1
|
Godoy MS, Verdú I, de Miguel SR, Jiménez JD, Prieto MA. Exploring Rhodospirillum rubrum response to high doses of carbon monoxide under light and dark conditions. Appl Microbiol Biotechnol 2024; 108:258. [PMID: 38466440 DOI: 10.1007/s00253-024-13079-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/14/2024] [Accepted: 02/16/2024] [Indexed: 03/13/2024]
Abstract
Environmental concerns about residues and the traditional disposal methods are driving the search for more environmentally conscious processes, such as pyrolysis and gasification. Their main final product is synthesis gas (syngas) composed of CO, CO2, H2, and methane. Syngas can be converted into various products using CO-tolerant microorganisms. Among them, Rhodospirillum rubrum is highlighted for its biotechnological potential. However, the extent to which high doses of CO affect its physiology is still opaque. For this reason, we have studied R. rubrum behavior under high levels of this gas (up to 2.5 bar), revealing a profound dependence on the presence or absence of light. In darkness, the key variable affected was the lag phase, where the highest levels of CO retarded growth to more than 20 days. Under light, R. rubrum ability to convert CO into CO2 and H2 depended on the presence of an additional carbon source, such as acetate. In those conditions where CO was completely exhausted, CO2 fixation was unblocked, leading to a diauxic growth. To enhance R. rubrum tolerance to CO in darkness, a UV-accelerated adaptive laboratory evolution (UVa-ALE) trial was conducted to isolate clones with shorter lag phases, resulting in the isolation of clones 1.4-2B and 1.7-2A. The adaptation of 1.4-2B was mainly based on mutated enzymes with a metabolic function, while 1.7-3A was mostly affected at regulatory genes, including the anti-repressor PpaA/AerR. Despite these mutations having slight effects on biomass and pigment levels, they successfully provoked a significant reduction in the lag phase (-50%). KEYPOINTS: • CO affects principally R. rubrum lag phase (darkness) and growth rate (light) • CO is converted to CO2/H2 during acetate uptake and inhibits CO2 fixation (light) • UVa-ALE clones showed a 50% reduction in the lag phase (darkness).
Collapse
Affiliation(s)
- Manuel S Godoy
- Polymer Biotechnology Lab, Biological Research Centre Margarita Salas, Spanish National Research Council (CIB-CSIC), Madrid, Spain.
- Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy-CSIC (SusPlast-CSIC), Madrid, Spain.
| | - Irene Verdú
- Polymer Biotechnology Lab, Biological Research Centre Margarita Salas, Spanish National Research Council (CIB-CSIC), Madrid, Spain
- Present address: Drexel University, Philadelphia, Pennsylvania, USA
| | - Santiago R de Miguel
- Polymer Biotechnology Lab, Biological Research Centre Margarita Salas, Spanish National Research Council (CIB-CSIC), Madrid, Spain
- Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy-CSIC (SusPlast-CSIC), Madrid, Spain
| | - José D Jiménez
- Polymer Biotechnology Lab, Biological Research Centre Margarita Salas, Spanish National Research Council (CIB-CSIC), Madrid, Spain
- Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy-CSIC (SusPlast-CSIC), Madrid, Spain
| | - M Auxiliadora Prieto
- Polymer Biotechnology Lab, Biological Research Centre Margarita Salas, Spanish National Research Council (CIB-CSIC), Madrid, Spain.
- Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy-CSIC (SusPlast-CSIC), Madrid, Spain.
| |
Collapse
|
2
|
Bouillaud F. Sulfide Oxidation Evidences the Immediate Cellular Response to a Decrease in the Mitochondrial ATP/O2 Ratio. Biomolecules 2022; 12:biom12030361. [PMID: 35327553 PMCID: PMC8944965 DOI: 10.3390/biom12030361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 11/25/2022] Open
Abstract
The present article will not attempt to deal with sulfide per se as a signaling molecule but will aim to examine the consequences of sulfide oxidation by mitochondrial sulfide quinone reductase in mammalian cells. This oxidation appears first as a priority to avoid self-poisoning by endogenous sulfide and second to occur with the lowest ATP/O2 ratio when compared to other mitochondrial substrates. This is explained by the injection of electrons in the respiratory chain after complex I (as for succinate) and by a sulfur oxidation step implying a dioxygenase that consumes oxygen but does not contribute to mitochondrial bioenergetics. Both contribute to increase cellular oxygen consumption if sulfide is provided below its toxic level (low µM). Accordingly, if oxygen supply or respiratory chain activity becomes a limiting factor, small variations in sulfide release impact the cellular ATP/ADP ratio, a major metabolic sensor.
Collapse
Affiliation(s)
- Frédéric Bouillaud
- Institut Cochin, INSERM, CNRS, Université de Paris, F75014 Paris, France
| |
Collapse
|
3
|
Shin Y, Whang K, Hwang JH, Jo Y, Choi JW, Park J, Choi I, Kang T. Sensitive and Direct Optical Monitoring of Release and Cellular Uptake of Aqueous CO from CO-Releasing Molecules. Anal Chem 2021; 93:9927-9932. [PMID: 34236175 DOI: 10.1021/acs.analchem.1c02216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Dynamics of release and cellular uptake of aqueous CO from CO-releasing molecules (CORMs) significantly affect signaling and cell viability. So far, it has been mainly observed by IR, UV-visible, and fluorescence techniques, which suffer from poor sensitivity and slow response time. Here, we show how to directly probe the mass transfer of aqueous CO from CORMs to cells using a fluidic chamber integrated with live cells and Raman reporters of large-area Au@Pd core-shell nanoparticle assembly to emulate a physiologically relevant microenvironment. We sensitively and directly detect CO release from trace CORMs of as low as 100 nM by measuring the Raman transitions of CO via rapid chemisorption onto the surface of the Au@Pd nanoparticles. By using our method, we successfully observe the dynamics of CO release from CORM-2 despite its very short half-life. We also reveal that the initial rate of CO release from CORM-3 is dramatically decreased by tens to hundreds of times when exposed to physiologically relevant pH variations from 7.4 to 2.5, which can be attributed to the acid hydrolysis of the CO ligand. CORM-2 tends to quickly release CO regardless of pH, probably because of its rapid cleavage into two monomeric Ru complexes by the co-solvent. The decrease in the initial rate at lower temperatures is more significant for CORM-3 than for CORM-2. Finally, we observe that the cellular uptake of aqueous CO from CORM-3 by lung cancer cells is approximately 2 times higher than that of normal lung cells.
