1
|
Frota MLCD, Klamt F, Dal-Pizzol F, Schiengold M, Moreira JCF. Retinol-inducedmdr1andmdr3 modulation in cultured rat Sertoli cells is attenuated by free radical scavengers. Redox Rep 2013; 9:161-5. [PMID: 15327746 DOI: 10.1179/135100004225005192] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The effects of retinol on modulation of mdr genes in Sertoli cells were investigated. The hypothesis that free radical scavengers may attenuate the effect of retinol was also tested. Sertoli cells isolated from 15-day-old Wistar rats were cultured for 48 h and then treated with retinol for 24 h with or without free radical scavengers (1 mM mannitol, 0.1 mM Trolox or superoxide dismutase [200 U/ml]). Expression of mdr1, mdr2 and mdr3 genes was monitored by RT-PCR. Mitochondrial superoxide production was used as an index of ROS production. Expression of mdr1 and mdr3 was inhibited by retinol treatment (7 microM, 24 h), while mdr2 was not detected in response to any of the treatments. We also observed that retinol supplementation (7 microM, 24 h) increased superoxide production. The observed inhibition of mdr genes was attenuated by all co-treatments, suggesting that retinol-induced ROS are required for inhibition of mdr1 and mdr3 expression. The results suggest that retinol may play an important role in the modulation of the mdr gene family in cultured rat Sertoli cells and that these effects appear to be mediated by ROS.
Collapse
|
2
|
Assessing the impact of child/adult differences in hepatic first-pass effect on the human kinetic adjustment factor for ingested toxicants. Regul Toxicol Pharmacol 2012. [PMID: 23200794 DOI: 10.1016/j.yrtph.2012.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The objective of this study was to evaluate the impact of interindividual differences in hepatic first-pass effect (FPE) on the magnitude of the human kinetic adjustment factor (HKAF) for ingested toxicants. This factor aims at replacing a default value of 3.2 used in non-cancer risk assessment. Coupled with Monte Carlo simulations, steady-state equations that account for FPE were used to obtain distributions of arterial blood concentrations (CAss) and rates of metabolism in adults, neonates, infants and toddlers continuously exposed to an oral dose of 1 μg/kg/d of theoretical CYP2E1 and CYP1A2 substrates. For such substrates exhibiting a range of blood:air partition coefficients (Pb: 1-10,000) and hepatic extraction ratios in an average adult (E(ad): 0.01-0.99), HKAFs were computed as the ratio of the 95th percentile of dose metrics for each subpopulation over the 50th percentile value in adults. The reduced hepatic enzyme content in neonates as compared to adults resulted in correspondingly diminished FPE. Consequently, HKAFs greater than 3.2 could be observed, based on CAss only, in the following cases: for some CYP2E1 substrates with E(ad) ≤ 0.3, in neonates (max.: 6.3); and for some CYP1A2 substrates with E(ad) ≤ 0.1 and 0.7, in, respectively, neonates and infants (max.: 28.3). Overall, this study pointed out the importance of accounting for child/adult differences in FPE when determining the HKAF for oral exposure.
Collapse
|
3
|
Molinas A, Sicard G, Jakob I. Functional evidence of multidrug resistance transporters (MDR) in rodent olfactory epithelium. PLoS One 2012; 7:e36167. [PMID: 22563480 PMCID: PMC3341370 DOI: 10.1371/journal.pone.0036167] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 04/02/2012] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND P-glycoprotein (Pgp) and multidrug resistance-associated protein (MRP1) are membrane transporter proteins which function as efflux pumps at cell membranes and are considered to exert a protective function against the entry of xenobiotics. While evidence for Pgp and MRP transporter activity is reported for olfactory tissue, their possible interaction and participation in the olfactory response has not been investigated. PRINCIPAL FINDINGS Functional activity of putative MDR transporters was assessed by means of the fluorometric calcein acetoxymethyl ester (calcein-AM) accumulation assay on acute rat and mouse olfactory tissue slices. Calcein-AM uptake was measured as fluorescence intensity changes in the presence of Pgp or MRP specific inhibitors. Epifluorescence microscopy measured time course analysis in the olfactory epithelium revealed significant inhibitor-dependent calcein uptake in the presence of each of the selected inhibitors. Furthermore, intracellular calcein accumulation in olfactory receptor neurons was also significantly increased in the presence of either one of the Pgp or MRP inhibitors. The presence of Pgp or MRP1 encoding genes in the olfactory mucosa of rat and mouse was confirmed by RT-PCR with appropriate pairs of species-specific primers. Both transporters were expressed in both newborn and adult olfactory mucosa of both species. To assess a possible involvement of MDR transporters in the olfactory response, we examined the electrophysiological response to odorants in the presence of the selected MDR inhibitors by recording electroolfactograms (EOG). In both animal species, MRPs inhibitors induced a marked reduction of the EOG magnitude, while Pgp inhibitors had only a minor or no measurable effect. CONCLUSIONS The findings suggest that both Pgp and MRP transporters are functional in the olfactory mucosa and in olfactory receptor neurons. Pgp and MRPs may be cellular constituents of olfactory receptor neurons and represent potential mechanisms for modulation of the olfactory response.
