1
|
Shapiro JA. What we have learned about evolutionary genome change in the past 7 decades. Biosystems 2022; 215-216:104669. [DOI: 10.1016/j.biosystems.2022.104669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 12/12/2022]
|
2
|
Madelaine R, Notwell JH, Skariah G, Halluin C, Chen CC, Bejerano G, Mourrain P. A screen for deeply conserved non-coding GWAS SNPs uncovers a MIR-9-2 functional mutation associated to retinal vasculature defects in human. Nucleic Acids Res 2019. [PMID: 29518216 PMCID: PMC5909433 DOI: 10.1093/nar/gky166] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Thousands of human disease-associated single nucleotide polymorphisms (SNPs) lie in the non-coding genome, but only a handful have been demonstrated to affect gene expression and human biology. We computationally identified risk-associated SNPs in deeply conserved non-exonic elements (CNEs) potentially contributing to 45 human diseases. We further demonstrated that human CNE1/rs17421627 associated with retinal vasculature defects showed transcriptional activity in the zebrafish retina, while introducing the risk-associated allele completely abolished CNE1 enhancer activity. Furthermore, deletion of CNE1 led to retinal vasculature defects and to a specific downregulation of microRNA-9, rather than MEF2C as predicted by the original genome-wide association studies. Consistent with these results, miR-9 depletion affects retinal vasculature formation, demonstrating MIR-9-2 as a critical gene underpinning the associated trait. Importantly, we validated that other CNEs act as transcriptional enhancers that can be disrupted by conserved non-coding SNPs. This study uncovers disease-associated non-coding mutations that are deeply conserved, providing a path for in vivo testing to reveal their cis-regulated genes and biological roles.
Collapse
Affiliation(s)
- Romain Madelaine
- Department of Psychiatry and Behavioral Sciences, Stanford Center for Sleep Sciences and Medicine, Stanford, CA 94305, USA
| | | | - Gemini Skariah
- Department of Psychiatry and Behavioral Sciences, Stanford Center for Sleep Sciences and Medicine, Stanford, CA 94305, USA
| | - Caroline Halluin
- Department of Psychiatry and Behavioral Sciences, Stanford Center for Sleep Sciences and Medicine, Stanford, CA 94305, USA
| | | | - Gill Bejerano
- Department of Computer Science, Stanford, CA 94305, USA.,Department of Developmental Biology, Stanford, CA 94305, USA.,Division of Medical Genetics, Department of Pediatrics, Stanford, CA 94305, USA
| | - Philippe Mourrain
- Department of Psychiatry and Behavioral Sciences, Stanford Center for Sleep Sciences and Medicine, Stanford, CA 94305, USA.,INSERM 1024, Ecole Normale Supérieure Paris, 75005, France
| |
Collapse
|
3
|
Expansion by whole genome duplication and evolution of the sox gene family in teleost fish. PLoS One 2017; 12:e0180936. [PMID: 28738066 PMCID: PMC5524304 DOI: 10.1371/journal.pone.0180936] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/24/2017] [Indexed: 01/11/2023] Open
Abstract
It is now recognized that several rounds of whole genome duplication (WGD) have occurred during the evolution of vertebrates, but the link between WGDs and phenotypic diversification remains unsolved. We have investigated in this study the impact of the teleost-specific WGD on the evolution of the sox gene family in teleostean fishes. The sox gene family, which encodes for transcription factors, has essential role in morphology, physiology and behavior of vertebrates and teleosts, the current largest group of vertebrates. We have first redrawn the evolution of all sox genes identified in eleven teleost genomes using a comparative genomic approach including phylogenetic and synteny analyses. We noticed, compared to tetrapods, an important expansion of the sox family: 58% (11/19) of sox genes are duplicated in teleost genomes. Furthermore, all duplicated sox genes, except sox17 paralogs, are derived from the teleost-specific WGD. Then, focusing on five sox genes, analyzing the evolution of coding and non-coding sequences, as well as the expression patterns in fish embryos and adult tissues, we demonstrated that these paralogs followed lineage-specific evolutionary trajectories in teleost genomes. This work, based on whole genome data from multiple teleostean species, supports the contribution of WGDs to the expansion of gene families, as well as to the emergence of genomic differences between lineages that might promote genetic and phenotypic diversity in teleosts.
Collapse
|
4
|
Ali S, Amina B, Anwar S, Minhas R, Parveen N, Nawaz U, Azam SS, Abbasi AA. Genomic features of human limb specific enhancers. Genomics 2016; 108:143-150. [PMID: 27580967 DOI: 10.1016/j.ygeno.2016.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 08/08/2016] [Accepted: 08/27/2016] [Indexed: 12/18/2022]
Abstract
To elucidate important cellular and molecular interactions that regulate patterning and skeletal development, vertebrate limbs served as a model organ. A growing body of evidence from detailed studies on a subset of limb regulators like the HOXD cluster or SHH, reveals the importance of enhancers in limb related developmental and disease processes. Exploiting the recent genome-wide availability of functionally confirmed enhancer dataset, this study establishes regulatory interactions for dozens of human limb developmental genes. From these data, it appears that the long-range regulatory interactions are fairly common during limb development. This observation highlights the significance of chromosomal breaks/translocations in human limb deformities. Transcriptional factor (TF) analysis predicts that the differentiation of early nascent limb-bud into future territories entail distinct TF interaction networks. Conclusively, an important motivation for annotating the human limb specific regulatory networks is to pave way for the systematic exploration of their role in disease and evolution.
