1
|
Han Z, Liu Q, Li H, Zhang M, You L, Lin Y, Wang K, Gou Q, Wang Z, Zhou S, Cai Y, Yuan L, Chen H. The role of monocytes in thrombotic diseases: a review. Front Cardiovasc Med 2023; 10:1113827. [PMID: 37332592 PMCID: PMC10272466 DOI: 10.3389/fcvm.2023.1113827] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/18/2023] [Indexed: 06/20/2023] Open
Abstract
Cardiovascular and cerebrovascular diseases are the number one killer threatening people's life and health, among which cardiovascular thrombotic events are the most common. As the cause of particularly serious cardiovascular events, thrombosis can trigger fatal crises such as acute coronary syndrome (myocardial infarction and unstable angina), cerebral infarction and so on. Circulating monocytes are an important part of innate immunity. Their main physiological functions are phagocytosis, removal of injured and senescent cells and their debris, and development into macrophages and dendritic cells. At the same time, they also participate in the pathophysiological processes of pro-coagulation and anticoagulation. According to recent studies, monocytes have been found to play a significant role in thrombosis and thrombotic diseases of the immune system. In this manuscript, we review the relationship between monocyte subsets and cardiovascular thrombotic events and analyze the role of monocytes in arterial thrombosis and their involvement in intravenous thrombolysis. Finally, we summarize the mechanism and therapeutic regimen of monocyte and thrombosis in hypertension, antiphospholipid syndrome, atherosclerosis, rheumatic heart disease, lower extremity deep venous thrombosis, and diabetic nephropathy.
Collapse
Affiliation(s)
- Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiong Liu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongpeng Li
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Meiqi Zhang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Luling You
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yumeng Lin
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke Wang
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiaoyin Gou
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhanzhan Wang
- Lianyungang Clinical College of Nanjing Medical University, Lianyungang, China
| | - Shuwei Zhou
- Department of Radiology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - YiJin Cai
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lan Yuan
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haoran Chen
- Science and Education Department, Chengdu Xinhua Hospital, Chengdu, China
| |
Collapse
|
2
|
Shah K, Bayoumi R, Banerjee Y. Protein anticoagulants targeting factor VIIa-tissue factor complex: a comprehensive review. Hematology 2012; 18:1-7. [PMID: 22980919 DOI: 10.1179/1607845412y.0000000035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Anticoagulants are pivotal for the treatment of debilitating thromboembolic and associated disorders. Current anticoagulants such as heparin and warfarin are non-specific and have a narrow therapeutic window. These limitations have provided the impetus to develop new anticoagulant therapies/strategies that target specific factors in the blood coagulation cascade, ideally those located upstream in the clotting process. Factor VIIa (FVIIa) presents an attractive target as it, in complex with tissue factor (TF), acts as the prima ballerina for the formation of blood clot. A comprehensive review delineating the structure-activity relationship of protein/peptide anticoagulants targeting FVIIa or TF-FVIIa complex is absent in the literature. In this article, we have addressed this deficit by appraising the peptide/protein anticoagulants that target FVIIa/TF-FVIIa complex. Further, the current status of these anticoagulants, with regard to their performance in different clinical trials has also been presented. Lastly, the unexplored domains of these unique proteins have also been highlighted, which will facilitate further translational research in this paradigm, to improve strategies to counter and treat thromboembolic disorders.
