
- Earl L Smith
- College of Optometry, University of Houston, Houston, TX 77204-2020, USA.
| | | | | | | |
Collapse
|
12
|
Smith EL, Hung LF, Huang J. Protective effects of high ambient lighting on the development of form-deprivation myopia in rhesus monkeys. Invest Ophthalmol Vis Sci 2012; 53:421-8. [PMID: 22169102 DOI: 10.1167/iovs.11-8652] [Citation(s) in RCA: 220] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
PURPOSE Time spent outdoors reduces the likelihood that children will develop myopia, possibly because light levels are much higher outdoors than indoors. To test this hypothesis, the effects of high ambient lighting on vision-induced myopia in monkeys were determined. METHODS Monocular form deprivation was imposed on eight infant rhesus monkeys. Throughout the rearing period (23 ± 2 to 132 ± 8 days), auxiliary lighting increased the cage-level illuminance from normal lighting levels (15-630 lux) to ∼25,000 lux for 6 hours during the middle of the daily 12-hour light cycle. Refractive development and axial dimensions were assessed by retinoscopy and ultrasonography, respectively. Comparison data were obtained in previous studies from 18 monocularly form-deprived and 32 normal monkeys reared under ordinary laboratory lighting. RESULTS Form deprivation produced axial myopia in 16 of 18 normal-light-reared monkeys. In contrast, only 2 of the 8 high-light-reared monkeys developed myopic anisometropias, and in 6 of these monkeys, the form-deprived eyes were more hyperopic than their fellow eyes. The treated eyes of the high-light-reared monkeys were more hyperopic than the form-deprived eyes of the normal-light-reared monkeys. In addition, both eyes of the high-light-reared monkeys were more hyperopic than those of normal monkeys. CONCLUSIONS High ambient lighting retards the development of form-deprivation myopia in monkeys. These results are in agreement with the hypothesis that the protective effects of outdoor activities against myopia in children are due to exposure to the higher light levels encountered outdoors. It is possible that therapeutic protection against myopia can be achieved by manipulating indoor lighting levels.
Collapse
Affiliation(s)
- Earl L Smith
- College of Optometry, University of Houston, Houston, Texas 77204-2020, USA.
| | | | | |
Collapse
|
13
|
Huang J, Hung LF, Smith EL. Effects of foveal ablation on the pattern of peripheral refractive errors in normal and form-deprived infant rhesus monkeys (Macaca mulatta). Invest Ophthalmol Vis Sci 2011; 52:6428-34. [PMID: 21693598 PMCID: PMC3176001 DOI: 10.1167/iovs.10-6757] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 04/12/2011] [Accepted: 05/23/2011] [Indexed: 11/24/2022] Open
Abstract
PURPOSE. The purpose of this study was to determine whether visual signals from the fovea contribute to the changes in the pattern of peripheral refractions associated with form deprivation myopia in monkeys. METHODS. Monocular form-deprivation was produced in 18 rhesus monkeys by securing diffusers in front of their treated eyes between 22 ± 2 and 155 ± 17 days of age. In eight of these form-deprived monkeys, the fovea and most of the perifovea of the treated eye were ablated by laser photocoagulation at the start of the diffuser-rearing period. Each eye's refractive status was measured by retinoscopy along the pupillary axis and at 15° intervals along the horizontal meridian to eccentricities of 45°. Control data were obtained from 12 normal monkeys and five monkeys that had monocular foveal ablations and were subsequently reared with unrestricted vision. RESULTS. Foveal ablation, by itself, did not produce systematic alterations in either the central or peripheral refractive errors of the treated eyes. In addition, foveal ablation did not alter the patterns of peripheral refractions in monkeys with form-deprivation myopia. The patterns of peripheral refractive errors in the two groups of form-deprived monkeys, either with or without foveal ablation, were qualitatively similar (treated eyes: F = 0.31, P = 0.74; anisometropia: F = 0.61, P = 0.59), but significantly different from those found in the normal monkeys (F = 8.46 and 9.38 respectively, P < 0.05). CONCLUSIONS. Central retinal signals do not contribute in an essential way to the alterations in eye shape that occur during the development of vision-induced axial myopia.