Collapse
Affiliation(s)
- Shahid Ali
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Bibi Amina
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Saneela Anwar
- National Center for Bioinformatics, Computational Biology Lab, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Rashid Minhas
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Nazia Parveen
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Uzma Nawaz
- Department of Statistics, The Women University, Multan 60000, Pakistan.
| | - Syed Sikandar Azam
- National Center for Bioinformatics, Computational Biology Lab, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Amir Ali Abbasi
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
5
|
Polychronopoulos D, Athanasopoulou L, Almirantis Y. Fractality and entropic scaling in the chromosomal distribution of conserved noncoding elements in the human genome. Gene 2016; 584:148-60. [DOI: 10.1016/j.gene.2016.02.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/22/2016] [Accepted: 02/14/2016] [Indexed: 11/15/2022]
|
6
|
Yousaf A, Sohail Raza M, Ali Abbasi A. The Evolution of Bony Vertebrate Enhancers at Odds with Their Coding Sequence Landscape. Genome Biol Evol 2015; 7:2333-43. [PMID: 26253316 PMCID: PMC4558863 DOI: 10.1093/gbe/evv146] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Enhancers lie at the heart of transcriptional and developmental gene regulation. Therefore, changes in enhancer sequences usually disrupt the target gene expression and result in disease phenotypes. Despite the well-established role of enhancers in development and disease, evolutionary sequence studies are lacking. The current study attempts to unravel the puzzle of bony vertebrates’ conserved noncoding elements (CNE) enhancer evolution. Bayesian phylogenetics of enhancer sequences spotlights promising interordinal relationships among placental mammals, proposing a closer relationship between humans and laurasiatherians while placing rodents at the basal position. Clock-based estimates of enhancer evolution provided a dynamic picture of interspecific rate changes across the bony vertebrate lineage. Moreover, coelacanth in the study augmented our appreciation of the vertebrate cis-regulatory evolution during water–land transition. Intriguingly, we observed a pronounced upsurge in enhancer evolution in land-dwelling vertebrates. These novel findings triggered us to further investigate the evolutionary trend of coding as well as CNE nonenhancer repertoires, to highlight the relative evolutionary dynamics of diverse genomic landscapes. Surprisingly, the evolutionary rates of enhancer sequences were clearly at odds with those of the coding and the CNE nonenhancer sequences during vertebrate adaptation to land, with land vertebrates exhibiting significantly reduced rates of coding sequence evolution in comparison to their fast evolving regulatory landscape. The observed variation in tetrapod cis-regulatory elements caused the fine-tuning of associated gene regulatory networks. Therefore, the increased evolutionary rate of tetrapods’ enhancer sequences might be responsible for the variation in developmental regulatory circuits during the process of vertebrate adaptation to land.
Collapse
Affiliation(s)
- Aisha Yousaf
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Sohail Raza
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Amir Ali Abbasi
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
7
|
Le Duc D, Renaud G, Krishnan A, Almén MS, Huynen L, Prohaska SJ, Ongyerth M, Bitarello BD, Schiöth HB, Hofreiter M, Stadler PF, Prüfer K, Lambert D, Kelso J, Schöneberg T. Kiwi genome provides insights into evolution of a nocturnal lifestyle. Genome Biol 2015; 16:147. [PMID: 26201466 PMCID: PMC4511969 DOI: 10.1186/s13059-015-0711-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 07/01/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Kiwi, comprising five species from the genus Apteryx, are endangered, ground-dwelling bird species endemic to New Zealand. They are the smallest and only nocturnal representatives of the ratites. The timing of kiwi adaptation to a nocturnal niche and the genomic innovations, which shaped sensory systems and morphology to allow this adaptation, are not yet fully understood. RESULTS We sequenced and assembled the brown kiwi genome to 150-fold coverage and annotated the genome using kiwi transcript data and non-redundant protein information from multiple bird species. We identified evolutionary sequence changes that underlie adaptation to nocturnality and estimated the onset time of these adaptations. Several opsin genes involved in color vision are inactivated in the kiwi. We date this inactivation to the Oligocene epoch, likely after the arrival of the ancestor of modern kiwi in New Zealand. Genome comparisons between kiwi and representatives of ratites, Galloanserae, and Neoaves, including nocturnal and song birds, show diversification of kiwi's odorant receptors repertoire, which may reflect an increased reliance on olfaction rather than sight during foraging. Further, there is an enrichment of genes influencing mitochondrial function and energy expenditure among genes that are rapidly evolving specifically on the kiwi branch, which may also be linked to its nocturnal lifestyle. CONCLUSIONS The genomic changes in kiwi vision and olfaction are consistent with changes that are hypothesized to occur during adaptation to nocturnal lifestyle in mammals. The kiwi genome provides a valuable genomic resource for future genome-wide comparative analyses to other extinct and extant diurnal ratites.
Collapse
Affiliation(s)
- Diana Le Duc
- Institute of Biochemistry, Medical Faculty, University of Leipzig, Johannisallee 30, Leipzig, 04103, Germany.