Collapse
Affiliation(s)
- Adrien Molinas
- Equipe Neurophysiologie de la Peripherie des Systèmes Chimiosensoriels, Centre des Sciences du Goût et de l'Alimentation, CNRS UMR 6265, INRA, Université de Bourgogne, Dijon, France
| | - Gilles Sicard
- Equipe Neurophysiologie de la Peripherie des Systèmes Chimiosensoriels, Centre des Sciences du Goût et de l'Alimentation, CNRS UMR 6265, INRA, Université de Bourgogne, Dijon, France
| | - Ingrid Jakob
- Equipe Neurophysiologie de la Peripherie des Systèmes Chimiosensoriels, Centre des Sciences du Goût et de l'Alimentation, CNRS UMR 6265, INRA, Université de Bourgogne, Dijon, France
| |
Collapse
|
4
|
Cytostatic drugs in infants: A review on pharmacokinetic data in infants. Cancer Treat Rev 2012; 38:3-26. [DOI: 10.1016/j.ctrv.2011.03.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 03/21/2011] [Accepted: 03/24/2011] [Indexed: 01/11/2023]
|
5
|
Rocha CT, Souza MM. The influence of lead on different proteins in gill cells from the freshwater bivalve, Corbicula fluminea, from defense to repair biomarkers. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2012; 62:56-67. [PMID: 21526414 DOI: 10.1007/s00244-011-9675-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 04/11/2011] [Indexed: 05/30/2023]
Abstract
The objective of this study was to evaluate the influence of lead (Pb) on regulatory proteins linked to mechanisms of animal adaptation to polluted environments (using in vivo and in vitro tests) and to validate the in vitro assay as a tool for environmental assessment. Specimens of the bivalve Corbicula fluminea were exposed to nominal concentrations of Pb 5 mg l(-1) for 96 h. Isolated gill cells were exposed to three concentrations (1, 10, and 100 μM) for 5 h. Metal toxicity was evaluated by cell viability (trypan blue exclusion). We also analyzed Na+/K+ adenosine triphosphatase (ATPase) and carbonic anhydrase activity. Additionally, the multixenobiotic-resistance (MXR) phenotype was evaluated by the accumulation of rhodamine B (RB). Immunolabeling was used to quantify the expression of P-glycoproteins (C219) and proteins involved in ion transport, water movement, and cellular repair using antibodies against Na+/K+ ATPase, aquaporin 1, and heat-shock protein 70 (Hsp70). Pb was shown to be toxic in both in vivo and in vitro tests, in which cellular viability significantly decreased by approximately 25%. Cellular viability in the in vivo assays was determined by gill cell isolation after the entire animal was exposed to Pb. We observed that Na+/K+ ATPase activity was inhibited by 70%. Also, the expression of the MXR phenotype significantly increased in our in vivo tests. A statistically significant difference was observed in the expression of all proteins in the in vitro assays, whereas only Hsp70 increased in vivo. Employing these analyses, we could validate the sensitivity of the in vitro tests and can propose our in vitro model as a possible tool for environmental assessment.