Collapse
Affiliation(s)
- Yonghee Shin
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea.,Institute of Integrated Biotechnology, Sogang University, Seoul 04107, Korea
| | - Keumrai Whang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea
| | - Jeong Ha Hwang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea
| | - Yuseung Jo
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea
| | - Junhee Park
- Department of Life Science, University of Seoul, Seoul 02504, Korea
| | - Inhee Choi
- Department of Life Science, University of Seoul, Seoul 02504, Korea
| | - Taewook Kang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea.,Institute of Integrated Biotechnology, Sogang University, Seoul 04107, Korea
| |
Collapse
|
4
|
Yang X, Lu W, Hopper CP, Ke B, Wang B. Nature's marvels endowed in gaseous molecules I: Carbon monoxide and its physiological and therapeutic roles. Acta Pharm Sin B 2021; 11:1434-1445. [PMID: 34221861 PMCID: PMC8245769 DOI: 10.1016/j.apsb.2020.10.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/03/2020] [Accepted: 09/07/2020] [Indexed: 02/08/2023] Open
Abstract
Nature has endowed gaseous molecules such as O2, CO2, CO, NO, H2S, and N2 with critical and diverse roles in sustaining life, from supplying energy needed to power life and building blocks for life's physical structure to mediating and coordinating cellular functions. In this article, we give a brief introduction of the complex functions of the various gaseous molecules in life and then focus on carbon monoxide as a specific example of an endogenously produced signaling molecule to highlight the importance of this class of molecules. The past twenty years have seen much progress in understanding CO's mechanism(s) of action and pharmacological effects as well as in developing delivery methods for easy administration. One remarkable trait of CO is its pleiotropic effects that have few parallels, except perhaps its sister gaseous signaling molecules such as nitric oxide and hydrogen sulfide. This review will delve into the sophistication of CO-mediated signaling as well as its validated pharmacological functions and possible therapeutic applications.
Collapse
Affiliation(s)
- Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Wen Lu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Christopher P. Hopper
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
- Institut für Experimentelle Biomedizin, Universitätsklinikum Würzburg, Würzburg, Bavaria 97080, Germany
| | - Bowen Ke
- Department of Anesthesiology, West China Hospital, Chengdu 610041, China
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
5
|
Fernandes AR, Mendonça-Martins I, Santos MFA, Raposo LR, Mendes R, Marques J, Romão CC, Romão MJ, Santos-Silva T, Baptista PV. Improving the Anti-inflammatory Response via Gold Nanoparticle Vectorization of CO-Releasing Molecules. ACS Biomater Sci Eng 2020; 6:1090-1101. [DOI: 10.1021/acsbiomaterials.9b01936] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Alexandra R. Fernandes
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Inês Mendonça-Martins
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Marino F. A. Santos
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Luís R. Raposo
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Rita Mendes
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Joana Marques
- Instituto de Tecnologia Quı́mica e Biológica—António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2780-157 Oeiras, Portugal
| | - Carlos C. Romão
- Instituto de Tecnologia Quı́mica e Biológica—António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2780-157 Oeiras, Portugal
| | - Maria João Romão
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Teresa Santos-Silva
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Pedro V. Baptista
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| |
Collapse
|
6
|
Soboleva T, Berreau LM. 3-Hydroxyflavones and 3-Hydroxy-4-oxoquinolines as Carbon Monoxide-Releasing Molecules. Molecules 2019; 24:E1252. [PMID: 30935018 PMCID: PMC6479552 DOI: 10.3390/molecules24071252] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 12/26/2022] Open
Abstract
Carbon monoxide-releasing molecules (CORMs) that enable the delivery of controlled amounts of CO are of strong current interest for applications in biological systems. In this review, we examine the various conditions under which CO is released from 3-hydroxyflavones and 3-hydroxy-4-oxoquinolines to advance the understanding of how these molecules, or derivatives thereof, may be developed as CORMs. Enzymatic pathways from quercetin dioxygenases and 3-hydroxy-4-oxoquinoline dioxygenases leading to CO release are examined, along with model systems for these enzymes. Base-catalyzed and non-redox-metal promoted CO release, as well as UV and visible light-driven CO release from 3-hydroxyflavones and 3-hydroxy-4-oxoquinolines, are summarized. The visible light-induced CO release reactivity of recently developed extended 3-hydroxyflavones and a 3-hydroxybenzo[g]quinolone, and their uses as intracellular CORMs, are discussed. Overall, this review provides insight into the chemical factors that affect the thermal and photochemical dioxygenase-type CO release reactions of these heterocyclic compounds.
Collapse
Affiliation(s)
- Tatiana Soboleva
- Department of Chemistry & Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322-0300, USA.
| | - Lisa M Berreau
- Department of Chemistry & Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322-0300, USA.
| |
Collapse
|
7
|
Brynildsen MP. Nitric Oxide Stress as a Metabolic Flux. Adv Microb Physiol 2018; 73:63-76. [PMID: 30262110 DOI: 10.1016/bs.ampbs.2018.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Nitric oxide (NO) is an antimicrobial metabolite produced by immune cells to prohibit infection. Due to its reactivity, NO has numerous reaction routes available to it in biological systems with some leading to cellular damage and others producing innocuous compounds. Pathogens have evolved resistance mechanisms toward NO, and many of these take the form of enzymes that chemically passivate the molecule. In essence, bacteria have channeled NO flux toward useful or harmless compounds, and away from pathways that damage cellular components. Pathogens devoid of detoxification enzymes have been found to have compromised survival in different infection models, which suggests that diverting flux away from NO defenses could be a viable antiinfective strategy. From this perspective, potentiation of NO stress mirrors challenges in metabolic engineering where researchers endeavor to divert flux away from endogenous pathways and toward those that produce desirable biomolecules. In this review, we cast NO stress as a metabolic flux and discuss how the tools and methodologies of metabolic engineering are well suited for analysis of this bacterial stress response. We provide examples of such interdisciplinary applications, discuss the benefits of considering NO stress from a flux perspective, as well as the pitfalls, and offer a vision for how metabolic engineering analyses can assist in deciphering the economics underlying bacterial responses to multistress conditions that are characteristic of the phagosomes of immune cells.