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany.
| | - Gabriel Renaud
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany.
| | - Arunkumar Krishnan
- Department of Neuroscience, Unit of Functional Pharmacology, Uppsala University, Box 593, Husargatan 3, Uppsala, 751 24, Sweden.
| | - Markus Sällman Almén
- Department of Neuroscience, Unit of Functional Pharmacology, Uppsala University, Box 593, Husargatan 3, Uppsala, 751 24, Sweden.
| | - Leon Huynen
- Griffith School of Environment and School of Biomolecular and Physical Sciences, Griffith University, Nathan, Queensland, 4111, Australia.
| | - Sonja J Prohaska
- Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig, 04103, Germany.
| | - Matthias Ongyerth
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany.
| | - Bárbara D Bitarello
- Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo, SP, 05508-090, Brazil.
| | - Helgi B Schiöth
- Department of Neuroscience, Unit of Functional Pharmacology, Uppsala University, Box 593, Husargatan 3, Uppsala, 751 24, Sweden.
| | - Michael Hofreiter
- Adaptive Evolutionary Genomics, Institute for Biochemistry and Biology, University Potsdam, Potsdam, 14469, Germany.
| | - Peter F Stadler
- Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig, 04103, Germany.
| | - Kay Prüfer
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany.
| | - David Lambert
- Griffith School of Environment and School of Biomolecular and Physical Sciences, Griffith University, Nathan, Queensland, 4111, Australia.
| | - Janet Kelso
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany.
| | - Torsten Schöneberg
- Institute of Biochemistry, Medical Faculty, University of Leipzig, Johannisallee 30, Leipzig, 04103, Germany.
| |
Collapse
|
8
|
Minhas R, Pauls S, Ali S, Doglio L, Khan MR, Elgar G, Abbasi AA. Cis-regulatory control of human GLI2 expression in the developing neural tube and limb bud. Dev Dyn 2015; 244:681-92. [DOI: 10.1002/dvdy.24266] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 01/29/2015] [Accepted: 02/16/2015] [Indexed: 11/08/2022] Open
Affiliation(s)
- Rashid Minhas
- National Center for Bioinformatics; Program of Comparative and Evolutionary Genomics; Faculty of Biological Sciences; Quaid-i-Azam University; Islamabad 45320 Pakistan
| | - Stefan Pauls
- Division of Systems Biology; MRC National Institute for Medical Research; The Ridgeway, Mill Hill London NW7 1AA United Kingdom
| | - Shahid Ali
- National Center for Bioinformatics; Program of Comparative and Evolutionary Genomics; Faculty of Biological Sciences; Quaid-i-Azam University; Islamabad 45320 Pakistan
| | - Laura Doglio
- Division of Systems Biology; MRC National Institute for Medical Research; The Ridgeway, Mill Hill London NW7 1AA United Kingdom
| | - Muhammad Ramzan Khan
- National Institute for Genomics and Advanced Biotechnology; National Agricultural Research Center; Park Road Islamabad Pakistan
| | - Greg Elgar
- Division of Systems Biology; MRC National Institute for Medical Research; The Ridgeway, Mill Hill London NW7 1AA United Kingdom
| | - Amir Ali Abbasi
- National Center for Bioinformatics; Program of Comparative and Evolutionary Genomics; Faculty of Biological Sciences; Quaid-i-Azam University; Islamabad 45320 Pakistan
| |
Collapse
|
9
|
Polychronopoulos D, Sellis D, Almirantis Y. Conserved noncoding elements follow power-law-like distributions in several genomes as a result of genome dynamics. PLoS One 2014; 9:e95437. [PMID: 24787386 PMCID: PMC4008492 DOI: 10.1371/journal.pone.0095437] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 03/26/2014] [Indexed: 12/31/2022] Open
Abstract
Conserved, ultraconserved and other classes of constrained elements (collectively referred as CNEs here), identified by comparative genomics in a wide variety of genomes, are non-randomly distributed across chromosomes. These elements are defined using various degrees of conservation between organisms and several thresholds of minimal length. We here investigate the chromosomal distribution of CNEs by studying the statistical properties of distances between consecutive CNEs. We find widespread power-law-like distributions, i.e. linearity in double logarithmic scale, in the inter-CNE distances, a feature which is connected with fractality and self-similarity. Given that CNEs are often found to be spatially associated with genes, especially with those that regulate developmental processes, we verify by appropriate gene masking that a power-law-like pattern emerges irrespectively of whether elements found close or inside genes are excluded or not. An evolutionary model is put forward for the understanding of these findings that includes segmental or whole genome duplication events and eliminations (loss) of most of the duplicated CNEs. Simulations reproduce the main features of the observed size distributions. Power-law-like patterns in the genomic distributions of CNEs are in accordance with current knowledge about their evolutionary history in several genomes.
