1
|
Reddel CJ, Pennings GJ, Chen VM, Gnanenthiran S, Kritharides L. Colchicine as a Modulator of Platelet Function: A Systematic Review. Semin Thromb Hemost 2022; 48:552-567. [PMID: 35882248 DOI: 10.1055/s-0042-1749660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The microtubule inhibitor and anti-inflammatory agent colchicine is used to treat a range of conditions involving inflammasome activation in monocytes and neutrophils, and is now known to prevent coronary and cerebrovascular events. In vitro studies dating back more than 50 years showed a direct effect of colchicine on platelets, but as little contemporary attention has been paid to this area, we have critically reviewed the effects of colchicine on diverse aspects of platelet biology in vitro and in vivo. In this systematic review we searched Embase, Medline, and PubMed for articles testing platelets after incubation with colchicine and/or reporting a clinical effect of colchicine treatment on platelet function, including only papers available in English and excluding reviews and conference abstracts. We identified 98 relevant articles and grouped their findings based on the type of study and platelet function test. In vitro, colchicine inhibits traditional platelet functions, including aggregation, clotting, degranulation, and platelet-derived extracellular vesicle formation, although many of these effects were reported at apparently supraphysiological concentrations. Physiological concentrations of colchicine inhibit collagen- and calcium ionophore-induced platelet aggregation and internal signaling. There have been limited studies of in vivo effects on platelets. The colchicine-platelet interaction has the potential to contribute to colchicine-mediated reduction in cardiovascular events, but there is a pressing need for high quality clinical research in this area.
Collapse
Affiliation(s)
- Caroline J Reddel
- ANZAC Research Institute, University of Sydney, Concord Repatriation General Hospital, Sydney, Australia
| | - Gabrielle J Pennings
- ANZAC Research Institute, University of Sydney, Concord Repatriation General Hospital, Sydney, Australia
| | - Vivien M Chen
- ANZAC Research Institute, University of Sydney, Concord Repatriation General Hospital, Sydney, Australia.,Department of Haematology, Concord Repatriation General Hospital, Sydney, Australia
| | - Sonali Gnanenthiran
- ANZAC Research Institute, University of Sydney, Concord Repatriation General Hospital, Sydney, Australia.,Department of Cardiology, Concord Repatriation General Hospital, Sydney, Australia
| | - Leonard Kritharides
- ANZAC Research Institute, University of Sydney, Concord Repatriation General Hospital, Sydney, Australia.,Department of Cardiology, Concord Repatriation General Hospital, Sydney, Australia
| |
Collapse
|
2
|
Lipoproteins as modulators of atherothrombosis: From endothelial function to primary and secondary coagulation. Vascul Pharmacol 2016; 82:1-10. [DOI: 10.1016/j.vph.2015.10.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 10/23/2015] [Accepted: 10/26/2015] [Indexed: 12/20/2022]
|
3
|
Hoekstra M, Berkel TJCV, Eck MV. Scavenger receptor BI: A multi-purpose player in cholesterol and steroid metabolism. World J Gastroenterol 2010; 16:5916-24. [PMID: 21157967 PMCID: PMC3007109 DOI: 10.3748/wjg.v16.i47.5916] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Scavenger receptor class B type I (SR-BI) is an important member of the scavenger receptor family of integral membrane glycoproteins. This review highlights studies in SR-BI knockout mice, which concern the role of SR-BI in cholesterol and steroid metabolism. SR-BI in hepatocytes is the sole molecule involved in selective uptake of cholesteryl esters from high-density lipoprotein (HDL). SR-BI plays a physiological role in binding and uptake of native apolipoprotein B (apoB)-containing lipoproteins by hepatocytes, which identifies SR-BI as a multi-purpose player in lipid uptake from the blood circulation into hepatocytes in mice. In adrenocortical cells, SR-BI mediates the selective uptake of HDL-cholesteryl esters, which is efficiently coupled to the synthesis of glucocorticoids (i.e. corticosterone). SR-BI knockout mice suffer from adrenal glucocorticoid insufficiency, which suggests that functional SR-BI protein is necessary for optimal adrenal steroidogenesis in mice. SR-BI in macrophages plays a dual role in cholesterol metabolism as it is able to take up cholesterol associated with HDL and apoB-containing lipoproteins and can possibly facilitate cholesterol efflux to HDL. Absence of SR-BI is associated with thrombocytopenia and altered thrombosis susceptibility, which suggests a novel role for SR-BI in regulating platelet number and function in mice. Transgenic expression of cholesteryl ester transfer protein in humanized SR-BI knockout mice normalizes hepatic delivery of HDL-cholesteryl esters. However, other pathologies associated with SR-BI deficiency, i.e. increased atherosclerosis susceptibility, adrenal glucocorticoid insufficiency, and impaired platelet function are not normalized, which suggests an important role for SR-BI in cholesterol and steroid metabolism in man. In conclusion, generation of SR-BI knockout mice has significantly contributed to our knowledge of the physiological role of SR-BI. Studies using these mice have identified SR-BI as a multi-purpose player in cholesterol and steroid metabolism because it has distinct roles in reverse cholesterol transport, adrenal steroidogenesis, and platelet function.