Collapse
Affiliation(s)
- Juan Huang
- From the College of Optometry, University of Houston, Houston, Texas; and
- the Vision CRC, Sydney, Australia
| | - Li-Fang Hung
- From the College of Optometry, University of Houston, Houston, Texas; and
- the Vision CRC, Sydney, Australia
| | - Earl L. Smith
- From the College of Optometry, University of Houston, Houston, Texas; and
- the Vision CRC, Sydney, Australia
| |
Collapse
|
14
|
Qiao-Grider Y, Hung LF, Kee CS, Ramamirtham R, Smith EL. Nature of the refractive errors in rhesus monkeys (Macaca mulatta) with experimentally induced ametropias. Vision Res 2010; 50:1867-81. [PMID: 20600237 DOI: 10.1016/j.visres.2010.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 06/11/2010] [Accepted: 06/15/2010] [Indexed: 11/24/2022]
Abstract
We analyzed the contribution of individual ocular components to vision-induced ametropias in 210 rhesus monkeys. The primary contribution to refractive-error development came from vitreous chamber depth; a minor contribution from corneal power was also detected. However, there was no systematic relationship between refractive error and anterior chamber depth or between refractive error and any crystalline lens parameter. Our results are in good agreement with previous studies in humans, suggesting that the refractive errors commonly observed in humans are created by vision-dependent mechanisms that are similar to those operating in monkeys. This concordance emphasizes the applicability of rhesus monkeys in refractive-error studies.
Collapse
Affiliation(s)
- Ying Qiao-Grider
- College of Optometry, University of Houston, Houston, TX 77204-2020, United States
| | | | | | | | | |
Collapse
|
15
|
Smith EL, Huang J, Hung LF, Blasdel TL, Humbird TL, Bockhorst KH. Hemiretinal form deprivation: evidence for local control of eye growth and refractive development in infant monkeys. Invest Ophthalmol Vis Sci 2009; 50:5057-69. [PMID: 19494197 PMCID: PMC2778320 DOI: 10.1167/iovs.08-3232] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To determine whether refractive development in primates is mediated by local retinal mechanisms, the authors examined the effects of hemiretinal form deprivation on ocular growth and the pattern of peripheral refractions in rhesus monkeys. METHODS Beginning at approximately 3 weeks of age, nine infant monkeys were reared wearing monocular diffuser lenses that eliminated form vision in the nasal field (nasal field diffuser [NFD]). Control data were obtained from the nontreated fellow eyes, 24 normal monkeys, and 19 monkeys treated with full-field diffusers. Refractive development was assessed by retinoscopy performed along the pupillary axis and at eccentricities of 15 degrees, 30 degrees, and 45 degrees. Central axial dimensions and eye shape were assessed by A-scan ultrasonography and magnetic resonance imaging, respectively. RESULTS Hemiretinal form deprivation altered refractive development in a regionally selective manner, typically producing myopia in the treated hemifields. In particular, six of the NFD monkeys exhibited substantial amounts (-1.81 to -9.00 D) of relative myopia in the nasal field that were most obvious at the 15 degrees and 30 degrees nasal field eccentricities. The other three NFD monkeys exhibited small amounts of relative hyperopia in the treated field. The alterations in peripheral refraction were associated with local, region-specific alterations in vitreous chamber depth in the treated hemiretina. CONCLUSIONS The effects of form deprivation on refractive development and eye growth in primates are mediated by mechanisms, presumably retinal, that integrate visual signals in a spatially restricted manner and exert their influence locally.