Collapse
Affiliation(s)
- Mark P Brynildsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, United States.
| |
Collapse
|
8
|
Wareham LK, McLean S, Begg R, Rana N, Ali S, Kendall JJ, Sanguinetti G, Mann BE, Poole RK. The Broad-Spectrum Antimicrobial Potential of [Mn(CO) 4(S 2CNMe(CH 2CO 2H))], a Water-Soluble CO-Releasing Molecule (CORM-401): Intracellular Accumulation, Transcriptomic and Statistical Analyses, and Membrane Polarization. Antioxid Redox Signal 2018; 28:1286-1308. [PMID: 28816060 PMCID: PMC5905950 DOI: 10.1089/ars.2017.7239] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AIMS Carbon monoxide (CO)-releasing molecules (CORMs) are candidates for animal and antimicrobial therapeutics. We aimed to probe the antimicrobial potential of a novel manganese CORM. RESULTS [Mn(CO)4S2CNMe(CH2CO2H)], CORM-401, inhibits growth of Escherichia coli and several antibiotic-resistant clinical pathogens. CORM-401 releases CO that binds oxidases in vivo, but is an ineffective respiratory inhibitor. Extensive CORM accumulation (assayed as intracellular manganese) accompanies antimicrobial activity. CORM-401 stimulates respiration, polarizes the cytoplasmic membrane in an uncoupler-like manner, and elicits loss of intracellular potassium and zinc. Transcriptomics and mathematical modeling of transcription factor activities reveal a multifaceted response characterized by elevated expression of genes encoding potassium uptake, efflux pumps, and envelope stress responses. Regulators implicated in stress responses (CpxR), respiration (Arc, Fnr), methionine biosynthesis (MetJ), and iron homeostasis (Fur) are significantly disturbed. Although CORM-401 reduces bacterial growth in combination with cefotaxime and trimethoprim, fractional inhibition studies reveal no interaction. INNOVATION We present the most detailed microbiological analysis yet of a CORM that is not a ruthenium carbonyl. We demonstrate CO-independent striking effects on the bacterial membrane and global transcriptomic responses. CONCLUSIONS CORM-401, contrary to our expectations of a CO delivery vehicle, does not inhibit respiration. It accumulates in the cytoplasm, acts like an uncoupler in disrupting cytoplasmic ion balance, and triggers multiple effects, including osmotic stress and futile respiration. Rebound Track: This work was rejected during standard peer review and rescued by rebound peer review (Antioxid Redox Signal 16: 293-296, 2012) with the following serving as open reviewers: Miguel Aon, Giancarlo Biagini, James Imlay, and Nigel Robinson. Antioxid. Redox Signal. 28, 1286-1308.
Collapse
Affiliation(s)
- Lauren K Wareham
- 1 Department of Molecular Biology and Biotechnology, The University of Sheffield , Sheffield, United Kingdom
| | - Samantha McLean
- 1 Department of Molecular Biology and Biotechnology, The University of Sheffield , Sheffield, United Kingdom .,2 School of Science and Technology , Nottingham Trent University, Nottingham, United Kingdom
| | - Ronald Begg
- 3 School of Informatics, The University of Edinburgh , Edinburgh, United Kingdom
| | - Namrata Rana
- 1 Department of Molecular Biology and Biotechnology, The University of Sheffield , Sheffield, United Kingdom
| | - Salar Ali
- 1 Department of Molecular Biology and Biotechnology, The University of Sheffield , Sheffield, United Kingdom
| | - John J Kendall
- 1 Department of Molecular Biology and Biotechnology, The University of Sheffield , Sheffield, United Kingdom
| | - Guido Sanguinetti
- 3 School of Informatics, The University of Edinburgh , Edinburgh, United Kingdom
| | - Brian E Mann
- 4 Department of Chemistry, The University of Sheffield , Sheffield, United Kingdom
| | - Robert K Poole
- 1 Department of Molecular Biology and Biotechnology, The University of Sheffield , Sheffield, United Kingdom
| |
Collapse
|
9
|
Vencloviene J, Babarskiene RM, Dobozinskas P, Dedele A, Lopatiene K, Ragaisyte N. The short-term associations of weather and air pollution with emergency ambulance calls for paroxysmal atrial fibrillation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:15031-15043. [PMID: 28493187 DOI: 10.1007/s11356-017-9138-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 04/27/2017] [Indexed: 06/07/2023]
Abstract
A circadian variation in the cardiovascular parameters has been detected. It is plausible that the influence of the environment varies during different periods of the day. We investigated the association between daily emergency ambulance calls (EC) for paroxysmal atrial fibrillation (AF) that occurred during the time intervals of 8:00-13:59, 14:00-21:59, and 22:00-7:59, and weather conditions and exposure to CO and PM10. We used Poisson regression to explore the association between the risk of EC for AF and environmental variables, adjusting for seasonal variation. Before noon, the risk was associated with an IQR (0.333 mg/m3) increase in CO at lag 2-6 days above the median (RR = 1.15, P = 0.002); a protective impact of CO on previous day was observed (RR = 0.91, P = 0.018). During 14:00-21:59, a negative effect of air temperature below 1.9 °C (lag 2-3 days) was detected (per 10 °C decrease: RR = 1.17, P = 0.044). At night, the elevated risk was associated with wind speed above the median (lag 2-4 days) (per 1-kt increase: RR = 1.07, P = 0.001) and with PM10 at lag 2-5 days below the median (per IQR (7.31 μg/m3) increase: RR = 1.21, P = 0.002). Individuals over 65 years of age were more sensitive to air pollution, especially at night (CO lag 2-3 days < median, per IQR (0.12 mg/m3) increase: RR = 1.14, P = 0.045; PM10 lag 2-5 days < median, per IQR increase: RR = 1.32, P = 0.001). The associations of air pollution and other environmental variables with acute events may be analyzed depending on the time of the event.