Collapse
|
4
|
Nofer JR, Brodde MF, Kehrel BE. High-density lipoproteins, platelets and the pathogenesis of atherosclerosis. Clin Exp Pharmacol Physiol 2010; 37:726-35. [PMID: 20337657 DOI: 10.1111/j.1440-1681.2010.05377.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
1. Prospective and interventional studies demonstrate an inverse relationship between plasma high-density lipoprotein (HDL)-cholesterol and the incidence of coronary artery disease. Although the atheroprotective effects of HDL are usually attributed to the reverse cholesterol transport, in which HDL shuttles cholesterol from cells in the arterial wall to the liver, other mechanisms are also under investigation. 2. Platelets are involved in both the initiation and progression of atherosclerotic lesions. In addition, the formation of thrombi over ruptured atherosclerotic plaques results in the narrowing or complete occlusion of coronary arteries. Current experimental evidence suggests that HDL may exert antiplatelet effects and thereby counteract the development of atherothrombotic vascular disease. 3. In vitro studies show that HDL inhibits agonist-stimulated platelet aggregation, fibrinogen binding, granule secretion and liberation of thromboxane A(2). Inhibitory effects of HDL are mediated, in part, by scavenger receptor type B1 and/or the apolipoprotein E receptor apoER2/LRP8 and are linked to the induction of intracellular signalling cascades encompassing stimulation of protein kinase C, cytoplasmatic alkalization and generation of nitric oxide. 4. Populational studies demonstrate that there is an inverse association between plasma HDL levels and recurrent venous thromboembolism. In addition, HDL-cholesterol has been identified as an independent predictor of acute platelet thrombus formation. The administration of reconstituted HDL particles in humans attenuates ex vivo platelet activation. 5. The present review summarizes recent advances in understanding HDL-platelet interactions and discusses the potential use of HDL-like particles in the therapy of thrombosis.
Collapse
Affiliation(s)
- Jerzy-Roch Nofer
- Center for Laboratory Medicine, University Hospital Münster, Münster, Germany.
| | | | | |
Collapse
|
5
|
Korporaal SJA, Akkerman JWN. Platelet activation by low density lipoprotein and high density lipoprotein. PATHOPHYSIOLOGY OF HAEMOSTASIS AND THROMBOSIS 2006; 35:270-80. [PMID: 16877876 DOI: 10.1159/000093220] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cardiovascular disease is the main cause of death and disability in the Western society. Lipoproteins are important in the development of cardiovascular disease since they change the properties of different cells involved in atherosclerosis and thrombosis. The interaction of platelets with lipoproteins has been under intense investigation. Particularly the initiation of platelet signaling pathways by low density lipoprotein (LDL) has been studied thoroughly, since platelets of hypercholesterolemic patients, whose plasma contains elevated LDL levels due to absent or defective LDL receptors, show hyperaggregability in vitro and enhanced activity in vivo. These observations suggest that LDL enhances platelet responsiveness. Several signaling pathways induced by LDL have been revealed in vitro, such as signaling via p38 mitogen-activated protein kinase and p125 focal adhesion kinase. High density lipoprotein (HDL) consists of two subtypes, HDL(2) and HDL(3), which have opposing effects on platelet activation. This review provides a summary of the activation of signaling pathways after platelet-LDL and platelet-HDL interaction, with special emphasis on their role in the development of thrombosis and atherosclerosis.