Collapse
Affiliation(s)
- Earl L Smith
- College of Optometry, University of Houston, Houston, Texas 77204-2020, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Huang J, Hung LF, Ramamirtham R, Blasdel TL, Humbird TL, Bockhorst KH, Smith EL. Effects of form deprivation on peripheral refractions and ocular shape in infant rhesus monkeys (Macaca mulatta). Invest Ophthalmol Vis Sci 2009; 50:4033-44. [PMID: 19420338 PMCID: PMC2778260 DOI: 10.1167/iovs.08-3162] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To determine whether visual experience can alter ocular shape and peripheral refractive error pattern, the authors investigated the effects of form deprivation on refractive development in infant rhesus monkeys. METHODS Monocular form deprivation was imposed in 10 rhesus monkeys by securing diffuser lenses in front of their treated eyes between 22 +/- 2 and 163 +/- 17 days of age. Each eye's refractive status was measured longitudinally by retinoscopy along the pupillary axis and at 15 degrees intervals along the horizontal meridian to eccentricities of 45 degrees . Control data for peripheral refraction were obtained from the nontreated fellow eyes and six untreated monkeys. Near the end of the diffuser-rearing period, the shape of the posterior globe was assessed by magnetic resonance imaging. Central axial dimensions were also determined by A-scan ultrasonography. RESULTS Form deprivation produced interocular differences in central refractive errors that varied between +2.69 and -10.31 D (treated eye-fellow eye). All seven diffuser-reared monkeys that developed at least 2.00 D of relative central axial myopia also showed relative hyperopia in the periphery that increased in magnitude with eccentricity. Alterations in peripheral refraction were highly correlated with eccentricity-dependent changes in vitreous chamber depth and the shape of the posterior globe. CONCLUSIONS Like humans with myopia, monkeys with form-deprivation myopia exhibit relative peripheral hyperopia and eyes that are less oblate and more prolate. Thus, in addition to producing central refractive errors, abnormal visual experience can alter the shape of the posterior globe and the pattern of peripheral refractive errors in infant primates.
Collapse
Affiliation(s)
- Juan Huang
- College of Optometry, University of Houston, Houston, Texas
- Vision CRC, Sydney, Australia
| | - Li-Fang Hung
- College of Optometry, University of Houston, Houston, Texas
- Vision CRC, Sydney, Australia
| | - Ramkumar Ramamirtham
- College of Optometry, University of Houston, Houston, Texas
- Vision CRC, Sydney, Australia
| | | | | | - Kurt H. Bockhorst
- Department of Diagnostic & Interventional Imaging, University of Texas at Houston Medical School, Houston, Texas
| | - Earl L. Smith
- College of Optometry, University of Houston, Houston, Texas
- Vision CRC, Sydney, Australia
| |
Collapse
|
17
|
Smith EL, Hung LF, Huang J. Relative peripheral hyperopic defocus alters central refractive development in infant monkeys. Vision Res 2009; 49:2386-92. [PMID: 19632261 PMCID: PMC2745495 DOI: 10.1016/j.visres.2009.07.011] [Citation(s) in RCA: 283] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2009] [Revised: 07/17/2009] [Accepted: 07/20/2009] [Indexed: 10/20/2022]
Abstract
Understanding the role of peripheral defocus on central refractive development is critical because refractive errors can vary significantly with eccentricity and peripheral refractions have been implicated in the genesis of central refractive errors in humans. Two rearing strategies were used to determine whether peripheral hyperopia alters central refractive development in rhesus monkeys. In intact eyes, lens-induced relative peripheral hyperopia produced central axial myopia. Moreover, eliminating the fovea by laser photoablation did not prevent compensating myopic changes in response to optically imposed hyperopia. These results show that peripheral refractive errors can have a substantial impact on central refractive development in primates.
Collapse
Affiliation(s)
- Earl L Smith
- College of Optometry, University of Houston, Houston, TX 77204-2020, USA.
| | | | | |
Collapse
|
18
|
Hung LF, Ramamirtham R, Huang J, Qiao-Grider Y, Smith EL. Peripheral refraction in normal infant rhesus monkeys. Invest Ophthalmol Vis Sci 2008; 49:3747-57. [PMID: 18487366 PMCID: PMC2662437 DOI: 10.1167/iovs.07-1493] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To characterize peripheral refractions in infant monkeys. METHODS Cross-sectional data for horizontal refractions were obtained from 58 normal rhesus monkeys at 3 weeks of age. Longitudinal data were obtained for both the vertical and horizontal meridians from 17 monkeys. Refractive errors were measured by retinoscopy along the pupillary axis and at eccentricities of 15 degrees , 30 degrees , and 45 degrees . Axial dimensions and corneal power were measured by ultrasonography and keratometry, respectively. RESULTS In infant monkeys, the degree of radial astigmatism increased symmetrically with eccentricity in all meridians. There were, however, initial nasal-temporal and superior-inferior asymmetries in the spherical equivalent refractive errors. Specifically, the refractions in the temporal and superior fields were similar to the central ametropia, but the refractions in the nasal and inferior fields were more myopic than the central ametropia, and the relative nasal field myopia increased with the degree of central hyperopia. With age, the degree of radial astigmatism decreased in all meridians, and the refractions became more symmetrical along both the horizontal and vertical meridians. Small degrees of relative myopia were evident in all fields. CONCLUSIONS As in adult humans, refractive error varied as a function of eccentricity in infant monkeys and the pattern of peripheral refraction varied with the central refractive error. With age, emmetropization occurred for both central and peripheral refractive errors, resulting in similar refractions across the central 45 degrees of the visual field, which may reflect the actions of vision-dependent, growth-control mechanisms operating over a wide area of the posterior globe.