Collapse
Affiliation(s)
- Dimitris Polychronopoulos
- Institute of Biosciences and Applications, National Center for Scientific Research “Demokritos”, Athens, Greece
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Diamantis Sellis
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Yannis Almirantis
- Institute of Biosciences and Applications, National Center for Scientific Research “Demokritos”, Athens, Greece
- * E-mail:
| |
Collapse
|
10
|
Domené S, Bumaschny VF, de Souza FSJ, Franchini LF, Nasif S, Low MJ, Rubinstein M. Enhancer turnover and conserved regulatory function in vertebrate evolution. Philos Trans R Soc Lond B Biol Sci 2013; 368:20130027. [PMID: 24218639 DOI: 10.1098/rstb.2013.0027] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mutations in regulatory regions including enhancers are an important source of variation and innovation during evolution. Enhancers can evolve by changes in the sequence, arrangement and repertoire of transcription factor binding sites, but whole enhancers can also be lost or gained in certain lineages in a process of turnover. The proopiomelanocortin gene (Pomc), which encodes a prohormone, is expressed in the pituitary and hypothalamus of all jawed vertebrates. We have previously described that hypothalamic Pomc expression in mammals is controlled by two enhancers-nPE1 and nPE2-that are derived from transposable elements and that presumably replaced the ancestral neuronal Pomc regulatory regions. Here, we show that nPE1 and nPE2, even though they are mammalian novelties with no homologous counterpart in other vertebrates, nevertheless can drive gene expression specifically to POMC neurons in the hypothalamus of larval and adult transgenic zebrafish. This indicates that when neuronal Pomc enhancers originated de novo during early mammalian evolution, the newly created cis- and trans-codes were similar to the ancestral ones. We also identify the neuronal regulatory region of zebrafish pomca and confirm that it is not homologous to the mammalian enhancers. Our work sheds light on the process of gene regulatory evolution by showing how a locus can undergo enhancer turnover and nevertheless maintain the ancestral transcriptional output.
Collapse
Affiliation(s)
- Sabina Domené
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, , C1428ADN Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
11
|
Rubinstein M, de Souza FSJ. Evolution of transcriptional enhancers and animal diversity. Philos Trans R Soc Lond B Biol Sci 2013; 368:20130017. [PMID: 24218630 DOI: 10.1098/rstb.2013.0017] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Deciphering the genetic bases that drive animal diversity is one of the major challenges of modern biology. Although four decades ago it was proposed that animal evolution was mainly driven by changes in cis-regulatory DNA elements controlling gene expression rather than in protein-coding sequences, only now are powerful bioinformatics and experimental approaches available to accelerate studies into how the evolution of transcriptional enhancers contributes to novel forms and functions. In the introduction to this Theme Issue, we start by defining the general properties of transcriptional enhancers, such as modularity and the coexistence of tight sequence conservation with transcription factor-binding site shuffling as different mechanisms that maintain the enhancer grammar over evolutionary time. We discuss past and current methods used to identify cell-type-specific enhancers and provide examples of how enhancers originate de novo, change and are lost in particular lineages. We then focus in the central part of this Theme Issue on analysing examples of how the molecular evolution of enhancers may change form and function. Throughout this introduction, we present the main findings of the articles, reviews and perspectives contributed to this Theme Issue that together illustrate some of the great advances and current frontiers in the field.
Collapse
Affiliation(s)
- Marcelo Rubinstein
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, , C1428ADN Buenos Aires, Argentina
| | | |
Collapse
|
12
|
Symmons O, Spitz F. From remote enhancers to gene regulation: charting the genome's regulatory landscapes. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120358. [PMID: 23650632 DOI: 10.1098/rstb.2012.0358] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Vertebrate genes are characterized by the presence of cis-regulatory elements located at great distances from the genes they control. Alterations of these elements have been implicated in human diseases and evolution, yet little is known about how these elements interact with their surrounding sequences. A recent survey of the mouse genome with a regulatory sensor showed that the regulatory activities of these elements are not organized in a gene-centric manner, but instead are broadly distributed along chromosomes, forming large regulatory landscapes with distinct tissue-specific activities. A large genome-wide collection of expression data from this regulatory sensor revealed some basic principles of this complex genome regulatory architecture, including a substantial interplay between enhancers and other types of activities to modulate gene expression. We discuss the implications of these findings for our understanding of non-coding transcription, and of the possible consequences of structural genomic variations in disease and evolution.
Collapse
Affiliation(s)
- Orsolya Symmons
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | |
Collapse
|
13
|
A retrotransposon insertion in the 5' regulatory domain of Ptf1a results in ectopic gene expression and multiple congenital defects in Danforth's short tail mouse. PLoS Genet 2013; 9:e1003206. [PMID: 23437001 PMCID: PMC3578747 DOI: 10.1371/journal.pgen.1003206] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 11/14/2012] [Indexed: 11/19/2022] Open
Abstract
Danforth's short tail mutant (Sd) mouse, first described in 1930, is a classic spontaneous mutant exhibiting defects of the axial skeleton, hindgut, and urogenital system. We used meiotic mapping in 1,497 segregants to localize the mutation to a 42.8-kb intergenic segment on chromosome 2. Resequencing of this region identified an 8.5-kb early retrotransposon (ETn) insertion within the highly conserved regulatory sequences upstream of Pancreas Specific Transcription Factor, 1a (Ptf1a). This mutation resulted in up to tenfold increased expression of Ptf1a as compared to wild-type embryos at E9.5 but no detectable changes in the expression levels of other neighboring genes. At E9.5, Sd mutants exhibit ectopic Ptf1a expression in embryonic progenitors of every organ that will manifest a developmental defect: the notochord, the hindgut, and the mesonephric ducts. Moreover, at E 8.5, Sd mutant mice exhibit ectopic Ptf1a expression in the lateral plate mesoderm, tail bud mesenchyme, and in the notochord, preceding the onset of visible defects such as notochord degeneration. The Sd heterozygote phenotype was not ameliorated by Ptf1a haploinsufficiency, further suggesting that the developmental defects result from ectopic expression of Ptf1a. These data identify disruption of the spatio-temporal pattern of Ptf1a expression as the unifying mechanism underlying the multiple congenital defects in Danforth's short tail mouse. This striking example of an enhancer mutation resulting in profound developmental defects suggests that disruption of conserved regulatory elements may also contribute to human malformation syndromes. Birth defects are a major cause of childhood morbidity and mortality. We studied the Danforth's short tail mouse, a classic mouse model of birth defects involving the skeleton, gut, and urinary system. We precisely localized the mutation responsible for these birth defects to a 42.8-kb segment on chromosome 2 and identified the mutation as an 8.5-kb transposon that disrupts highly conserved regulatory sequences upstream of the Pancreas Specific Transcription Factor, 1a (Ptf1a). The insertion disrupts a Ptf1a regulatory domain that is highly conserved across evolution and results in spatiotemporal defects in Ptf1a expression: we detected increased expression, temporally premature expression, and (most important for elucidating the mutant phenotype) the ectopic expression of Ptf1a in the notochord, hindgut, and mesonephros—the three sites that will give rise to organ defects in Danforth's short tail mouse. Our data also provide a striking example of how a noncoding, regulatory mutation can produce transient spatio-temporal dsyregulation of gene expression and result in profound developmental defects, highlighting the critical role of noncoding elements for coordinated gene expression in the vertebrate genome. Finally, these data provide novel insight into the role of Ptf1a in embryogenesis and lay the groundwork for elucidation of novel mechanisms underlying birth defects in humans.