Collapse
Affiliation(s)
- Karna Shah
- Department of Clinical Biochemistry, College of Medicine and Health Sciences, SQ University, Muscat, Oman
| | | | | |
Collapse
|
3
|
Muñoz-García B, Madrigal-Matute J, Moreno JA, Martin-Ventura JL, López-Franco O, Sastre C, Ortega L, Burkly LC, Egido J, Blanco-Colio LM. TWEAK-Fn14 interaction enhances plasminogen activator inhibitor 1 and tissue factor expression in atherosclerotic plaques and in cultured vascular smooth muscle cells. Cardiovasc Res 2010; 89:225-33. [PMID: 20810696 DOI: 10.1093/cvr/cvq278] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS atherosclerotic plaque development can conclude with a thrombotic acute event triggered by plaque rupture/erosion. Tumour necrosis factor-like weak inducer of apoptosis (TWEAK) is a member of the tumour necrosis factor superfamily that, through its receptor, fibroblast growth factor-inducible 14 (Fn14), participates in vascular remodelling, increasing vascular inflammatory responses and atherosclerotic lesion size in ApoE knockout mice. However, the role of the TWEAK-Fn14 axis in thrombosis has not been previously investigated. METHODS AND RESULTS we have examined whether TWEAK regulates expression of prothrombotic factors such as tissue factor (TF) and plasminogen activator inhibitor 1 (PAI-1) in atherosclerotic plaques as well as in human aortic vascular smooth muscle cells (hASMCs) in culture. Expression of TF and PAI-1 was colocalized and positively correlated with Fn14 in human carotid atherosclerotic plaques. In vitro, TWEAK increased TF and PAI-1 mRNA, protein expression and activity in hASMCs. All these effects were reversed using blocking anti-TWEAK monoclonal antibody, anti-Fn14 antibody or Fn14 small interfering RNA, indicating that TWEAK increased the prothrombotic state through its receptor, Fn14. Finally, ApoE(-/-) mice were fed a hyperlipidaemic diet for 10 weeks, then randomized and treated with saline (controls), TWEAK (10 microg/kg/day), anti-TWEAK neutralizing monoclonal antibody (1000 µg/kg/day), or non-specific immunoglobulin G (1000 microg/kg/day) daily for 9 days. Systemic TWEAK injection increased TF and PAI-1 protein expression in the aortic root of ApoE(-/-) mice. Conversely, TWEAK blocking antibodies diminished both TF and PAI-1 protein expression compared with non-specific immunoglobulin G-treated mice. CONCLUSIONS our results indicate that the TWEAK-Fn14 axis can regulate activation of TF and PAI-1 expression in vascular cells. TWEAK-Fn14 may be a therapeutic target in the prothrombotic complications associated with atherosclerosis.
Collapse
Affiliation(s)
- Begoña Muñoz-García
- Renal and Vascular Research Laboratory, Instituto de Investigación Sanitaria, Fundación Jiménez Díaz , Autonoma University, Avd Reyes Católicos 2, 28040 Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Holy EW, Tanner FC. Tissue factor in cardiovascular disease pathophysiology and pharmacological intervention. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2010; 59:259-92. [PMID: 20933205 DOI: 10.1016/s1054-3589(10)59009-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Tissue factor (TF) is the major trigger of the coagulation cascade and thereby crucially involved in the maintenance of vascular hemostasis. By binding factor VIIa, the resulting TF:VIIa complex activates the coagulation factors IX and X ultimately leading to fibrin and clot formation. In the vessel wall, TF expression and activity is detectable in vascular smooth muscle cells and fibroblasts and, at a much lower level, in endothelial cells and can be induced by various stimuli including cytokines. In addition, TF is found in the bloodstream in circulating cells such as monocytes, in TF containing microparticles, and as a soluble splicing isoform. Besides its well-known extracellular role as a trigger of coagulation, TF also functions as a transmembrane receptor, and TF-dependent intracellular signaling events regulate the expression of genes involved in cellular responses such as proliferation and migration. TF indeed appears to be involved in the pathogenesis of neointima formation and tumor growth, and increased levels of TF have been detected in patients with cardiovascular risk factors or coronary artery disease as well as in those with cancer. Therefore, pharmacological or genetic inhibition of TF may be an attractive target for the treatment of cardiovascular disease and cancer. Different strategies for inhibition of TF have been developed such as inhibition of TF synthesis and blockade of TF action. Clinical applications of such strategies need to be tested in appropriate trials, in particular for evaluating the advantages of targeted versus systemic delivery of the inhibitors.