Collapse
Affiliation(s)
- Caroline T Rocha
- Centro de Ciências Biológicas, Departamento de Ciências Fisiológicas, Laboratório de Ecofisiologia Animal, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | | |
Collapse
|
6
|
P-glycoprotein induction by breast milk attenuates intestinal inflammation in experimental necrotizing enterocolitis. J Transl Med 2011; 91:1668-79. [PMID: 21788941 PMCID: PMC3909679 DOI: 10.1038/labinvest.2011.113] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
P-glycoprotein (Pgp), a product of the multi-drug resistance gene MDR1a, is a broad specificity efflux ATP cassette transmembrane transporter that is predominantly expressed in epithelial tissues. Because mdr1a(-/-) mice tend to develop spontaneous colitis in bacteria-dependent manner, Pgp is believed to have a role in protection of the intestinal epithelium from luminal bacteria. Here we demonstrate that levels of Pgp in the small intestine of newborn rodents dramatically increase during breastfeeding, but not during formula feeding (FF). In rats and mice, levels of intestinal Pgp peak on days 3-7 and 1-5 of breastfeeding, respectively. The mdr1a(-/-) neonatal mice subjected to FF, hypoxia, and hypothermia have significantly higher incidence and pathology, as well as significantly earlier onset of necrotizing enterocolitis (NEC) than congenic wild type mice. Breast-fed mdr1a(-/-) neonatal mice are also more susceptible to intestinal damage caused by the opportunistic pathogen Cronobacter sakazakii that has been associated with hospital outbreaks of NEC. Breast milk, but not formula, induces Pgp expression in enterocyte cell lines in a dose- and time-dependent manner. High levels of ectopically expressed Pgp protect epithelial cells in vitro from apoptosis induced by C. sakazakii. Taken together, these results show that breast milk-induced expression of Pgp may have a role in the protection of the neonatal intestinal epithelium from injury associated with nascent bacterial colonization.
Collapse
|
7
|
Szabo DT, Diliberto JJ, Huwe JK, Birnbaum LS. Differences in Tissue Distribution of HBCD Alpha and Gamma between Adult and Developing Mice. Toxicol Sci 2011; 123:256-63. [DOI: 10.1093/toxsci/kfr161] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
8
|
von Stülpnagel C, Plischke H, Zill P, Bäumel C, Spiegel R, Gruber R, Kluger G. Letter: lack of association between MDR1 polymorphisms and pharmacoresistance to anticonvulsive drugs in patients with childhood-onset epilepsy. Epilepsia 2010; 50:1835-7. [PMID: 20831524 DOI: 10.1111/j.1528-1167.2009.02077.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Myllynen P, Kummu M, Sieppi E. ABCB1 and ABCG2 expression in the placenta and fetus: an interspecies comparison. Expert Opin Drug Metab Toxicol 2010; 6:1385-98. [PMID: 20738225 DOI: 10.1517/17425255.2010.514264] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
IMPORTANCE OF THE FIELD ABCB1 and ABCG2 are efflux transporters which have a major impact on the pharmacological behavior of numerous drugs. They are expressed, for example, in the intestine, liver, kidney, BBB and placenta. It has become evident that ABCB1 and ABCG2 modify the pharmaco/toxicokinetics in the placenta and fetus and may consequently affect the outcome of pregnancy. AREAS COVERED IN THIS REVIEW Comprehensive literature searches were done using PubMed (until June 2010) to identify publications on ABCB1 and ABCG2 expression in placenta and fetal tissues in human, mouse, rat, guinea-pig and rabbit. WHAT THE READER WILL GAIN In this review, we aim to provide an overview of the current knowledge on the ABCB1 and ABCG2 transporter expression profiles in the placenta and fetal tissues in humans relative to other species. TAKE HOME MESSAGE The available information on ABCB1 and ABCG2 temporal expression profiles in placenta and fetus indicates rather good correlation among human, mouse and rat although some specific differences have been reported. However, at this point no detailed comparisons or comparative functional data are available. Detailed knowledge on the expression patterns and functional activity of ABCB1 and ABCG2 transporters placenta and developing embryo/fetus in different species could possibly help the interspecies extrapolation.