Collapse
Affiliation(s)
- Li-Fang Hung
- College of Optometry, University of Houston, Houston, TX 77204-2020, USA
- Vision CRC, Sydney NSW 2052, Australia
| | - Ramkumar Ramamirtham
- College of Optometry, University of Houston, Houston, TX 77204-2020, USA
- Vision CRC, Sydney NSW 2052, Australia
| | - Juan Huang
- College of Optometry, University of Houston, Houston, TX 77204-2020, USA
- Vision CRC, Sydney NSW 2052, Australia
| | - Ying Qiao-Grider
- College of Optometry, University of Houston, Houston, TX 77204-2020, USA
- Vision CRC, Sydney NSW 2052, Australia
| | - Earl L. Smith
- College of Optometry, University of Houston, Houston, TX 77204-2020, USA
- Vision CRC, Sydney NSW 2052, Australia
| |
Collapse
|
19
|
Calver R, Radhakrishnan H, Osuobeni E, O'Leary D. Peripheral refraction for distance and near vision in emmetropes and myopes. Ophthalmic Physiol Opt 2007; 27:584-93. [PMID: 17956364 DOI: 10.1111/j.1475-1313.2007.00518.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Richard Calver
- Department of Optometry & Ophthalmic Dispensing, Anglia Ruskin University, East Road, Cambridge CB1 1PT, UK.
| | | | | | | |
Collapse
|
20
|
Smith EL, Ramamirtham R, Qiao-Grider Y, Hung LF, Huang J, Kee CS, Coats D, Paysse E. Effects of foveal ablation on emmetropization and form-deprivation myopia. Invest Ophthalmol Vis Sci 2007; 48:3914-22. [PMID: 17724167 PMCID: PMC2709928 DOI: 10.1167/iovs.06-1264] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Because of the prominence of central vision in primates, it has generally been assumed that signals from the fovea dominate refractive development. To test this assumption, the authors determined whether an intact fovea was essential for either normal emmetropization or the vision-induced myopic errors produced by form deprivation. METHODS In 13 rhesus monkeys at 3 weeks of age, the fovea and most of the perifovea in one eye were ablated by laser photocoagulation. Five of these animals were subsequently allowed unrestricted vision. For the other eight monkeys with foveal ablations, a diffuser lens was secured in front of the treated eyes to produce form deprivation. Refractive development was assessed along the pupillary axis by retinoscopy, keratometry, and A-scan ultrasonography. Control data were obtained from 21 normal monkeys and three infants reared with plano lenses in front of both eyes. RESULTS Foveal ablations had no apparent effect on emmetropization. Refractive errors for both eyes of the treated infants allowed unrestricted vision were within the control range throughout the observation period, and there were no systematic interocular differences in refractive error or axial length. In addition, foveal ablation did not prevent form deprivation myopia; six of the eight infants that experienced monocular form deprivation developed myopic axial anisometropias outside the control range. CONCLUSIONS Visual signals from the fovea are not essential for normal refractive development or the vision-induced alterations in ocular growth produced by form deprivation. Conversely, the peripheral retina, in isolation, can regulate emmetropizing responses and produce anomalous refractive errors in response to abnormal visual experience. These results indicate that peripheral vision should be considered when assessing the effects of visual experience on refractive development.