Collapse
|
14
|
Dimitrieva S, Bucher P. UCNEbase--a database of ultraconserved non-coding elements and genomic regulatory blocks. Nucleic Acids Res 2012. [PMID: 23193254 PMCID: PMC3531063 DOI: 10.1093/nar/gks1092] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
UCNEbase (http://ccg.vital-it.ch/UCNEbase) is a free, web-accessible information resource on the evolution and genomic organization of ultra-conserved non-coding elements (UCNEs). It currently covers 4351 such elements in 18 different species. The majority of UCNEs are supposed to be transcriptional regulators of key developmental genes. As most of them occur as clusters near potential target genes, the database is organized along two hierarchical levels: individual UCNEs and ultra-conserved genomic regulatory blocks (UGRBs). UCNEbase introduces a coherent nomenclature for UCNEs reflecting their respective associations with likely target genes. Orthologous and paralogous UCNEs share components of their names and are systematically cross-linked. Detailed synteny maps between the human and other genomes are provided for all UGRBs. UCNEbase is managed by a relational database system and can be accessed by a variety of web-based query pages. As it relies on the UCSC genome browser as visualization platform, a large part of its data content is also available as browser viewable custom track files. UCNEbase is potentially useful to any computational, experimental or evolutionary biologist interested in conserved non-coding DNA elements in vertebrates.
Collapse
Affiliation(s)
- Slavica Dimitrieva
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL) and Swiss Institute of Bioinformatics (SIB), CH-1015 Lausanne, Switzerland
- *To whom correspondence should be addressed. Tel: +41 21 693 0956; Fax: +41 21 693 1850;
| | - Philipp Bucher
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL) and Swiss Institute of Bioinformatics (SIB), CH-1015 Lausanne, Switzerland
- Correspondence may also be addressed to Slavica Dimitrieva. Tel: +41 21 693 0958; Fax: +41 21 693 1850;
| |
Collapse
|
15
|
Frenkel S, Kirzhner V, Korol A. Organizational heterogeneity of vertebrate genomes. PLoS One 2012; 7:e32076. [PMID: 22384143 PMCID: PMC3288070 DOI: 10.1371/journal.pone.0032076] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 01/23/2012] [Indexed: 01/06/2023] Open
Abstract
Genomes of higher eukaryotes are mosaics of segments with various structural, functional, and evolutionary properties. The availability of whole-genome sequences allows the investigation of their structure as "texts" using different statistical and computational methods. One such method, referred to as Compositional Spectra (CS) analysis, is based on scoring the occurrences of fixed-length oligonucleotides (k-mers) in the target DNA sequence. CS analysis allows generating species- or region-specific characteristics of the genome, regardless of their length and the presence of coding DNA. In this study, we consider the heterogeneity of vertebrate genomes as a joint effect of regional variation in sequence organization superimposed on the differences in nucleotide composition. We estimated compositional and organizational heterogeneity of genome and chromosome sequences separately and found that both heterogeneity types vary widely among genomes as well as among chromosomes in all investigated taxonomic groups. The high correspondence of heterogeneity scores obtained on three genome fractions, coding, repetitive, and the remaining part of the noncoding DNA (the genome dark matter--GDM) allows the assumption that CS-heterogeneity may have functional relevance to genome regulation. Of special interest for such interpretation is the fact that natural GDM sequences display the highest deviation from the corresponding reshuffled sequences.