Collapse
Affiliation(s)
- Päivi Myllynen
- University of Oulu, Institute of Biomedicine, Department of Pharmacology and Toxicology, PO Box 5000, FIN-90014 Oulu, Finland.
| | | | | |
Collapse
|
10
|
Abbott NJ, Patabendige AAK, Dolman DEM, Yusof SR, Begley DJ. Structure and function of the blood-brain barrier. Neurobiol Dis 2009; 37:13-25. [PMID: 19664713 DOI: 10.1016/j.nbd.2009.07.030] [Citation(s) in RCA: 3274] [Impact Index Per Article: 204.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 07/13/2009] [Accepted: 07/25/2009] [Indexed: 02/08/2023] Open
Abstract
Neural signalling within the central nervous system (CNS) requires a highly controlled microenvironment. Cells at three key interfaces form barriers between the blood and the CNS: the blood-brain barrier (BBB), blood-CSF barrier and the arachnoid barrier. The BBB at the level of brain microvessel endothelium is the major site of blood-CNS exchange. The structure and function of the BBB is summarised, the physical barrier formed by the endothelial tight junctions, and the transport barrier resulting from membrane transporters and vesicular mechanisms. The roles of associated cells are outlined, especially the endfeet of astrocytic glial cells, and pericytes and microglia. The embryonic development of the BBB, and changes in pathology are described. The BBB is subject to short and long-term regulation, which may be disturbed in pathology. Any programme for drug discovery or delivery, to target or avoid the CNS, needs to consider the special features of the BBB.
Collapse
Affiliation(s)
- N Joan Abbott
- King's College London, Blood-Brain Barrier Group, Pharmaceutical Science Division, Hodgkin Building, Guy's Campus, London SE1 1UL, UK.
| | | | | | | | | |
Collapse
|
11
|
Gonzalez TP, Mucenic T, Brenol JCT, Xavier RM, Schiengold M, Chies JAB. ABCB1 C1236T, G2677T/A and C3435T polymorphisms in systemic lupus erythematosus patients. Braz J Med Biol Res 2009; 41:769-72. [PMID: 18820766 DOI: 10.1590/s0100-879x2008000900005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Accepted: 08/26/2008] [Indexed: 01/11/2023] Open
Abstract
P-glycoprotein (Pgp), the ABCB1 gene product, acts as an efflux pump that transports a large variety of substrates and is a mechanism of cell protection against xenobiotics. An increasing number of studies have shown that some ABCB1 polymorphisms may affect Pgp expression and activity, as well as affecting the development and susceptibility to diseases and pharmacological response. High activity of Pgp has been detected in systemic lupus erythematosus (SLE) patients. The C1236T, G2677T/A, and C3435T are the most commonly studied single nucleotide polymorphisms in the ABCB1 gene. Therefore, their frequencies were determined in Brazilian individuals with European ancestry (N = 143) and in SLE patients (N = 137). Genotyping was performed by PCR-RFLP analysis using specific primers followed by incubation with the appropriate restriction enzymes. The resulting DNA fragments were visualized on agarose or polyacrylamide gels. No statistically significant differences were observed in allelic and genotypic frequencies between SLE and healthy subjects (Fisher exact test). Nevertheless, the 2677A allelic frequency was lower in SLE patients with malar rash (0.007) compared with patients without this feature (0.04; P = 0.0054), while the frequency of this variant was higher in SLE patients with pleuritis (0.07) compared with patients without this feature (0.01; P = 0.0156). We suggest that although the ABCB1 polymorphisms do not directly interfere in SLE susceptibility, their evaluation, especially the 2677A allele, in other immunological processes may be interesting since they can interfere in clinical features of this disease.