Collapse
Affiliation(s)
- Erik W Holy
- Cardiovascular Research, Physiology Institute, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
5
|
Abstract
TF (tissue factor) is the main trigger of the coagulation cascade; by binding Factor VIIa it activates Factor IX and Factor X, thereby resulting in fibrin formation. Various stimuli, such as cytokines, growth factors and biogenic amines, induce TF expression and activity in vascular cells. Downstream targets of these mediators include diverse signalling molecules such as MAPKs (mitogen-activated protein kinases), PI3K (phosphoinositide 3-kinase) and PKC (protein kinase C). In addition, TF can be detected in the bloodstream, known as circulating or blood-borne TF. Many cardiovascular risk factors, such as hypertension, diabetes, dyslipidaemia and smoking, are associated with increased expression of TF. Furthermore, in patients presenting with acute coronary syndromes, elevated levels of circulating TF are found. Apart from its role in thrombosis, TF has pro-atherogenic properties, as it is involved in neointima formation by inducing vascular smooth muscle cell migration. As inhibition of TF action appears to be an attractive target for the treatment of cardiovascular disease, therapeutic strategies are under investigation to specifically interfere with the action of TF or, alternatively, promote the effects of TFPI (TF pathway inhibitor).
Collapse
|
6
|
Förster Y, Schwenzer B. Efficient suppression of tissue factor synthesis using antisense oligonucleotides selected by an enhanced strategy for evaluation of structural characteristics. Oligonucleotides 2009; 18:355-64. [PMID: 18928330 DOI: 10.1089/oli.2008.0144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Selection of optimal antisense constructs is still a problem. Among a huge number of antisense oligonucleotides (AS-ONs) only a small piece show inhibitory efficacy. We want to develop an enhanced strategy for specific selection of effective AS-ONs based on prediction of secondary structure of the target messenger RNA (mRNA) and analysis of thermodynamic properties of the mRNA/AS-ON hybrid. Numerous AS-ONs targeted on human tissue factor (TF) mRNA were investigated to evaluate the relevance of different thermodynamic and structural properties on inhibitory efficacy. Cell viability, TF protein and TF mRNA were determined after transfection of bladder cancer cell line J82. Inhibitory efficacy was related to GC content, target region within the TF mRNA and stability of the mRNA/AS-ON hybrid or affinity of the AS-ON to the target mRNA. We found effective AS-ONs targeted on translated region or 3'-untranslated region of TF RNA. We also detected a great correlation between inhibitory efficacy and GC content as well as stability of the mRNA/AS-ON hybrid.
Collapse
Affiliation(s)
- Yvonne Förster
- Department of Biochemistry, Technical University Dresden, Dresden, Germany
| | | |
Collapse
|
7
|
Stephens AC, Ranlall NF, Rivers RPA. Suppression of HUVEC tissue factor synthesis by antisense oligodeoxynucleotide. Thromb Res 2007; 122:99-107. [PMID: 17920661 DOI: 10.1016/j.thromres.2007.08.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Revised: 08/08/2007] [Accepted: 08/20/2007] [Indexed: 11/28/2022]
Abstract
Tissue factor (TF) is an important regulator and effector molecule of coagulation. It is primary known as a cofactor for factor VIIa-mediated triggering of blood coagulation, which proceeds in a cascade of extracellular reactions, ultimately resulting in thrombin formation. In sepsis, expression of TF by activated monocytes, macrophages and endothelial cells may lead to disseminated intravascular coagulation. Further studies have suggested that TF also plays non-haemostatic roles in blood vessel development, tumor angiogenesis, metastasis and inflammation. In the present study we examined the feasibility of inhibiting lipopolysaccharide (LPS)-induced TF expression in cultured human umbilical vein endothelial cells (HUVECs) using a modified phosphorothioate antisense oligodeoxynucleotide targeted to the TF mRNA. CD31 receptor-mediated endocytosis was used as a means of delivering TF antisense oligomer to HUVECs. This DNA carrier system consists of anti-CD31 antibody conjugated to the antisense. Co-exposure of HUVECs with TF antisense and LPS resulted in 54.6+/-3.2% suppression of TF activity when compared with control LPS stimulated cells. The antisense also reduced the LPS-induced TF mRNA level. Control experiments with TF sense and mismatched antisense oligomers were performed to exclude non-specific inhibitory effects. The cytotoxicity of the antisense oligomer conjugate was also evaluated. Results demonstrate that this TF antisense oligomer specifically suppressed the synthesis of biologically active endothelial TF and that antisense oligomers might represent a useful tool in the investigation of endothelial TF function/biology.