Collapse
Affiliation(s)
| | | | - Abraham Korol
- Department of Evolutionary and Environmental Biology and Institute of Evolution, University of Haifa, Mount Carmel, Haifa, Israel
| |
Collapse
|
16
|
MIP/Aquaporin 0 represents a direct transcriptional target of PITX3 in the developing lens. PLoS One 2011; 6:e21122. [PMID: 21698120 PMCID: PMC3117865 DOI: 10.1371/journal.pone.0021122] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 05/19/2011] [Indexed: 11/19/2022] Open
Abstract
The PITX3 bicoid-type homeodomain transcription factor plays an important role in lens development in vertebrates. PITX3 deficiency results in a spectrum of phenotypes from isolated cataracts to microphthalmia in humans, and lens degeneration in mice and zebrafish. While identification of downstream targets of PITX3 is vital for understanding the mechanisms of normal ocular development and human disease, these targets remain largely unknown. To isolate genes that are directly regulated by PITX3, we performed a search for genomic sequences that contain evolutionarily conserved bicoid/PITX3 binding sites and are located in the proximity of known genes. Two bicoid sites that are conserved from zebrafish to human were identified within the human promoter of the major intrinsic protein of lens fiber, MIP/AQP0. MIP/AQP0 deficiency was previously shown to be associated with lens defects in humans and mice. We demonstrate by both chromatin immunoprecipitation and electrophoretic mobility shift assay that PITX3 binds to MIP/AQP0 promoter region in vivo and is able to interact with both bicoid sites in vitro. In addition, we show that wild-type PITX3 is able to activate the MIP/AQP0 promoter via interaction with the proximal bicoid site in cotransfection experiments and that the introduction of mutations disrupting binding to this site abolishes this activation. Furthermore, mutant forms of PITX3 fail to produce the same levels of transactivation as wild-type when cotransfected with the MIP/AQP0 reporter. Finally, knockdown of pitx3 in zebrafish affects formation of a DNA-protein complex associated with mip1 promoter sequences; and examination of expression in pitx3 morphant and control zebrafish revealed a delay in and reduction of mip1 expression in pitx3-deficient embryos. Therefore, our data suggest that PITX3 is involved in direct regulation of MIP/AQP0 expression and that the alteration of MIP/AQP0 expression is likely to contribute to the lens phenotype in cataract patients with PITX3 mutations.
Collapse
|
17
|
Paar V, Gluncic M, Rosandic M, Basar I, Vlahovic I. Intragene Higher Order Repeats in Neuroblastoma BreakPoint Family Genes Distinguish Humans from Chimpanzees. Mol Biol Evol 2011; 28:1877-92. [DOI: 10.1093/molbev/msr009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
18
|
When needles look like hay: how to find tissue-specific enhancers in model organism genomes. Dev Biol 2010; 350:239-54. [PMID: 21130761 DOI: 10.1016/j.ydbio.2010.11.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 11/11/2010] [Accepted: 11/22/2010] [Indexed: 01/22/2023]
Abstract
A major prerequisite for the investigation of tissue-specific processes is the identification of cis-regulatory elements. No generally applicable technique is available to distinguish them from any other type of genomic non-coding sequence. Therefore, researchers often have to identify these elements by elaborate in vivo screens, testing individual regions until the right one is found. Here, based on many examples from the literature, we summarize how functional enhancers have been isolated from other elements in the genome and how they have been characterized in transgenic animals. Covering computational and experimental studies, we provide an overview of the global properties of cis-regulatory elements, like their specific interactions with promoters and target gene distances. We describe conserved non-coding elements (CNEs) and their internal structure, nucleotide composition, binding site clustering and overlap, with a special focus on developmental enhancers. Conflicting data and unresolved questions on the nature of these elements are highlighted. Our comprehensive overview of the experimental shortcuts that have been found in the different model organism communities and the new field of high-throughput assays should help during the preparation phase of a screen for enhancers. The review is accompanied by a list of general guidelines for such a project.
Collapse
|
19
|
Kano S, Xiao JH, Osório J, Ekker M, Hadzhiev Y, Müller F, Casane D, Magdelenat G, Rétaux S. Two lamprey Hedgehog genes share non-coding regulatory sequences and expression patterns with gnathostome Hedgehogs. PLoS One 2010; 5:e13332. [PMID: 20967201 PMCID: PMC2954159 DOI: 10.1371/journal.pone.0013332] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 09/17/2010] [Indexed: 11/23/2022] Open
Abstract
Hedgehog (Hh) genes play major roles in animal development and studies of their evolution, expression and function point to major differences among chordates. Here we focused on Hh genes in lampreys in order to characterize the evolution of Hh signalling at the emergence of vertebrates. Screening of a cosmid library of the river lamprey Lampetra fluviatilis and searching the preliminary genome assembly of the sea lamprey Petromyzon marinus indicate that lampreys have two Hh genes, named Hha and Hhb. Phylogenetic analyses suggest that Hha and Hhb are lamprey-specific paralogs closely related to Sonic/Indian Hh genes. Expression analysis indicates that Hha and Hhb are expressed in a Sonic Hh-like pattern. The two transcripts are expressed in largely overlapping but not identical domains in the lamprey embryonic brain, including a newly-described expression domain in the nasohypophyseal placode. Global alignments of genomic sequences and local alignment with known gnathostome regulatory motifs show that lamprey Hhs share conserved non-coding elements (CNE) with gnathostome Hhs albeit with sequences that have significantly diverged and dispersed. Functional assays using zebrafish embryos demonstrate gnathostome-like midline enhancer activity for CNEs contained in intron2. We conclude that lamprey Hh genes are gnathostome Shh-like in terms of expression and regulation. In addition, they show some lamprey-specific features, including duplication and structural (but not functional) changes in the intronic/regulatory sequences.