Collapse
Affiliation(s)
- Jone Vencloviene
- Department of Environmental Sciences, Faculty of Natural Sciences, Vytautas Magnus University, Donelaicio St. 58, 44248, Kaunas, Lithuania.
| | - Ruta Marija Babarskiene
- Department of Cardiology, Lithuanian University of Health Sciences, Eiveniu str. 2, 50028, Kaunas, Lithuania
| | - Paulius Dobozinskas
- Department of Disaster Medicine, Lithuanian University of Health Sciences, Eiveniu str. 4, 50028, Kaunas, Lithuania
| | - Audrius Dedele
- Department of Environmental Sciences, Faculty of Natural Sciences, Vytautas Magnus University, Donelaicio St. 58, 44248, Kaunas, Lithuania
| | - Kristina Lopatiene
- Department of Orthodontics, Lithuanian University of Health Sciences, Luksos-Daumanto str. 6, 50106, Kaunas, Lithuania
| | - Nijole Ragaisyte
- Department of Cardiology, Lithuanian University of Health Sciences, Eiveniu str. 2, 50028, Kaunas, Lithuania
| |
Collapse
|
10
|
Abstract
Ruthenium is seldom mentioned in microbiology texts, due to the fact that this metal has no known, essential roles in biological systems, nor is it generally considered toxic. Since the fortuitous discovery of cisplatin, first as an antimicrobial agent and then later employed widely as an anticancer agent, complexes of other platinum group metals, such as ruthenium, have attracted interest for their medicinal properties. Here, we review at length how ruthenium complexes have been investigated as potential antimicrobial, antiparasitic and chemotherapeutic agents, in addition to their long and well-established roles as biological stains and inhibitors of calcium channels. Ruthenium complexes are also employed in a surprising number of biotechnological roles. It is in the employment of ruthenium complexes as antimicrobial agents and alternatives or adjuvants to more traditional antibiotics, that we expect to see the most striking developments in the future. Such novel contributions from organometallic chemistry are undoubtedly sorely needed to address the antimicrobial resistance crisis and the slow appearance on the market of new antibiotics.
Collapse
|
11
|
Nguyen D, Boyer C. Macromolecular and Inorganic Nanomaterials Scaffolds for Carbon Monoxide Delivery: Recent Developments and Future Trends. ACS Biomater Sci Eng 2015; 1:895-913. [PMID: 33429521 DOI: 10.1021/acsbiomaterials.5b00230] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Carbon monoxide (CO) is as an important biological gasomediator. It plays significant roles in anti-inflammatory, antihypertensive, and antiapoptotic pathways. Preclinical evidence in animal models has proven the beneficial effects of controlled CO gas administration. However, the medical use of CO gas has been hindered due to its administration. Indeed, its toxicity at high concentrations and the challenging delivery to specific target sites are the limiting factors. To overcome these problems, a wide range of CO-releasing molecules have been designed, and some have emerged as potential therapeutic agents. Despite some successes, these small CO-releasing molecules have limited stability in biologic media resulting in an unspecific release of CO, which could result in side effects. CO-releasing macromolecular and inorganic nanomaterial scaffolds have emerged as promising carriers due to their ability to encapsulate and deliver high amounts of CO-releasing molecules. Furthermore, polymer architecture could be designed for the controlled release of CO under specific stimuli. After highlighting some recent developments in the design of CO-releasing scaffolds, this review will discuss strategies and possible future directions of CO releasing macromolecules and inorganic nanomaterials for potential therapeutic applications.
Collapse
Affiliation(s)
- Diep Nguyen
- Australian Centre for Nanomedicine, School of Chemical Engineering, and ‡Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Gate 2, High Street, Sydney, Australia 2052
| | - Cyrille Boyer
- Australian Centre for Nanomedicine, School of Chemical Engineering, and Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Gate 2, High Street, Sydney, Australia 2052
| |
Collapse
|
12
|
Abstract
Infectious diseases remain one of the leading causes of death worldwide despite the tremendous effort devoted to the design and development of antimicrobial agents. However, the decrease in the effectiveness of some antibiotics is often associated with the development of drug resistance by pathogen. This leads to an urgent need for the development of new therapeutic approaches that can overcome the development of drug resistance. Recent evidence suggests that the biological signaling molecule carbon monoxide (CO) presents remarkable antimicrobial properties. Herein, we report the design and synthesis of a new type of water-soluble CO-releasing polymer with antimicrobial activity against Pseudomonas aeruginosa that is highly efficient at preventing biofilm formation.
Collapse
Affiliation(s)
| | | | - Scott A Rice
- The Singapore Centre for Environmental Life Sciences Engineering and The School of Biological Sciences, Nanyang Technological University , Singapore 639798, Singapore
| | | |
Collapse
|
13
|
Roderique JD, Josef CS, Feldman MJ, Spiess BD. A modern literature review of carbon monoxide poisoning theories, therapies, and potential targets for therapy advancement. Toxicology 2015; 334:45-58. [PMID: 25997893 DOI: 10.1016/j.tox.2015.05.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 05/01/2015] [Accepted: 05/12/2015] [Indexed: 01/03/2023]
Abstract
The first descriptions of carbon monoxide (CO) and its toxic nature appeared in the literature over 100 years ago in separate publications by Drs. Douglas and Haldane. Both men ascribed the deleterious effects of this newly discovered gas to its strong interaction with hemoglobin. Since then the adverse sequelae of CO poisoning has been almost universally attributed to hypoxic injury secondary to CO occupation of oxygen binding sites on hemoglobin. Despite a mounting body of literature suggesting other mechanisms of injury, this pathophysiology and its associated oxygen centric therapies persists. This review attempts to elucidate the remarkably complex nature of CO as a gasotransmitter. While CO's affinity for hemoglobin remains undisputed, new research suggests that its role in nitric oxide release, reactive oxygen species formation, and its direct action on ion channels is much more significant. In the course of understanding the multifaceted character of this simple molecule it becomes apparent that current oxygen based therapies meant to displace CO from hemoglobin may be insufficient and possibly harmful. Approaching CO as a complex gasotransmitter will help guide understanding of the complex and poorly understood sequelae and illuminate potentials for new treatment modalities.