Collapse
Affiliation(s)
- T P Gonzalez
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | | | | | | | | | | |
Collapse
|
12
|
Kyle-Cezar F, Echevarria-Lima J, Rumjanek VM. Independent Regulation of ABCB1 and ABCC Activities in Thymocytes and Bone Marrow Mononuclear Cells during Aging. Scand J Immunol 2007; 66:238-48. [PMID: 17635801 DOI: 10.1111/j.1365-3083.2007.01965.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Aging modifies a number of functional and phenotypic parameters of cells from the immune system. In this study, the activities of two members of the superfamily of ATP-binding cassette (ABC) transport proteins, ABCB1 and ABCC (measured by rhodamine 123 efflux and Fluo-3 efflux respectively), were compared in murine bone marrow cells and thymocytes of young (3-4 weeks old), adult (2-3 months old) and old (18 months old) mice. ABCB1 activity was shown to be age regulated in murine bone marrow mononuclear cells and thymocytes. In the bone marrow, the increased amount of cells with ABCB1 activity observed in old mice was restricted to the c-kit(-)Sca-1(+) and c-kit(+)Sca-1(+) subpopulations. Only a small percentage of c-kit(+) cells in the thymus had ABCB1 activity, and this subpopulation increased with age. In the thymus, old age augmented this activity in the CD4(-) CD8(-) double-negative cells and in the CD4(+) and CD8(+) single-positive populations. The activity of another ABC transporter, the ABCC-related activity, was also modified by age in the bone marrow. However, the age-related increase was observed in the subpopulations were ABCB1 was not modified, namely the non-progenitor population (c-kit(-)Sca-1(-)cells) and c-kit(+)Sca-1(-) cells. Nearly, all thymocytes expressed the ABCC1 molecule in an active form and aging did not affect this pattern. This study demonstrates an independent upregulation of ABCB1 and ABCC activities during the aging process. The increases were observed in different subsets of cells but followed a developmentally regulated pattern. The functions played by these transporters and alterations in aging are discussed.
Collapse
Affiliation(s)
- F Kyle-Cezar
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
13
|
Schiengold M, Schwantes L, Ribeiro MF, Lothhammer N, Gonzalez TP, Chies JAB, Nardi NB. Expression of mdr isoforms in mice during estrous cycle and under hormone stimulation. Genet Mol Biol 2006. [DOI: 10.1590/s1415-47572006000400029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
14
|
Garrovo C, Rosati A, Bartoli F, Decorti G. St John's wort modulation and developmental expression of multidrug transporters in the rat. Phytother Res 2006; 20:468-73. [PMID: 16619352 DOI: 10.1002/ptr.1880] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Extracts of St John's wort (SJW) (Hypericum perforatum) are a potent inducer of enzymes of the cytochrome P450 system and of the transport protein P-glycoprotein, and interactions with a range of commonly prescribed medications have been described. In addition, recent experimental data suggest that, this otherwise safe treatment, could have some side effects when consumed during pregnancy and lactation. The aim of this study was to investigate, in Wistar rats, the effect of a treatment with high doses of SJW extract (100 and 1000 mg/kg/day) administered prenatally and during breastfeeding, on the level of transcripts of mdr1a, mdr1b, mrp1, mrp2 and cyp3A2 genes. All transcripts were detected in the liver, and their level of expression increased from fetuses to adults. SJW administration, at both dosages, caused a significant decrease of the levels of mdr1a, mdr1b, mrp1 and mrp2 in the livers of fetuses, and an increase in the levels of mdr1a, mdr1b, mrp2 and cyp3A2 in the mothers. In the other organs examined, a physiological regulation during ontogenesis was also evident, but SJW administration did not modify the expression level of the considered transcripts. These data suggest that the administration of the extract together with drugs that are substrates of transport proteins could be particularly hazardous during pregnancy.
Collapse
Affiliation(s)
- Chiara Garrovo
- Department of Biomedical Sciences, University of Trieste, 34127 Trieste, Italy
| | | | | | | |
Collapse
|
15
|
Pinto N, Halachmi N, Verjee Z, Woodland C, Klein J, Koren G. Ontogeny of renal P-glycoprotein expression in mice: correlation with digoxin renal clearance. Pediatr Res 2005; 58:1284-9. [PMID: 16306209 DOI: 10.1203/01.pdr.0000188697.99079.27] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Digoxin is eliminated mainly by the kidney through glomerular filtration and P-glycoprotein (P-gp) mediated tubular secretion. Toddlers and young children require higher doses of digoxin per kilogram of bodyweight than adults, although the reasons for this have not been elucidated. We hypothesized there is an age-dependant increase in P-gp expression in young children. The objectives of this study were to elucidate age-dependant expression of renal P-gp and its correlation with changes in the clearance rate of digoxin. FVB mice were killed at different ages to prepare total RNA for P-gp expression studies. Semi-quantitative RT-PCR was conducted to analyze mdr1a and mdr1b ontogeny in the kidney at: birth, 7, 14, 21, 28 and 45-d old adults. The pharmacokinetics of digoxin (7 microg/kg) was studied in mice of the same age groups. Newborn and Day 7 levels of both mdr1a and mdr1b were marginal. Day 21 mdr1b levels were significantly higher than both Day 14 and Day 28 levels. Digoxin clearance rates were the highest at Day 21, with significant correlation between P-gp expression and clearance values. Increases in digoxin clearance rates after weaning may be attributed, at least in part, to similar increases in P-gp expression.