Collapse
Affiliation(s)
- Alick C Stephens
- King's College London, Department of Asthma, Allergy and Respiratory Science, 5th Floor Thomas Guy House, Guy's Hospital, London SE1 9RT, UK.
| | | | | |
Collapse
|
8
|
Lwaleed BA, Vayro S, Racusen LC, Cooper AJ. Tissue factor expression by a human kidney proximal tubular cell line in vitro: a model relevant to urinary tissue factor secretion in disease? J Clin Pathol 2006; 60:762-7. [PMID: 17158639 PMCID: PMC1995797 DOI: 10.1136/jcp.2006.039636] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AIM To study baseline and stimulated tissue factor (TF) production from a normal, albeit immortalised, human kidney proximal tubular cell line (HKC-5), in order to establish a model for investigating the role of inflammatory mediators in the increased urinary TF (uTF) seen in inflammatory and neoplastic disease. METHODS TF procoagulant activity, expression and secretion in HKC-5 cells were investigated using TF activity and antigen assays, fluorescence confocal microscopy and immunocytochemistry. TF expression in the HKC-5 cells was also studied using reverse transcription (RT)-PCR and its synthesis was suppressed using antisense oligodeoxynucleotide (ODN), directed against human TF mRNA. Cells were stimulated, after serum deprivation, with bacterial lipopolysaccharide (LPS), an agonist known to enhance TF expression in monocytes. They were also subject to serum starvation. RESULTS Analysis by RT-PCR showed TF production by stimulated and actively metabolising HKC-5 cells. Antisense ODN treatment resulted in approximately 50% suppression of TF synthesis compared to a mismatch ODN. The amount of TF produced by the HKC-5 cells was time dependent and coincides with a decrease in the intracellular TF levels. LPS up-regulated TF production in HKC-5 cells. Reducing fetal calf serum concentrations in the culture medium decreased TF production and secretion. CONCLUSION Stimulated TF synthesis and secretion in vitro by HKC-5 cells is consistent with the hypothesis that uTF is produced by tubular cells influenced by mediators of disease states and provides a model for further mechanistic investigations.
Collapse
Affiliation(s)
- Bashir A Lwaleed
- Department of Urology, Southampton University Hospitals, Southampton, UK.
| | | | | | | |
Collapse
|
9
|
Chu AJ. Tissue factor upregulation drives a thrombosis-inflammation circuit in relation to cardiovascular complications. Cell Biochem Funct 2006; 24:173-92. [PMID: 15617024 DOI: 10.1002/cbf.1200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The extrinsic coagulation is recognized as an 'inducible' signalling cascade resulting from tissue factor (TF) upregulation by exposure to clotting zymogen FVII upon inflammation or tissue injury. Following the substantial initiation, an array of proteolytic activation generates mediating signals (active serine proteases: FVIIa, FXa and FIIa) that lead to hypercoagulation with fibrin overproduction manifesting thrombosis. In addition, TF upregulation plays a central role in driving a thrombosis-inflammation circuit. Coagulant mediators (FVIIa, FXa and FIIa) and endproduct (fibrin) are proinflammatory, eliciting tissue necrosis factor, interleukins, adhesion molecules and many other intracellular signals in different cell types. Such resulting inflammation could ensure 'fibrin' thrombosis via feedback upregulation of TF. Alternatively, the resulting inflammation triggers platelet/leukocyte/polymononuclear cell activation thus contributing to 'cellular' thrombosis. TF is very vulnerable to upregulation resulting in hypercoagulability and subsequent thrombosis and inflammation, either of which presents cardiovascular risks. The prevention and intervention of TF hypercoagulability are of importance in cardioprotection. Blockade of inflammation reception and its intracellular signalling prevents TF expression from upregulation. Natural (activated protein C, tissue factor pathway inhibitor, or antithrombin III) or pharmacological anticoagulants readily offset the extrinsic hypercoagulation mainly through FVIIa, FXa or FIIa inhibition. Therefore, anticoagulants turn off the thrombosis-inflammation circuit, offering not only antithrombotic but anti-inflammatory significance in the prevention of cardiovascular complications.