Collapse
Affiliation(s)
- Joseph D Roderique
- Department of Anesthesiology, VCU School of Medicine Sanger Hall, Rm B1-016, 1101 East Marshall Street, P.O. Box 980695, Richmond, VA 23298, United States
| | - Christopher S Josef
- Department of Anesthesiology, VCU School of Medicine Sanger Hall, Rm B1-016, 1101 East Marshall Street, P.O. Box 980695, Richmond, VA 23298, United States.
| | - Michael J Feldman
- Department of Plastic and Reconstructive Surgery, Critical Care Hospital 8th floor, 1213 East Clay St, Richmond, VA 23298, United States
| | - Bruce D Spiess
- Department of Anesthesiology, VCU School of Medicine Sanger Hall, Rm B1-016, 1101 East Marshall Street, P.O. Box 980695, Richmond, VA 23298, United States
| |
Collapse
|
14
|
Cai J, Chen R, Wang W, Xu X, Ha S, Kan H. Does ambient CO have protective effect for COPD patient? ENVIRONMENTAL RESEARCH 2015; 136:21-6. [PMID: 25460616 DOI: 10.1016/j.envres.2014.09.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 09/02/2014] [Accepted: 09/11/2014] [Indexed: 05/24/2023]
Abstract
BACKGROUND Existing studies found paradoxical effects of carbon monoxide (CO) on human health. Carbon monoxide (CO), at high concentrations, is a well-known toxicant, but recent studies suggest that CO at low concentrations may have protective health effects under certain conditions. OBJECTIVES To investigate the acute effect of ambient CO on hospital admission for chronic obstructive pulmonary disease (COPD) in Shanghai, China. METHODS Daily data on COPD admissions and CO concentrations between 2006 and 2008 were collected. We applied over-dispersed generalized additive Poisson models, adjusted for weather conditions, day of the week and public holidays, long-term and seasonal trends. RESULTS During the study period, the average CO concentration was 1.3mg/m(3), well below the international health-based standard. Negative associations were found between ambient CO concentration and daily COPD hospitalization. An interquartile range increase (0.6 mg/m(3)) in CO concentration at lag 3 day corresponded to -2.97% (95% confidence interval: -4.63%, -1.31%) change in COPD hospitalization. The negative associations were robust after adjustment for co-pollutants (PM10, NO2 and SO2). The protective effect of CO appeared to be more evident in the cool season. CONCLUSION Short-term exposure to CO at low ambient concentration may be associated with reduced risk of COPD hospitalization. Our results may contribute to a comprehensive understanding on the health effects of ambient CO.
Collapse
Affiliation(s)
- Jing Cai
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, & Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, & Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, China; Global Health Institute, Fudan University, Shanghai, China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan University, Shanghai, China
| | - Weibing Wang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, & Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, China
| | - Xiaohui Xu
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, FL, USA
| | - Sandie Ha
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, FL, USA
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, & Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, China; Global Health Institute, Fudan University, Shanghai, China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan University, Shanghai, China.
| |
Collapse
|
15
|
Tinajero-Trejo M, Denby KJ, Sedelnikova SE, Hassoubah SA, Mann BE, Poole RK. Carbon monoxide-releasing molecule-3 (CORM-3; Ru(CO)3Cl(glycinate)) as a tool to study the concerted effects of carbon monoxide and nitric oxide on bacterial flavohemoglobin Hmp: applications and pitfalls. J Biol Chem 2014; 289:29471-82. [PMID: 25193663 PMCID: PMC4207967 DOI: 10.1074/jbc.m114.573444] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 09/01/2014] [Indexed: 11/06/2022] Open
Abstract
CO and NO are small toxic gaseous molecules that play pivotal roles in biology as gasotransmitters. During bacterial infection, NO, produced by the host via the inducible NO synthase, exerts critical antibacterial effects while CO, generated by heme oxygenases, enhances phagocytosis of macrophages. In Escherichia coli, other bacteria and fungi, the flavohemoglobin Hmp is the most important detoxification mechanism converting NO and O2 to the ion nitrate (NO3(-)). The protoheme of Hmp binds not only O2 and NO, but also CO so that this ligand is expected to be an inhibitor of NO detoxification in vivo and in vitro. CORM-3 (Ru(CO)(3)Cl(glycinate)) is a metal carbonyl compound extensively used and recently shown to have potent antibacterial properties. In this study, attenuation of the NO resistance of E. coli by CORM-3 is demonstrated in vivo. However, polarographic measurements showed that CO gas, but not CORM-3, produced inhibition of the NO detoxification activity of Hmp in vitro. Nevertheless, CO release from CORM-3 in the presence of soluble cellular compounds is demonstrated by formation of carboxy-Hmp. We show that the inability of CORM-3 to inhibit the activity of purified Hmp is due to slow release of CO in protein solutions alone i.e. when sodium dithionite, widely used in previous studies of CO release from CORM-3, is excluded. Finally, we measure intracellular CO released from CORM-3 by following the formation of carboxy-Hmp in respiring cells. CORM-3 is a tool to explore the concerted effects of CO and NO in vivo.
Collapse
Affiliation(s)
| | - Katie J Denby
- From the Departments of Molecular Biology & Biotechnology and
| | | | | | - Brian E Mann
- Chemistry, The University of Sheffield, S10 2TN United Kingdom
| | - Robert K Poole
- From the Departments of Molecular Biology & Biotechnology and
| |
Collapse
|
16
|
Abstract
The health benefits of exercise are well known. Many of the most accessible forms of exercise, such as walking, cycling, and running often occur outdoors. This means that exercising outdoors may increase exposure to urban air pollution. Regular exercise plays a key role in improving some of the physiologic mechanisms and health outcomes that air pollution exposure may exacerbate. This problem presents an interesting challenge of balancing the beneficial effects of exercise along with the detrimental effects of air pollution upon health. This article summarizes the pulmonary, cardiovascular, cognitive, and systemic health effects of exposure to particulate matter, ozone, and carbon monoxide during exercise. It also summarizes how air pollution exposure affects maximal oxygen consumption and exercise performance. This article highlights ways in which exercisers could mitigate the adverse health effects of air pollution exposure during exercise and draws attention to the potential importance of land use planning in selecting exercise facilities.