Collapse
Affiliation(s)
- Shungo Kano
- Laboratoire Neurobiologie et Développement UPR3294 Centre National de la Recherche Scientifique (CNRS), Institut Alfred Fessard, Gif-sur-Yvette, France
| | - Jin-Hua Xiao
- Laboratoire Neurobiologie et Développement UPR3294 Centre National de la Recherche Scientifique (CNRS), Institut Alfred Fessard, Gif-sur-Yvette, France
| | - Joana Osório
- Laboratoire Neurobiologie et Développement UPR3294 Centre National de la Recherche Scientifique (CNRS), Institut Alfred Fessard, Gif-sur-Yvette, France
| | - Marc Ekker
- Laboratoire Neurobiologie et Développement UPR3294 Centre National de la Recherche Scientifique (CNRS), Institut Alfred Fessard, Gif-sur-Yvette, France
- Department of Biology, Center for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Canada
| | - Yavor Hadzhiev
- Laboratoire Neurobiologie et Développement UPR3294 Centre National de la Recherche Scientifique (CNRS), Institut Alfred Fessard, Gif-sur-Yvette, France
- Department of Medical and Molecular Genetics, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Ferenc Müller
- Laboratoire Neurobiologie et Développement UPR3294 Centre National de la Recherche Scientifique (CNRS), Institut Alfred Fessard, Gif-sur-Yvette, France
- Department of Medical and Molecular Genetics, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Didier Casane
- Laboratoire Neurobiologie et Développement UPR3294 Centre National de la Recherche Scientifique (CNRS), Institut Alfred Fessard, Gif-sur-Yvette, France
- Laboratoire Evolution, Génomes et Spéciation UPR9034 Centre National de la Recherche Scientifique (CNRS), Gif-sur-Yvette, and Université Paris 7, Paris, France
| | - Ghislaine Magdelenat
- Laboratoire Neurobiologie et Développement UPR3294 Centre National de la Recherche Scientifique (CNRS), Institut Alfred Fessard, Gif-sur-Yvette, France
- Génoscope, Institut de Génomique, Commissariat à l'Energie Atomique (CEA), Evry, France
| | - Sylvie Rétaux
- Laboratoire Neurobiologie et Développement UPR3294 Centre National de la Recherche Scientifique (CNRS), Institut Alfred Fessard, Gif-sur-Yvette, France
- * E-mail:
| |
Collapse
|
20
|
Ying S, Kojima T, Kawada A, Nachat R, Serre G, Simon M, Takahara H. An intronic enhancer driven by NF-κB contributes to transcriptional regulation of peptidylarginine deiminase type I gene in human keratinocytes. J Invest Dermatol 2010; 130:2543-52. [PMID: 20596086 DOI: 10.1038/jid.2010.179] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Peptidylarginine deiminases (PADs) catalyze the conversion of protein-bound arginine to citrulline residues. In human epidermis, where filaggrin is the main deiminated protein, three PADs are detected with specific patterns of expression depending on the keratinocyte (KC) differentiation state. Previous characterizations of the PAD-encoding gene promoters have shown that proximal regulation alone is not sufficient to explain this specificity of expression. In this work, we describe an evolutionarily highly conserved nucleotide segment located in the first intron of the PAD1 gene (PADI1). Luciferase reporter assays showed that it enhances the activity of the PADI1 promoter, in a calcium- and orientation-independent manner. Mutation of a putative NF-κB cis-element markedly reduced its enhancer activity, which also confirmed its potential regulatory function. Chromatin immunoprecipitation assays evidenced the binding of both p65 and p50 NF-κB subunits to the cis-element, and RNA interference inhibition assays confirmed that NF-κB contributes to the PADI1 transcriptional control. Furthermore, the intronic enhancer and promoter of PADI1 potentially interact through chromatin looping, as indicated by chromosome conformation capture assays. Our findings provide evidence that an NF-κB-mediated signaling pathway is involved in PADI1 regulation in human epidermal KCs.
Collapse
Affiliation(s)
- Shibo Ying
- Department of Applied Life Sciences, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Collins PL, Chang S, Henderson M, Soutto M, Davis GM, McLoed AG, Townsend MJ, Glimcher LH, Mortlock DP, Aune TM. Distal regions of the human IFNG locus direct cell type-specific expression. THE JOURNAL OF IMMUNOLOGY 2010; 185:1492-501. [PMID: 20574006 DOI: 10.4049/jimmunol.1000124] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Genes, such as IFNG, which are expressed in multiple cell lineages of the immune system, may employ a common set of regulatory elements to direct transcription in multiple cell types or individual regulatory elements to direct expression in individual cell lineages. By employing a bacterial artificial chromosome transgenic system, we demonstrate that IFNG employs unique regulatory elements to achieve lineage-specific transcriptional control. Specifically, a one 1-kb element 30 kb upstream of IFNG activates transcription in T cells and NKT cells but not in NK cells. This distal regulatory element is a Runx3 binding site in Th1 cells and is needed for RNA polymerase II recruitment to IFNG, but it is not absolutely required for histone acetylation of the IFNG locus. These results support a model whereby IFNG uses cis-regulatory elements with cell type-restricted function.
Collapse
Affiliation(s)
- Patrick L Collins
- Division of Rheumatology, Department of Medicine, Medical Center North T3219, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Collins PL, Aune TM. Keeping one's option open. Immunity 2010; 32:581-3. [PMID: 20510865 DOI: 10.1016/j.immuni.2010.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In the periphery, T helper cell differentiation is a key event orchestrating the adaptive immune response yet recent studies demonstrate considerable plasticity in these cell fate decisions. In this issue of Immunity, Mukasa et al. (2010) describe the epigenetic basis underlying this plasticity.