Collapse
Affiliation(s)
- Natasha Pinto
- Division of Clinical Pharmacology, The Hospital for Sick Children, and Department of Pharmacology, University of Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
16
|
Echevarria-Lima J, Kyle-Cezar F, P Leite DF, Capella L, Capella MAM, Rumjanek VM. Expression and activity of multidrug resistance protein 1 in a murine thymoma cell line. Immunology 2005; 114:468-75. [PMID: 15804283 PMCID: PMC1782113 DOI: 10.1111/j.1365-2567.2005.02116.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Multidrug resistance proteins [MRPs and P-glycoprotein (Pgp)] are members of the family of ATP-binding cassette (ABC) transport proteins, originally described as being involved in the resistance against anti-cancer agents in tumour cells. These proteins act as ATP-dependent efflux pumps and have now been described in normal cells where they exert physiological roles. The aim of this work was to investigate the expression and activity of MRP and Pgp in the thymoma cell line, EL4. It was observed that EL4 cells expressed mRNA for MRP1, but not for MRP2, MRP3 or Pgp. The activity of ABC transport proteins was evaluated by using the efflux of the fluorescent probes carboxy-2'-7'-dichlorofluorescein diacetate (CFDA) and rhodamine 123 (Rho 123). EL4 cells did not retain CFDA intracellularly, and MRP inhibitors (probenecid, indomethacin and MK 571) decreased MRP1 activity in a concentration-dependent manner. As expected, EL4 cells accumulated Rho 123, and the presence of cyclosporin A and verapamil did not modify this accumulation. Most importantly, when EL4 cells were incubated in the presence of the MRP1 inhibitors indomethacin and MK 571 for 6 days, they started to express CD4 and CD8 molecules on their surface, producing double-positive cells and CD8 single-positive cells. Our results suggest that MRP activity is important for the maintenance of the undifferentiated state in this cell type. This finding might have implications in the physiological process of normal thymocyte maturation.
Collapse
Affiliation(s)
- Juliana Echevarria-Lima
- Laboratório de Imunologia Tumoral, Departamento de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|
17
|
Rosati A, Maniori S, Decorti G, Candussio L, Giraldi T, Bartoli F. Physiological regulation of P-glycoprotein, MRP1, MRP2 and cytochrome P450 3A2 during rat ontogeny. Dev Growth Differ 2003; 45:377-87. [PMID: 12950279 DOI: 10.1046/j.1440-169x.2003.00699.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
P-glycoprotein and the multidrug resistance-related proteins MRP1 and MRP2 belong to the ATP binding cassette family of proteins and transport a wide range of substrates. These proteins are also involved in metabolic and excretory processes of xenobiotics. The rat genes mdr1a and mdr1b code for P-glycoproteins, while mrp1 and mrp2 genes code for MRP1 and MRP2 proteins, respectively. In this study, the physiological modulation of the level of transcript for these genes during rat ontogeny in the liver, kidney, lung, brain and heart was analyzed by reverse transcription-polymerase chain reaction. An increasing level of transcript during ontogeny was demonstrated for mdr1a and mdr1b in all tissues considered, as well as for mrp2, which was detected only in the liver and kidney. In contrast, mrp1 transcript, present in all tissues, did not show any modulation. The maximum level of expression was reached in adult animals and a significant decrease was demonstrated in aging rats. Western blot analysis with C219 and M2III-6 monoclonal antibodies confirmed this different pattern of expression during ontogeny in the liver. The physiological regulation of cytochrome P450 3A2 was also considered: in the rat liver, an increase in the level of transcript during ontogeny, with a maximum in 60-day-old rats and a decrease in 8-month-old rats, was evident.
Collapse
Affiliation(s)
- Anna Rosati
- Department of Biomedical Sciences, University of Trieste, Via L. Giorgieri no. 7, 34100 Trieste, Italy
| | | | | | | | | | | |
Collapse
|