Collapse
Affiliation(s)
- Luisa V Giles
- School of Kinesiology, University of British Columbia, 210-6081 University Blvd, Vancouver, BC, V6T 1Z1, Canada,
| | | |
Collapse
|
17
|
Hovater MB, Ying WZ, Agarwal A, Sanders PW. Nitric oxide and carbon monoxide antagonize TGF-β through ligand-independent internalization of TβR1/ALK5. Am J Physiol Renal Physiol 2014; 307:F727-35. [PMID: 25100282 DOI: 10.1152/ajprenal.00353.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Transforming growth factor (TGF)-β plays a central role in vascular homeostasis and in the pathology of vascular disease. There is a growing appreciation for the role of nitric oxide (NO) and carbon monoxide (CO) as highly diffusible, bioactive signaling molecules in the vasculature. We hypothesized that both NO and CO increase endocytosis of TGF-β receptor type 1 (TβR1) in vascular smooth muscle cells (VSMCs) through activation of dynamin-2, shielding cells from the effects of circulating TGF-β. In this study, primary cultures of VSMCs from Sprague-Dawley rats were treated with NO-releasing molecule 3 (a NO chemical donor), CO-releasing molecule 2 (a CO chemical donor), or control. NO and CO stimulated dynamin-2 activation in VSMCs. NO and CO promoted time- and dose-dependent endocytosis of TβR1. By decreasing TβR1 surface expression through this dynamin-2-dependent process, NO and CO diminished the effects of TGF-β on VSMCs. These findings help explain an important mechanism by which NO and CO signal in the vasculature by decreasing surface expression of TβR1 and the cellular response to TGF-β.
Collapse
Affiliation(s)
- Michael B Hovater
- Department of Medicine University of Alabama at Birmingham, Birmingham, Alabama
| | - Wei-Zhong Ying
- Department of Medicine University of Alabama at Birmingham, Birmingham, Alabama
| | - Anupam Agarwal
- Division of Nephrology, Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama; Department of Medicine University of Alabama at Birmingham, Birmingham, Alabama; Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama; Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama; and Department of Veterans Affairs Medical Center, Birmingham, Alabama
| | - Paul W Sanders
- Division of Nephrology, Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama; Department of Medicine University of Alabama at Birmingham, Birmingham, Alabama; Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama; Department of Veterans Affairs Medical Center, Birmingham, Alabama
| |
Collapse
|
18
|
Tian L, Qiu H, Pun VC, Lin H, Ge E, Chan JC, Louie PK, Ho KF, Yu ITS. Ambient carbon monoxide associated with reduced risk of hospital admissions for respiratory tract infections. Am J Respir Crit Care Med 2014; 188:1240-5. [PMID: 23944864 DOI: 10.1164/rccm.201304-0676oc] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Recent experimental and clinical studies suggest that exogenous carbon monoxide (CO) at lower concentrations may have beneficial effects under certain circumstances, whereas population-based epidemiologic studies of environmentally relevant CO exposure generated mixed findings. OBJECTIVES To examine the acute effects of ambient CO on respiratory tract infection (RTI) hospitalizations. METHODS A time series study was conducted. Daily emergency hospital admission and air pollution data in Hong Kong were collected from January 2001 to December 2007. Log-linear Poisson models were used to estimate the associations between daily hospital admissions for RTI and daily average concentrations of CO across three background air monitoring stations and three roadside stations, respectively, controlling for other traffic-related copollutants. MEASUREMENTS AND MAIN RESULTS CO concentrations were low during the study period with a daily average of 0.6 ppm in background stations and 1.0 ppm in roadside stations. Negative associations were found between ambient CO concentrations and daily hospital admissions for RTI. One ppm increase in background CO at lag 0-2 days was associated with -5.7% (95% confidence interval, -9.2 to -2.1) change in RTI admissions from the whole population according to single-pollutant model; the negative association became stronger when nitrogen dioxide or particulate matter with aerodynamic diameter less than 10 μm was adjusted for in two-pollutant models. The negative association seemed to be stronger in the adults than in the children and elderly. CONCLUSIONS Short-term exposure to ambient CO was associated with decreased risk of hospital admissions for RTI, suggesting some acute protective effects of low ambient CO exposure on respiratory infection.
Collapse
Affiliation(s)
- Linwei Tian
- 1 The Jockey Club School of Public Health and Primary Care, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin-NT, Hong Kong Special Administrative Region, China
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
McLean S, Begg R, Jesse HE, Mann BE, Sanguinetti G, Poole RK. Analysis of the bacterial response to Ru(CO)3Cl(Glycinate) (CORM-3) and the inactivated compound identifies the role played by the ruthenium compound and reveals sulfur-containing species as a major target of CORM-3 action. Antioxid Redox Signal 2013; 19:1999-2012. [PMID: 23472713 PMCID: PMC3869425 DOI: 10.1089/ars.2012.5103] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AIMS Carbon monoxide (CO)-releasing molecules (CO-RMs) are being developed with the ultimate goal of safely utilizing the therapeutic potential of CO clinically. One such application is antimicrobial activity; therefore, we aimed to characterize and compare the effects of the CO-RM, CORM-3, and its inactivated counterpart, where all labile CO has been removed, at the transcriptomic and cellular level. RESULTS We found that both compounds are able to penetrate the cell, but the inactive form is not inhibitory to bacterial growth under conditions where CORM-3 is. Transcriptomic analyses revealed that the bacterial response to inactivated CORM-3 (iCORM-3) is much lower than to the active compound and that a wide range of processes appear to be affected by CORM-3 and to a lesser extent iCORM-3, including energy metabolism, membrane transport, motility, and the metabolism of many sulfur-containing species, including cysteine and methionine. INNOVATION This work has demonstrated that both CORM-3 and its inactivated counterpart react with cellular functions to yield a complex response at the transcriptomic level. A full understanding of the actions of both compounds is vital to understand the toxic effects of CO-RMs. CONCLUSION This work has furthered our understanding of how CORM-3 behaves at the cellular level and identifies the responses that occur when the host is exposed to the Ru compound as well as those that result from the released CO. This is a vital step in laying the groundwork for future development of optimized CO-RMs for eventual use in antimicrobial therapy.