Collapse
Affiliation(s)
- Earl L Smith
- College of Optometry, University of Houston, Houston, Texas 77204-2020, USA.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Qiao-Grider Y, Hung LF, Kee CS, Ramamirtham R, Smith EL. A comparison of refractive development between two subspecies of infant rhesus monkeys (Macaca mulatta). Vision Res 2007; 47:1668-81. [PMID: 17442365 PMCID: PMC1950249 DOI: 10.1016/j.visres.2007.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Revised: 03/06/2007] [Accepted: 03/09/2007] [Indexed: 12/22/2022]
Abstract
PURPOSE Different subspecies of rhesus monkeys (Macaca mulatta) that are derived from different geographical locations, primarily Indian and China, are commonly employed in vision research. Substantial morphological and behavioral differences have been reported between Chinese- and Indian-derived subspecies. The purpose of this study was to compare refractive development in Chinese- and Indian-derived rhesus monkeys. METHODS The subjects were 216 Indian-derived and 78 Chinese-derived normal infant rhesus monkeys. Cross-sectional data were obtained at 3 weeks of age for all subjects. In addition, longitudinal data were obtained from 10 Indian-derived (male=5, female=5) and 5 Chinese-derived monkeys (male=3, female=2) that were reared with unrestricted vision. Ocular and refractive development was assessed by retinoscopy, keratometry, video-based ophthalmophakometry, and A-scan ultrasonography. RESULTS Although the course of emmetropization was very similar in these two groups of rhesus monkeys, there were consistent and significant inter-group differences in ocular dimensions and refractive error. Throughout the observation period, the Chinese-derived monkeys were on average about 0.4D less hyperopic than the Indian-derived monkeys and the Chinese-derived monkeys had longer overall axial lengths, deeper anterior and vitreous chamber depths, thicker crystalline lenses, flatter corneas and lower powered crystalline lenses. CONCLUSIONS The ocular differences observed in this study presumably reflect genetic differences between subspecies but could reflect the differences in the genetic pool between isolated colonies rather than true subspecies differences. Nonetheless, the substantial ocular differences that we observed emphasize that caution must be exercised when comparing and/or pooling data from rhesus monkeys obtained from different colonies. These inter-subspecies differences might be analogous to the ethnic differences in ocular parameters that have been observed in humans.
Collapse
Affiliation(s)
- Ying Qiao-Grider
- College of Optometry, University of Houston, Houston, TX 77204-2020
- The Vision CRC, The University of New South Wales, Sydney NSW 2052, Australia
| | - Li-Fang Hung
- College of Optometry, University of Houston, Houston, TX 77204-2020
- The Vision CRC, The University of New South Wales, Sydney NSW 2052, Australia
| | - Chea-su Kee
- Department of Optometry & Radiography, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Ramkumar Ramamirtham
- College of Optometry, University of Houston, Houston, TX 77204-2020
- The Vision CRC, The University of New South Wales, Sydney NSW 2052, Australia
| | - Earl L. Smith
- College of Optometry, University of Houston, Houston, TX 77204-2020
- The Vision CRC, The University of New South Wales, Sydney NSW 2052, Australia
| |
Collapse
|
22
|
Qiao-Grider Y, Hung LF, Kee CS, Ramamirtham R, Smith EL. Normal ocular development in young rhesus monkeys (Macaca mulatta). Vision Res 2007; 47:1424-44. [PMID: 17416396 PMCID: PMC1995079 DOI: 10.1016/j.visres.2007.01.025] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 01/03/2007] [Accepted: 01/04/2007] [Indexed: 11/15/2022]
Abstract
PURPOSE The purpose of this study was to characterize normal ocular development in infant monkeys and to establish both qualitative and quantitative relationships between human and monkey refractive development. METHODS The subjects were 214 normal rhesus monkeys. Cross-sectional data were obtained from 204 monkeys at about 3 weeks of age and longitudinal data were obtained from 10 representative animals beginning at about 3 weeks of age for a period of up to 5 years. Ocular development was characterized via refractive status, corneal power, crystalline lens parameters, and the eye's axial dimensions, which were determined by retinoscopy, keratometry, phakometry and A-scan ultrasonography, respectively. RESULTS From birth to about 5 years of age, the growth curves for refractive error and most ocular components (excluding lens thickness and equivalent lens index) followed exponential trajectories and were highly coordinated between the two eyes. However, overall ocular growth was not a simple process of increasing the scale of each ocular component in a proportional manner. Instead the rates and relative amounts of change varied within and between ocular structures. CONCLUSION The configuration and contribution of the major ocular components in infant and adolescent monkey eyes are qualitatively and quantitatively very comparable to those in human eyes and their development proceeds in a similar manner in both species. As a consequence, in both species the adolescent eye is not simply a scaled version of the infant eye.