Collapse
Affiliation(s)
- Suzanne J A Korporaal
- Thrombosis and Haemostasis Laboratory, Department of Haematology, University Medical Center Utrecht and The Institute for Biomembranes, University of Utrecht, The Netherlands.
| | | |
Collapse
|
6
|
Nofer JR, Kehrel B, Fobker M, Levkau B, Assmann G, von Eckardstein A. HDL and arteriosclerosis: beyond reverse cholesterol transport. Atherosclerosis 2002; 161:1-16. [PMID: 11882312 DOI: 10.1016/s0021-9150(01)00651-7] [Citation(s) in RCA: 432] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The inverse correlation between serum levels of high density lipoprotein (HDL) cholesterol and the risk of coronary heart disease, the protection of susceptible animals from atherosclerosis by transgenic manipulation of HDL metabolism, and several potentially anti-atherogenic in vitro-properties have made HDL metabolism an interesting target for pharmacological intervention in atheroslcerosis. We have previously reviewed the concept of reverse cholesterol transport, which describes both the metabolism and the classic anti-atherogenic function of HDL (Arterioscler. Thromb. Vasc. Biol. 20 2001 13). We here summarize the current understanding of additional biological, potentially anti-atherogenic properties of HDL. HDL inhibits the chemotaxis of monocytes, the adhesion of leukocytes to the endothelium, endothelial dysfunction and apoptosis, LDL oxidation, complement activation, platelet activation and factor X activation but also stimulates the proliferation of endothelial cells and smooth muscle cells, the synthesis of prostacyclin and natriuretic peptide C in endothelial cells, and the activation of proteins C and S. These anti-inflammatory, anti-oxidative, anti-aggregatory, anti-coagulant, and pro-fibrinolytic activities are exerted by different components of HDL, namley apolipoproteins, enzymes, and even specific phospholipids. This complexity further emphasizes that changes in the functionality of HDL rather than changes of plasma HDL-cholesterol levels determine the anti-atherogenicity of therapeutic alterations of HDL metabolism.
Collapse
Affiliation(s)
- Jerzy-Roch Nofer
- Institut für Klinische Chemie und Laboratoriumsmedizin, Westfälische Wilhelms-Universität, Albert Schweitzer Str. 33, 48129 Münster, Germany.
| | | | | | | | | | | |
Collapse
|
7
|
Pedreño J, Hurt-Camejo E, Wiklund O, Badimón L, Masana L. Low-density lipoprotein (LDL) binds to a G-protein coupled receptor in human platelets. Evidence that the proaggregatory effect induced by LDL is modulated by down-regulation of binding sites and desensitization of its mediated signaling. Atherosclerosis 2001; 155:99-112. [PMID: 11223431 DOI: 10.1016/s0021-9150(00)00545-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We present evidence of a link between low-density lipoprotein (LDL) receptor binding and activation of a platelet G-coupled protein. LDL stimulation induced cytosolic [Ca2+]i mobilization, increase in inositol 1,4,5-triphosphate (IP3) formation and a rapid cytosol-to-membrane translocation of protein kinase C (PKC) enzymatic activity. Pertussis toxin inhibited all the stimulatory effects, whereas cholera toxin had no effect. Using ligand-binding assays, we demonstrated that exposing platelet LDL receptors to high concentrations of LDL (1.5 g/l) caused a rapid down-regulation and desensitization, as shown by the reduction in the Bmax, intracellular [Ca2+]i mobilization and IP3 formation to 65, 73 and 63%, respectively. The inhibitory effects were reversible and dose and time dependent. Furthermore, VLDL (0.2 g/l) and IDL (0.07 g/l) induced similar desensitization effects. However, HDL3 (up to 1.5 g/l), chylomicrons (up to 0.5 g/l) and cyclohexandione-modified LDL (which does not bind to platelets) had no significant effects. Protein kinase C inhibitors (150 nmol/l staurosporine, 100 micromol/l H-7, and 10 nmol/l bisindolylmaleimide) inhibited desensitization to 71%, on average. Sequestration blocking agents (0.30 g/l, concanavalin A) had no significant effect if phosphorylation was operative. However, there was a complete blockade with the concurrent inhibition of both pathways. In contrast, cAMP-dependent protein kinase inhibitors (PKI, 1 micromol/l) or beta2-adrenergic receptor kinase inhibitors (100 nmol/l, heparin), had no effect. Overall results indicate that LDL binds to a pertussis sensitive G-protein coupled receptor and that high levels of lipoproteins down-regulate the number of receptors and desensitize its mediated response by a mechanism that involves PKC-phosphorylation and sequestration of binding sites. This new regulatory mechanism may have implications for the thrombogenicity in hyperlipidemia and for effects of lipid lowering therapy.