Collapse
Affiliation(s)
- Samantha McLean
- 1 Department of Molecular Biology and Biotechnology, The University of Sheffield , Sheffield, United Kingdom
| | | | | | | | | | | |
Collapse
|
20
|
Tinajero-Trejo M, Jesse HE, Poole RK. Gasotransmitters, poisons, and antimicrobials: it's a gas, gas, gas! F1000PRIME REPORTS 2013; 5:28. [PMID: 23967379 PMCID: PMC3732073 DOI: 10.12703/p5-28] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We review recent examples of the burgeoning literature on three gases that have major impacts in biology and microbiology. NO, CO and H2S are now co-classified as endogenous gasotransmitters with profound effects on mammalian physiology and, potentially, major implications in therapeutic applications. All are well known to be toxic yet, at tiny concentrations in human and cell biology, play key signalling and regulatory functions. All may also be endogenously generated in microbes. NO and H2S share the property of being biochemically detoxified, yet are beneficial in resisting the bactericidal properties of antibiotics. The mechanism underlying this protection is currently under debate. CO, in contrast, is not readily removed; mounting evidence shows that CO, and especially organic donor compounds that release the gas in biological environments, are themselves effective, novel antimicrobial agents.
Collapse
|
21
|
Burkholderia xenovorans RcoM(Bx)-1, a transcriptional regulator system for sensing low and persistent levels of carbon monoxide. J Bacteriol 2012; 194:5803-16. [PMID: 22923594 DOI: 10.1128/jb.01024-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The single-component RcoM transcription factor couples an N-terminally bound heme cofactor with a C-terminal "LytTR" DNA-binding domain. Here the RcoM(Bx)-1 protein from Burkholderia xenovorans LB400 was heterologously expressed and then purified in a form with minimal bound CO (~10%) and was found to stably bind this effector with a nanomolar affinity. DNase I protection assays demonstrated that the CO-associated form binds with a micromolar affinity to two ~60-bp DNA regions, each comprised of a novel set of three direct-repeat binding sites spaced 21 bp apart on center. Binding to each region was independent, while binding to the triplet binding sites within a region was cooperative, depended upon spacing and sequence, and was marked by phased DNase I hyperactivity and protection patterns consistent with considerable changes in the DNA conformation of the nucleoprotein complex. Each protected binding site spanned a conserved motif (5'-TTnnnG-3') that was present, in triplicate, in putative RcoM-binding regions of more than a dozen organisms. In vivo screens confirmed the functional importance of the conserved "TTnnnG" motif residues and their triplet arrangement and were also used to determine an improved binding motif [5'-CnnC(C/A)(G/A)TTCAnG-3'] that more closely corresponds to canonical LytTR domain/DNA-binding sites. A low-affinity but CO-dependent binding of RcoM(Bx)-1 to a variety of DNA probes was demonstrated in vitro. We posit that for the RcoM(Bx)-1 protein, the high CO affinity combined with multiple low-affinity DNA-binding events constitutes a transcriptional "accumulating switch" that senses low but persistent CO levels.
Collapse
|
22
|
Cao X, Yang F, Zheng J, Wang K. Intracellular proton-mediated activation of TRPV3 channels accounts for the exfoliation effect of α-hydroxyl acids on keratinocytes. J Biol Chem 2012; 287:25905-16. [PMID: 22679014 DOI: 10.1074/jbc.m112.364869] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
α-Hydroxyl acids (AHAs) from natural sources act as proton donors and topical compounds that penetrate skin and are well known in the cosmetic industry for their use in chemical peels and improvement of the skin. However, little is known about how AHAs cause exfoliation to expose fresh skin cells. Here we report that the transient receptor potential vanilloid 3 (TRPV3) channel in keratinocytes is potently activated by intracellular acidification induced by glycolic acid. Patch clamp recordings and cell death assay of both human keratinocyte HaCaT cells and TRPV3-expressing HEK-293 cells confirmed that intracellular acidification led to direct activation of TRPV3 and promoted cell death. Site-directed mutagenesis revealed that an N-terminal histidine residue, His-426, known to be involved in 2-aminoethyl diphenylborinate-mediated TRPV3 activation, is critical for sensing intracellular proton levels. Taken together, our findings suggest that intracellular protons can strongly activate TRPV3, and TRPV3-mediated proton sensing and cell death in keratinocytes may serve as a molecular basis for the cosmetic use of AHAs and their therapeutic potential in acidic pH-related skin disorders.
Collapse
Affiliation(s)
- Xu Cao
- Department of Neurobiology, Neuroscience Research Institute, Peking University Health Science Center, China
| | | | | | | |
Collapse
|
23
|
Sulfite species enhance carbon monoxide release from CO-releasing molecules: implications for the deoxymyoglobin assay of activity. Anal Biochem 2012; 427:36-40. [PMID: 22561917 DOI: 10.1016/j.ab.2012.04.026] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 04/10/2012] [Accepted: 04/24/2012] [Indexed: 01/15/2023]
Abstract
Carbon monoxide-releasing molecules (CO-RMs) emulate the beneficial (e.g., anti-inflammatory) effects of CO in biology. CO release from CO-RMs is routinely determined in the presence of reduced deoxy-myoglobin by measuring the formation of carboxy-myoglobin (Mb-CO). Previous studies have highlighted discrepancies between the apparent CO release rates of some CO-RMs established using this assay versus other experimental data where a slower or more complex mechanism of release is suggested. It has been hypothesized that some CO-RMs require a CO acceptor, believed to be reduced myoglobin in Mb-CO assays, in order to facilitate the release of CO. Here, we show, for the first time, that CO is not liberated from the ruthenium (Ru)-based [Ru(CO)(3)Cl(2)](2) (CORM-2) and [Ru(CO)(3)Cl(glycinate)] (CORM-3) at an appreciable rate in the presence of reduced myoglobin alone. Rather, we confirm that it is the reducing agent sodium dithionite that facilitates release of CO from these CO-RMs. Other sulfite compounds, namely sodium sulfite and potassium metabisulfite, also promote the liberation of CO from CORM-3. We describe an alternative oxy-hemoglobin assay that eliminates dithionite and suggest that the efficacy of CO-RMs results from intracellular interactions with anions that facilitate CO delivery to therapeutic targets.