Collapse
Affiliation(s)
- Arthur J Chu
- Surgery Department, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
10
|
Abstract
Tissue factor (TF), formerly known as thromboplastin, is the key initiator of the coagulation cascade; it binds factor VIIa resulting in activation of factor IX and factor X, ultimately leading to fibrin formation. TF expression and activity can be induced in endothelial cells, vascular smooth muscle cells, and monocytes by various stimuli such as cytokines, growth factors, and biogenic amines. These mediators act through diverse signal transduction mechanisms including MAP kinases, PI3-kinase, and protein kinase C. Cellular TF is present in three pools as surface, encrypted, and intracellular protein. TF can also be detected in the bloodstream, referred to as circulating or blood-borne TF. Elevated levels of TF are observed in patients with cardiovascular risk factors such as hypertension, diabetes, dyslipidemia, and smoking as well as in those with acute coronary syndromes. TF may indeed be involved in the pathogenesis of atherosclerosis by promoting thrombus formation; in addition, it can induce migration and proliferation of vascular smooth muscle cells. As a consequence, therapeutic strategies have been developed to specifically interfere with the action of TF such as antibodies against TF, site-inactivated factor VIIa, or recombinant TF pathway inhibitor. Inhibition of TF action appears to be an attractive target for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Jan Steffel
- Cardiovascular Research, Physiology Institute, Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland
| | | | | |
Collapse
|
11
|
Böhl M, Schwenzer B. A potent inhibitor of prothrombin gene expression as a result of standardized target site selection and design of antisense oligonucleotides. Oligonucleotides 2005; 15:172-82. [PMID: 16201905 DOI: 10.1089/oli.2005.15.172] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The development of antisense oligonucleotides (AS-ODN) always had the limitation that because of complex mRNA secondary structures, not every designed AS-ODN inhibited the expression of its target. There have been many investigations to overcome this problem in the last few years. This produced a great deal of theoretical and empirical findings about characteristics of effective AS-ODNs in respect to their target regions but no standardized selection procedure of AS-ODN target regions within a given mRNA or standardized design of AS-ODNs against a specific target region. We present here a standardized method based on secondary structure prediction for target site selection and AS-ODN design, followed by validation of the antisense effect caused by our predicted AS-ODNs in cell culture. The combination of theoretical design and experimental selection procedure led to an AS-ODN that efficiently and specifically reduces prothrombin mRNA and antigen.
Collapse
Affiliation(s)
- Markus Böhl
- Institute of Biochemistry, Technical University Dresden, Bergstrasse 66, D-01069 Dresden, Germany
| | | |
Collapse
|
12
|
Abstract
The transmembrane glycoprotein tissue factor (TF) is the initiator of the coagulation cascade in vivo. When TF is exposed to blood, it forms a high-affinity complex with the coagulation factors factor VII/activated factor VIIa (FVII/VIIa), activating factor IX and factor X, and ultimately leading to the formation of an insoluble fibrin clot. TF plays an essential role in hemostasis by restraining hemorrhage after vessel wall injury. An overview of biological and physiological aspects of TF, covering aspects consequential for thrombosis and hemostasis such as TF cell biology and biochemistry, blood-borne (circulating) TF, TF associated with microparticles, TF encryption-decryption, and regulation of TF activity and expression is presented. However, the emerging role of TF in the pathogenesis of diseases such as sepsis, atherosclerosis, certain cancers and diseases characterized by pathological fibrin deposition such as disseminated intravascular coagulation and thrombosis, has directed attention to the development of novel inhibitors of tissue factor for use as antithrombotic drugs. The main advantage of inhibitors of the TF*FVIIa pathway is that such inhibitors have the potential of inhibiting the coagulation cascade at its earliest stage. Thus, such therapeutics exert minimal disturbance of systemic hemostasis since they act locally at the site of vascular injury.
Collapse
Affiliation(s)
- Karl-Erik Eilertsen
- Department of Biochemistry, Institute of Medical Biology, Faculty of Medicine, University of Tromsø, Norway.
| | | |
Collapse
|
13
|
|
14
|
Abstract
Oligonucleotides (ONs) are a new class of therapeutic compounds under investigation for the treatment of a variety of disease states, such as cancer and HIV, and for FDA approval of an anti-CMV retinitis antisense molecule (Vitravene trade mark, Isis Pharmaceuticals). However, these molecules are limited not only by poor cellular uptake, but also by a general lack of understanding regarding the mechanism(s) of ON cellular uptake. As a result, various delivery vehicles have been developed that circumvent the proposed mechanism of uptake, endocytosis, while improving target specific delivery and/or drug stability. This review describes various traditional and novel delivery mechanisms that have been employed to improve ON cellular delivery, cost effectiveness, and therapeutic efficacy.