Collapse
Affiliation(s)
- Ying Qiao-Grider
- College of Optometry, University of Houston, Houston, TX 77204-2020
- The Vision CRC, The University of New South Wales, Sydney NSW 2052, Australia
| | - Li-Fang Hung
- College of Optometry, University of Houston, Houston, TX 77204-2020
- The Vision CRC, The University of New South Wales, Sydney NSW 2052, Australia
| | - Chea-su Kee
- College of Optometry, University of Houston, Houston, TX 77204-2020
- The Vision CRC, The University of New South Wales, Sydney NSW 2052, Australia
| | - Ramkumar Ramamirtham
- College of Optometry, University of Houston, Houston, TX 77204-2020
- The Vision CRC, The University of New South Wales, Sydney NSW 2052, Australia
| | - Earl L. Smith
- College of Optometry, University of Houston, Houston, TX 77204-2020
- The Vision CRC, The University of New South Wales, Sydney NSW 2052, Australia
| |
Collapse
|
23
|
Ramamirtham R, Kee CS, Hung LF, Qiao-Grider Y, Roorda A, Smith EL. Monochromatic ocular wave aberrations in young monkeys. Vision Res 2006; 46:3616-33. [PMID: 16750549 PMCID: PMC1808341 DOI: 10.1016/j.visres.2006.04.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Revised: 04/12/2006] [Accepted: 04/17/2006] [Indexed: 11/24/2022]
Abstract
High-order monochromatic aberrations could potentially influence vision-dependent refractive development in a variety of ways. As a first step in understanding the effects of wave aberration on refractive development, we characterized the maturational changes that take place in the high-order aberrations of infant rhesus monkey eyes. Specifically, we compared the monochromatic wave aberrations of infant and adolescent animals and measured the longitudinal changes in the high-order aberrations of infant monkeys during the early period when emmetropization takes place. Our main findings were that (1) adolescent monkey eyes have excellent optical quality, exhibiting total RMS errors that were slightly better than those for adult human eyes that have the same numerical aperture and (2) shortly after birth, infant rhesus monkeys exhibited relatively larger magnitudes of high-order aberrations predominately spherical aberration, coma, and trefoil, which decreased rapidly to assume adolescent values by about 200 days of age. The results demonstrate that rhesus monkey eyes are a good model for studying the contribution of individual ocular components to the eye's overall aberration structure, the mechanisms responsible for the improvements in optical quality that occur during early ocular development, and the effects of high-order aberrations on ocular growth and emmetropization.