Collapse
Affiliation(s)
- Patrick L Collins
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | |
Collapse
|
23
|
Developmental diseases and the hypothetical Master Development Program. Med Hypotheses 2010; 74:564-73. [DOI: 10.1016/j.mehy.2009.09.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 09/17/2009] [Indexed: 11/24/2022]
|
24
|
Wotton KR, Weierud FK, Juárez-Morales JL, Alvares LE, Dietrich S, Lewis KE. Conservation of gene linkage in dispersed vertebrate NK homeobox clusters. Dev Genes Evol 2009; 219:481-96. [PMID: 20112453 DOI: 10.1007/s00427-009-0311-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 11/23/2009] [Indexed: 12/23/2022]
Abstract
Nk homeobox genes are important regulators of many different developmental processes including muscle, heart, central nervous system and sensory organ development. They are thought to have arisen as part of the ANTP megacluster, which also gave rise to Hox and ParaHox genes, and at least some NK genes remain tightly linked in all animals examined so far. The protostome-deuterostome ancestor probably contained a cluster of nine Nk genes: (Msx)-(Nk4/tinman)-(Nk3/bagpipe)-(Lbx/ladybird)-(Tlx/c15)-(Nk7)-(Nk6/hgtx)-(Nk1/slouch)-(Nk5/Hmx). Of these genes, only NKX2.6-NKX3.1, LBX1-TLX1 and LBX2-TLX2 remain tightly linked in humans. However, it is currently unclear whether this is unique to the human genome as we do not know which of these Nk genes are clustered in other vertebrates. This makes it difficult to assess whether the remaining linkages are due to selective pressures or because chance rearrangements have "missed" certain genes. In this paper, we identify all of the paralogs of these ancestrally clustered NK genes in several distinct vertebrates. We demonstrate that tight linkages of Lbx1-Tlx1, Lbx2-Tlx2 and Nkx3.1-Nkx2.6 have been widely maintained in both the ray-finned and lobe-finned fish lineages. Moreover, the recently duplicated Hmx2-Hmx3 genes are also tightly linked. Finally, we show that Lbx1-Tlx1 and Hmx2-Hmx3 are flanked by highly conserved noncoding elements, suggesting that shared regulatory regions may have resulted in evolutionary pressure to maintain these linkages. Consistent with this, these pairs of genes have overlapping expression domains. In contrast, Lbx2-Tlx2 and Nkx3.1-Nkx2.6, which do not seem to be coexpressed, are also not associated with conserved noncoding sequences, suggesting that an alternative mechanism may be responsible for the continued clustering of these genes.
Collapse
Affiliation(s)
- Karl R Wotton
- Department of Craniofacial Development, King's College London, Floor 27 Guy's Tower, Guy's Hospital, London Bridge, London, SE1 9RT, UK
| | | | | | | | | | | |
Collapse
|
25
|
Elgar G. Pan-vertebrate conserved non-coding sequences associated with developmental regulation. BRIEFINGS IN FUNCTIONAL GENOMICS AND PROTEOMICS 2009; 8:256-65. [DOI: 10.1093/bfgp/elp033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
26
|
Moghadam HK, Ferguson MM, Danzmann RG. Comparative genomics and evolution of conserved noncoding elements (CNE) in rainbow trout. BMC Genomics 2009; 10:278. [PMID: 19549339 PMCID: PMC2711117 DOI: 10.1186/1471-2164-10-278] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 06/23/2009] [Indexed: 12/04/2022] Open
Abstract
Background Recent advances in the accumulation of genetic mapping and DNA sequence information from several salmonid species support the long standing view of an autopolyploid origin of these fishes (i.e., 4R). However, the paralogy relationships of the chromosomal segments descendent from earlier polyploidization events (i.e., 2R/3R) largely remain unknown, mainly due to an unbalanced pseudogenization of paralogous genes that were once resident on the ancient duplicated segments. Inter-specific conserved noncoding elements (CNE) might hold the key in identifying these regions, if they are associated with arrays of genes that have been highly conserved in syntenic blocks through evolution. To test this hypothesis, we investigated the chromosomal positions of subset of CNE in the rainbow trout genome using a comparative genomic framework. Results Through a genome wide analysis, we selected 41 pairs of adjacent CNE located on various chromosomes in zebrafish and obtained their intervening, less conserved, sequence information from rainbow trout. We identified 56 distinct fragments corresponding to about 150 Kbp of sequence data that were localized to 67 different chromosomal regions in the rainbow trout genome. The genomic positions of many duplicated CNE provided additional support for some previously suggested homeologies in this species. Additionally, we now propose 40 new potential paralogous affinities by analyzing the variation in the segregation patterns of some multi-copy CNE along with the synteny association comparison using several model vertebrates. Some of these regions appear to carry signatures of the 1R, 2R or 3R duplications. A subset of these CNE markers also demonstrated high utility in identifying homologous chromosomal segments in the genomes of Atlantic salmon and Arctic charr. Conclusion CNE seem to be more efficacious than coding sequences in providing insights into the ancient paralogous affinities within the vertebrate genomes. Such a feature makes these elements extremely attractive for comparative genomics studies, as they can be treated as 'anchor' markers to investigate the association of distally located candidate genes on the homologous genomic segments of closely or distantly related organisms.
Collapse
Affiliation(s)
- Hooman K Moghadam
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada.
| | | | | |
Collapse
|