Collapse
Affiliation(s)
- Melanie A Lysik
- Midwestern University, College of Pharmacy-Glendale, Department of Pharmaceutical Sciences, 19555 N 59th Avenue, Glendale, Arizona 18308, USA.
| | | |
Collapse
|
15
|
Abstract
Exposure of blood to tissue factor (TF) sets off the coagulation cascade. TF is a transmembrane protein that serves as an essential cofactor for activated coagulation factor VII (FVIIa). TF may be exposed locally by vascular injury (such as balloon angioplasty) or by spontaneous rupture of an atherosclerotic plaque. Expression of TF may also be induced on monocytes and endothelial cells in conditions like sepsis and cancer, causing a more generalised activation of clotting. TF may thus play a central role in thrombosis in a number of settings, and attention has turned to blocking TF as a means to prevent thrombosis. Inhibiting the inducible expression of TF by monocytes can be achieved by 'deactivating' cytokines, such as interleukin (IL)-4, -10 and -13, or by certain prostanoids; by drugs that modify signal transduction, such as pentoxifylline, retinoic acid or vitamin D(3), or by antisense oligonucleotides. Such approaches are for the most part at a preclinical stage. The function of TF can be blocked by antibodies that prevent the binding of FVIIa to TF; by active site-inhibited FVIIa, which competes with native FVIIa for binding; by antibodies or small molecules that block the function of the TF/FVIIa complex; and by molecules, such as TF pathway inhibitor or nematode anticoagulant peptide C2, which inhibit the active site of FVIIa in the TF/FVIIa complex after first binding to activated factor X. The latter two agents have entered Phase II clinical trials. Perhaps most intriguing is the use of anti-TF agents locally, which holds the promise of stopping thrombosis at a specific site of injury without the bleeding risk associated with systemic anticoagulation.
Collapse
Affiliation(s)
- Donald S Houston
- Section of Hematology/Oncology, Department of Internal Medicine, University of Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba, R3E 0V9, Canada.
| |
Collapse
|
16
|
Iochmann S, Reverdiau-Moalic P, Beaujean S, Rideau E, Lebranchu Y, Bardos P, Gruel Y. Fast detection of tissue factor and tissue factor pathway inhibitor messenger RNA in endothelial cells and monocytes by sensitive reverse transcription-polymerase chain reaction. Thromb Res 1999; 94:165-73. [PMID: 10326763 DOI: 10.1016/s0049-3848(98)00209-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We developed fast and sensitive reverse transcription-polymerase chain reaction (RT-PCR) procedures to study the expression of tissue factor (TF) and tissue factor pathway inhibitor (TFPI-1) mRNA in human endothelial cells and monocytes. The sensitivity of the technique was checked by performing RT-PCR with limited numbers of cells. Cells were stimulated either with tumor necrosis factor (TNF-alpha) or endotoxin to induce TF mRNA expression or with phorbol ester to increase TFPI-1 mRNA expression. Thus, RT-PCR specific for TF mRNA provided detection from as few as 10(3) TNF-alpha stimulated endothelial cells and 5 x 10(2) monocytes stimulated by endotoxin. TF mRNA expression was increased by TNF-alpha in endothelial cells and in monocytes stimulated by endotoxin. Elevated expression of TF mRNA in monocytes without stimulation by endotoxin was mainly related to cell adhesion. TFPI-1 mRNA was constitutively expressed in endothelial cells and was detected in only 5 x 10(2) unstimulated cells and 10(2) phorbol ester-stimulated cells. Expression was increased upon stimulation with phorbol ester. With this technique, TFPI-1 mRNA in monocytes was rather low even when cells were stimulated with phorbol ester or after adhesion.
Collapse
Affiliation(s)
- S Iochmann
- Laboratoire d'Hémostase Foetale, Groupe Interactions Hôte-Greffon, UPRES-JE 1992, Faculté de Médecine, Tours, France
| | | | | | | | | | | | | |
Collapse
|