Collapse
Affiliation(s)
- J Pedreño
- Unitat de Recerca en Lipids i Arteriosclerosi, Facultat de Medicina, Universitat Rovira i Virgili, Sant Llorenç 21 Reus, 43201, Tarragona, Spain.
| | | | | | | | | |
Collapse
|
8
|
Witt W, Kolleck I, Fechner H, Sinha P, Rüstow B. Regulation by vitamin E of the scavenger receptor BI in rat liver and HepG2 cells. J Lipid Res 2000. [DOI: 10.1016/s0022-2275(20)32362-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
9
|
Pedreño J, Sánchez-Quesada JL, Cabré A, Masana L. Molecular requirements in the recognition of low-density lipoproteins (LDL) by specific platelet membrane receptors. Thromb Res 2000; 99:51-60. [PMID: 10904103 DOI: 10.1016/s0049-3848(00)00224-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have demonstrated that platelet low-density lipoprotein (LDL) receptors differ from classic LDL receptors of nucleated cells. Although positively charged Arg and Lys residues of apoprotein B-100 are known to play a key role in LDL recognition by classic LDL receptors, there are no conclusive data on platelet LDL receptors. This study investigated the molecular requirements of LDL particle recognition by platelet LDL receptors. The involvement of lipid and protein fractions was determined by displacement studies of the binding of 125I-LDL to platelets and fibroblasts (used as a classical LDL receptor model). The role of the protein moiety was evaluated by chemically modifying positively charged apoB residues (Lys, Arg, and Tyr) via copper-induced oxidation, cyclohexanedione, and tetranitromethane, respectively. The involvement of the lipid fraction was determined by ligand binding assays using 125I-LDL particles that had previously been delipidated and subjected to apoB solubilization. The degree of particle modification was analyzed by agarose/acrylamide gel electrophoresis and anion exchange chromatography. Modifying the amino acid residues increased particle electronegativity in the following order of potency: CHD-LDL>TNM-LDL>ox-LDL>native LDL. The results obtained by displacement studies in fibroblasts suggested that the gain in the LDL negative charge was the most important factor in the loss of receptor affinity. The chemical models of protein modification used in our study greatly affected LDL binding to the classical fibroblast receptor. In contrast, there was very slight difference in the displacement capacity on platelet 125I-LDL binding, which suggests that the protein fraction does not play a major role in the interaction of LDL with its platelet receptor. On the other hand, whereas modifying the lipid moiety did not alter the ability of solubilized 125I-apoB to interact with the classical fibroblast LDL receptor, platelet LDL receptors were unable to recognize these particles. In conclusion, our results confirm that the protein fraction plays a key role in the fibroblast LDL-receptor recognition process, whereas the lipid fraction appears to have a more relevant role in platelet LDL-receptor recognition.
Collapse
Affiliation(s)
- J Pedreño
- Unitat de Recerca en Lipids i Arteriosclerosi, Universitat Rovira i Virgili, Facultat de Medicina, Reus, Spain.
| | | | | | | |
Collapse
|