Collapse
|
24
|
Bowman LAH, McLean S, Poole RK, Fukuto JM. The diversity of microbial responses to nitric oxide and agents of nitrosative stress close cousins but not identical twins. Adv Microb Physiol 2012; 59:135-219. [PMID: 22114842 DOI: 10.1016/b978-0-12-387661-4.00006-9] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nitric oxide and related nitrogen species (reactive nitrogen species) now occupy a central position in contemporary medicine, physiology, biochemistry, and microbiology. In particular, NO plays important antimicrobial defenses in innate immunity but microbes have evolved intricate NO-sensing and defense mechanisms that are the subjects of a vast literature. Unfortunately, the burgeoning NO literature has not always been accompanied by an understanding of the intricacies and complexities of this radical and other reactive nitrogen species so that there exists confusion and vagueness about which one or more species exert the reported biological effects. The biological chemistry of NO and derived/related molecules is complex, due to multiple species that can be generated from NO in biological milieu and numerous possible reaction targets. Moreover, the fate and disposition of NO is always a function of its biological environment, which can vary significantly even within a single cell. In this review, we consider newer aspects of the literature but, most importantly, consider the underlying chemistry and draw attention to the distinctiveness of NO and its chemical cousins, nitrosonium (NO(+)), nitroxyl (NO(-), HNO), peroxynitrite (ONOO(-)), nitrite (NO(2)(-)), and nitrogen dioxide (NO(2)). All these species are reported to be generated in biological systems from initial formation of NO (from nitrite, NO synthases, or other sources) or its provision in biological experiments (typically from NO gas, S-nitrosothiols, or NO donor compounds). The major targets of NO and nitrosative damage (metal centers, thiols, and others) are reviewed and emphasis is given to newer "-omic" methods of unraveling the complex repercussions of NO and nitrogen oxide assaults. Microbial defense mechanisms, many of which are critical for pathogenicity, include the activities of hemoglobins that enzymically detoxify NO (to nitrate) and NO reductases and repair mechanisms (e.g., those that reverse S-nitrosothiol formation). Microbial resistance to these stresses is generally inducible and many diverse transcriptional regulators are involved-some that are secondary sensors (such as Fnr) and those that are "dedicated" (such as NorR, NsrR, NssR) in that their physiological function appears to be detecting primarily NO and then regulating expression of genes that encode enzymes with NO as a substrate. Although generally harmful, evidence is accumulating that NO may have beneficial effects, as in the case of the squid-Vibrio light-organ symbiosis, where NO serves as a signal, antioxidant, and specificity determinant. Progress in this area will require a thorough understanding not only of the biology but also of the underlying chemical principles.
Collapse
Affiliation(s)
- Lesley A H Bowman
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, UK
| | | | | | | |
Collapse
|
25
|
Desmard M, Foresti R, Morin D, Dagouassat M, Berdeaux A, Denamur E, Crook SH, Mann BE, Scapens D, Montravers P, Boczkowski J, Motterlini R, Motterlini R. Differential antibacterial activity against Pseudomonas aeruginosa by carbon monoxide-releasing molecules. Antioxid Redox Signal 2012; 16:153-63. [PMID: 21864022 DOI: 10.1089/ars.2011.3959] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AIMS Carbon monoxide (CO) delivered in a controlled manner to cells and organisms mediates a variety of pharmacological effects to the extent that CO-releasing molecules (CO-RMs) are being developed for therapeutic purposes. Recently, ruthenium-based CO-RMs have been shown to posses important bactericidal activity. Here we assessed the effect of fast CO releasers containing ruthenium (Ru(CO)(3)Cl(glycinate) [CORM-3] and tricarbonyldichlororuthenium(II) dimer [CORM-2]) and a novel slow manganese-based CO releaser ([Me(4)N][Mn(CO)(4)(thioacetate)(2)] [CORM-371]) on O(2) consumption and growth of Pseudomonas aeruginosa (PAO1). We then compared these effects with the action elicited by sodium boranocarbonate (CORM-A1), which lacks a transition metal but liberates CO with a rate similar to CORM-371. RESULTS CORM-2, CORM-3, and, to a lesser extent, CORM-371 exerted a significant bactericidal effect and decreased O(2) consumption in PAO1 in vitro. The effect appeared to be independent of reactive oxygen species production, but in the case of metal-containing compounds it was prevented by the thiol donor N-acetylcysteine. In contrast, CORM-A1 was bacteriostatic rather than bactericidal in vitro eliciting only a moderate and transient decrease in O(2) consumption. INNOVATION None of the tested CO-RMs was toxic to murine macrophages or human fibroblasts at the concentration impairing PA01 growth but only ruthenium-containing CO-RMs showed potential therapeutic properties by increasing the survival of mice infected with PA01. CONCLUSION CO carriers inhibit bacterial growth and O(2) consumption in vitro, but transition metal carbonyls appear more powerful than compounds spontaneously liberating CO. The nature of the metal in CO-RMs also modulates the anti-bacterial effect, with ruthenium-based CO-RMs being efficacious both in vitro and in vivo.
Collapse
|
26
|
Smith H, Mann BE, Motterlini R, Poole RK. The carbon monoxide-releasing molecule, corm-3 (ru(co)3cl(glycinate)), targets respiration and oxidases in campylobacter jejuni, generating hydrogen peroxide. IUBMB Life 2011; 63:363-71. [DOI: 10.1002/iub.476] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
27
|
Abstract
Carbon monoxide is rapidly emerging as an important cellular messenger, regulating a wide range of physiological processes. Crucial to its role in both physiology and disease is its ability differentially to regulate several classes of ion channels, including examples from calcium-activated K(+) (BK(Ca)), voltage-activated K(+) (K(v)) and Ca(2+) channel (L-type) families, ligand-gated P2X receptors (P2X2 and P2X4), tandem P domain K(+) channels (TREK1) and the epithelial Na(+) channel (ENaC). The mechanisms by which CO regulates these ion channels are still unclear and remain somewhat controversial. However, available structure-function studies suggest that a limited range of amino acid residues confer CO sensitivity, either directly or indirectly, to particular ion channels and that cellular redox state appears to be important to the final integrated response. Whatever the molecular mechanism by which CO regulates ion channels, endogenous production of this gasotransmitter has physiologically important roles and is currently being explored as a potential therapeutic.
Collapse
Affiliation(s)
- William J Wilkinson
- Division of Pathophysiology and Repair, School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK.
| | | |
Collapse
|