Collapse
Affiliation(s)
- Ramkumar Ramamirtham
- College of Optometry, University of Houston, Houston, TX 77204-2020, USA
- The Vision CRC, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Chea-su Kee
- The Vision CRC, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Li-Fang Hung
- College of Optometry, University of Houston, Houston, TX 77204-2020, USA
- The Vision CRC, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Ying Qiao-Grider
- College of Optometry, University of Houston, Houston, TX 77204-2020, USA
- The Vision CRC, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Austin Roorda
- College of Optometry, University of Houston, Houston, TX 77204-2020, USA
| | - Earl L. Smith
- College of Optometry, University of Houston, Houston, TX 77204-2020, USA
- The Vision CRC, The University of New South Wales, Sydney, NSW 2052, Australia
- * Corresponding author. Fax: +1 713 743 0965. E-mail address: (E.L. Smith III)
| |
Collapse
|
24
|
Smith EL, Kee CS, Ramamirtham R, Qiao-Grider Y, Hung LF. Peripheral vision can influence eye growth and refractive development in infant monkeys. Invest Ophthalmol Vis Sci 2005; 46:3965-72. [PMID: 16249469 PMCID: PMC1762100 DOI: 10.1167/iovs.05-0445] [Citation(s) in RCA: 314] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Given the prominence of central vision in humans, it has been assumed that visual signals from the fovea dominate emmetropization. The purpose of this study was to examine the impact of peripheral vision on emmetropization. METHODS Bilateral, peripheral form deprivation was produced in 12 infant monkeys by rearing them with diffusers that had either 4- or 8-mm apertures centered on the pupils of each eye, to allow 24 degrees or 37 degrees of unrestricted central vision, respectively. At the end of the lens-rearing period, an argon laser was used to ablate the fovea in one eye of each of seven monkeys. Subsequently, all the animals were allowed unrestricted vision. Refractive error and axial dimensions were measured along the pupillary axis by retinoscopy and A-scan ultrasonography, respectively. Control data were obtained from 21 normal monkeys and 3 infants reared with binocular plano lenses. RESULTS Nine of the 12 treated monkeys had refractive errors that fell outside the 10th- and 90th-percentile limits for the age-matched control subjects, and the average refractive error for the treated animals was more variable and significantly less hyperopic/more myopic (+0.03 +/- 2.39 D vs. +2.39 +/- 0.92 D). The refractive changes were symmetric in the two eyes of a given animal and axial in nature. After lens removal, all the treated monkeys recovered from the induced refractive errors. No interocular differences in the recovery process were observed in the animals with monocular foveal lesions. CONCLUSIONS On the one hand, the peripheral retina can contribute to emmetropizing responses and to ametropias produced by an abnormal visual experience. On the other hand, unrestricted central vision is not sufficient to ensure normal refractive development, and the fovea is not essential for emmetropizing responses.
Collapse
Affiliation(s)
- Earl L Smith
- College of Optometry, University of Houston, TX 77204, USA.
| | | | | | | | | |
Collapse
|
25
|
de Magalhães JP. Human Disease-Associated Mitochondrial Mutations Fixed in Nonhuman Primates. J Mol Evol 2005; 61:491-7. [PMID: 16132471 DOI: 10.1007/s00239-004-0258-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Accepted: 04/19/2005] [Indexed: 12/01/2022]
Abstract
A number of human disease-associated sequences have been reported in other species, such as rodents, but compensatory changes appear to prevent these deleterious mutations from being expressed. The aim of this work was to compare the mitochondrial DNA of multiple primates to ascertain whether mitochondrial disease-causing sequences in humans are fixed in nonhuman primates. Indeed, 46 sequences related to human pathology were identified in 1 or more of the 12 studied nonhuman primates, the majority of which were associated with late-onset diseases. Most of these sequences can be explained by the presence of secondary compensatory changes that render these mutations phenotypically inert. Nonetheless, and since humans not only are the longest-lived primate but feature the largest brain, one hypothesis is that a gradual optimization of the human mitochondrion occurred in the hominid lineage driven by the need to optimize the aerobic energy metabolism to delay neurodegeneration. Therefore, it is also proposed that some of these disease-associated sequences in nonhuman primates may be linked to the evolution of human longevity and intelligence, indicating a general pattern of selection on longevity in the course of evolution of the human mitochondrion.
