Thymosin-alpha1 modulates dendritic cell differentiation and functional maturation from human peripheral blood CD14+ monocytes.
Immunol Lett 2007;
110:110-20. [PMID:
17532057 DOI:
10.1016/j.imlet.2007.04.007]
[Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Revised: 04/09/2007] [Accepted: 04/12/2007] [Indexed: 11/18/2022]
Abstract
Although thymosins have been demonstrated to have immunomodulatory effects, it is still not clear whether they could affect dendritic cells (DCs), the most professional antigen-presenting cells. The objective of this study was to determine the effect and potential mechanisms of thymosin-alpha1 (Talpha1) on DC differentiation and functional maturation. Human peripheral blood CD14(+) monocytes were purified by using a magnetic separation column and cultured with GM-CSF and IL-4 to differentiate into immature DCs (iDCs). In the presence of Talpha1, iDC surface markers CD40, CD80, MHC class I and class II molecules were significantly upregulated as measured by flow cytemotry analysis. However, Tbeta4 or Tbeta10 did not show these effects on iDCs. There was an approximately 30% reduction in antigen (FITC-conjugated dextran)-uptake by Talpha1-treated iDCs as compared with non-Talpha1-treated iDCs. In addition, Talpha1-treated matured DCs (mDCs) showed an increased stimulation of allogeneic CD3(+) T-cell proliferation as measured by a mixed-lymphocyte reaction assay. Talpha1-treated mDCs also increased the production of several Th1- and Th2-type cytokines as measured by a Bio-Plex cytokine assay. Furthermore, rapid activation of p38 MAPK and NFkappaB was seen in Talpha1-treated iDCs as measured by a Bio-Plex phosphoprotein assay. Thus, Talpha1 significantly enhances DC differentiation, activation, and functions from human peripheral blood CD14(+) monocytes possibly through a mechanism of the activation of p38 MAPK and NFkappaB pathways. This study provides a basis to further evaluate Talpha1 as a possible adjuvant for a DC-directed vaccine or therapy.
Collapse