Collapse
|
26
|
Kee CS, Hung LF, Qiao-Grider Y, Ramamirtham R, Smith EL. Astigmatism in monkeys with experimentally induced myopia or hyperopia. Optom Vis Sci 2005; 82:248-60. [PMID: 15829845 PMCID: PMC1810233 DOI: 10.1097/01.opx.0000159357.61498.6b] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
PURPOSE Astigmatism is the most common ametropia found in humans and is often associated with large spherical ametropias. However, little is known about the etiology of astigmatism or the reason(s) for the association between spherical and astigmatic refractive errors. This study examines the frequency and characteristics of astigmatism in infant monkeys that developed axial ametropias as a result of altered early visual experience. METHODS Data were obtained from 112 rhesus monkeys that experienced a variety of lens-rearing regimens that were intended to alter the normal course of emmetropization. These visual manipulations included form deprivation (n = 13); optically imposed defocus (n = 48); and continuous ambient lighting with (n = 6) or without optically imposed defocus (n = 6). In addition, data from 19 control monkeys and 39 infants reared with an optically imposed astigmatism were used for comparison purposes. The lens-rearing period started at approximately 3 weeks of age and ended by 4 to 5 months of age. Refractive development for all monkeys was assessed periodically throughout the treatment and subsequent recovery periods by retinoscopy, keratometry, and A-scan ultrasonography. RESULTS In contrast to control monkeys, the monkeys that had experimentally induced axial ametropias frequently developed significant amounts of astigmatism (mean refractive astigmatism = 0.37 +/- 0.33 D [control] vs. 1.24 +/- 0.81 D [treated]; two-sample t-test, p < 0.0001), especially when their eyes exhibited relative hyperopic shifts in refractive error. The astigmatism was corneal in origin (Pearson's r; p < 0.001 for total astigmatism and the JO and J45 components), and the axes of the astigmatism were typically oblique and bilaterally mirror symmetric. Interestingly, the astigmatism was not permanent; the majority of the monkeys exhibited substantial reductions in the amount of astigmatism at or near the end of the lens-rearing procedures. CONCLUSIONS In infant monkeys, visual conditions that alter axial growth can also alter corneal shape. Similarities between the astigmatic errors in our monkeys and some astigmatic errors in humans suggest that vision-dependent changes in eye growth may contribute to astigmatism in humans.
Collapse
Affiliation(s)
- Chea-Su Kee
- College of Optometry, University of Houston, Houston, Texas 77204-2020, USA.
| | | | | | | | | |
Collapse
|
27
|
Coppola DM, White LE. Visual experience promotes the isotropic representation of orientation preference. Vis Neurosci 2004; 21:39-51. [PMID: 15137580 DOI: 10.1017/s0952523804041045] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Within the visual cortex of several mammalian species, more circuitry is devoted to the representation of vertical and horizontal orientations than oblique orientations. The sensitivity of this representation of orientation preference to visual experience during cortical maturation and the overabundance of cardinal contours in the environment suggest that vision promotes the development of this cortical anisotropy. We tested this idea by measuring the distribution of cortical orientation preference and the degree of orientation selectivity in developing normal and dark-reared ferrets using intrinsic signal optical imaging. The area of the angle map of orientation preference representing cardinal and oblique orientations was determined; in addition, orientation selectivity indices were computed separately for cardinal and oblique difference images. In normal juvenile animals, we confirm a small, but statistically significant overrepresentation of near horizontal orientations in the cortical angle map. However, the degree of anisotropy did not increase in the weeks that followed eye opening when orientation selectivity matured; rather, it decreased. In dark-reared ferrets, an even greater cortical anisotropy emerged, but angle maps in these animals developed an apparently anomalous overrepresentation of near vertical orientations. Thus, the overrepresentation of cardinal orientations in the visual cortex does not require experience with an anisotropic visual environment; indeed, cortical anisotropy can develop in the complete absence of vision. These observations suggest that the role of visual experience in cortical maturation is to promote the isotropic representation of orientation preference.
Collapse
|
28
|
Abstract
To determine whether developing primate eyes are capable of growing in a manner that eliminates astigmatism, we reared infant monkeys with cylindrical spectacle lenses in front of one or both eyes that optically simulated with-the-rule, against-the-rule, or oblique astigmatism (+1.50-3.00x90, x180, x45 or x135). Refractive development was assessed by retinoscopy, keratometry and A-scan ultrasonography. In contrast to control monkeys, the cylinder-lens-reared monkeys developed significant amounts of astigmatism. The astigmatism was corneal in nature, bilaterally mirror symmetric and oblique in axis, and reversible. The ocular astigmatism appeared to be due to a reduction in the rate of corneal flattening along the steeper meridian while the other principal meridian appeared to flatten at a more normal rate. However, regardless of the orientation of the optically imposed astigmatism, the axis of the ocular astigmatism was not appropriate to compensate for the astigmatic error imposed by the treatment lenses. Our results indicate that visual experience can alter corneal shape, but there was no evidence that primates have an active, visually regulated "sphericalization" mechanism.
Collapse
Affiliation(s)
- Chea-su Kee
- College of Optometry, University of Houston, 505 J Davis Armistead Building, Houston, TX 77204-2020, USA
| | | | | | | |
Collapse
|