1
|
Ovcherenko SS, Raizvich AE, Rogozhnikova OY, Tormyshev VM, Trukhin DV, Koval VV, Salnikov GE, Genaev AM, Shernyukov AV, Bagryanskaya EG. Redox Transformations of the OX063 Radical in Biological Media: Oxidative Decay of Initial Trityl with Further Formation of Structurally-Modified TAM. Chemistry 2024; 30:e202400718. [PMID: 39003595 DOI: 10.1002/chem.202400718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/15/2024]
Abstract
Being a low-toxic and hydrophilic representative of TAM, OX063 has shown its suitability for in-vivo and in-cell EPR experiments and design of spin labels. Using 13C labeling, we investigated the course of oxidative degradation of OX063 into quinone-methide (QM) under the influence of superoxide as well as further thiol-promoted reduction of QM into TAM radical, which formally corresponds to substitution of a carboxyl function by a hydroxyl group. We found these transformations being quantitative in model reactions mimicking specific features of biological media and confirmed the presence of these reactions in the blood and liver homogenate of mice in vitro. The emergence of the trityl with the hydroxyl group can be masked by an initial TAM in EPR spectra and may introduce distortions into EPR-derived oximetry data if they have been obtained for objects under hypoxia. 13C labeling allows one to detect its presence, considering its different hyperfine splitting constant on 13C1 (2.04 mT) as compared to OX063 (2.30 mT). The potential involvement of these reactions should be considered when using TAM in spin-labeling of biopolymers intended for subsequent EPR experiments, as well as in the successful application of TAM in experiments in vivo and in cell.
Collapse
Affiliation(s)
- Sergey S Ovcherenko
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Akad. Lavrentiev Avenue, Novosibirsk, 630090, Russian Federation
- Novosibirsk State University, 2 Pirogova Street, Novosibirsk, 630090, Russian Federation
| | - Arthur E Raizvich
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Akad. Lavrentiev Avenue, Novosibirsk, 630090, Russian Federation
- Novosibirsk State University, 2 Pirogova Street, Novosibirsk, 630090, Russian Federation
| | - Olga Yu Rogozhnikova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Akad. Lavrentiev Avenue, Novosibirsk, 630090, Russian Federation
| | - Victor M Tormyshev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Akad. Lavrentiev Avenue, Novosibirsk, 630090, Russian Federation
| | - Dmitry V Trukhin
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Akad. Lavrentiev Avenue, Novosibirsk, 630090, Russian Federation
| | - Vladimir V Koval
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8 Akad. Lavrentiev Avenue, Novosibirsk, 630090, Russian Federation
| | - Georgii E Salnikov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Akad. Lavrentiev Avenue, Novosibirsk, 630090, Russian Federation
| | - Alexander M Genaev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Akad. Lavrentiev Avenue, Novosibirsk, 630090, Russian Federation
| | - Andrey V Shernyukov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Akad. Lavrentiev Avenue, Novosibirsk, 630090, Russian Federation
| | - Elena G Bagryanskaya
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Akad. Lavrentiev Avenue, Novosibirsk, 630090, Russian Federation
| |
Collapse
|
2
|
|
3
|
Brackhagen O, Scheurer C, Meyer R, Limbach HH. Hydrogen transfer in the porphin anion: A quantum dynamical study of vibrational effects. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/bbpc.19981020305] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
4
|
|
5
|
Abstract
The secretion from the hippopotamus' skin changes its color from colorless to red, and then brown by polymerization of its pigments. The responsible pigments for the coloring reaction were isolated and denoted as hipposudoric acid (the red pigment) and norhipposudoric acid (the orange pigment). The syntheses of these pigments and the related derivatives were performed, and the latter were of use to elucidate the structures of these pigments including their tautomeric structures in aprotic and protic solvents. These pigments were estimated to be medicines for the hippopotamus, having the effect of both protecting the skin from sunburn and preventing infection by some microbes.
Collapse
|
6
|
Gordon AJ, Palmer MH. The molecular structures and electron distributions of the 1,8-bis-(dimethylamino)-naphthalenes, studied by density functional and ab initio MP2 calculations. Mol Phys 2005. [DOI: 10.1080/00268970500223194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
7
|
Current measurements as a tool to characterise the H-bonding between 1-ferrocenylmethylthymine and 9-octyladenine: a voltammetric and chronoamperometric analysis. J Electroanal Chem (Lausanne) 2004. [DOI: 10.1016/j.jelechem.2004.07.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Li P, Bu Y. Double proton transfer behavior and one-electron oxidation effect in double H-bonded glycinamide-formic acid complex. J Chem Phys 2004; 121:9971-81. [PMID: 15549872 DOI: 10.1063/1.1792111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The behavior of double proton transfer occurring in a representative glycinamide-formic acid complex has been investigated at the B3LYP/6-311 + + G( * *) level of theory. Thermodynamic and, especially, kinetic parameters, such as tautomeric energy, equilibrium constant, and barrier heights have been discussed, respectively. The relevant quantities involved in the double proton transfer process, such as geometrical changes, interaction energies, and intrinsic reaction coordinate calculations have also been studied. Computational results show that the participation of a formic acid molecule favors the proceeding of the proton transfer for glycinamide compared with that without mediate-assisted case. The double proton transfer process proceeds with a concerted mechanism rather than a stepwise one since no ion-pair complexes have been located during the proton transfer process. The calculated barrier heights are 11.48 and 0.85 kcal/mol for the forward and reverse directions, respectively. However, both of them have been reduced by 2.95 and 2.61 kcal/mol to 8.53 and -1.76 kcal/mol if further inclusion of zero-point vibrational energy corrections, where the negative barrier height implies that the reverse reaction should proceed with barrierless spontaneously, analogous to that occurring between glycinamide and formamide. Furthermore, solvent effects on the thermodynamic and kinetic processes have also been predicted qualitatively employing the isodensity surface polarized continuum model within the framework of the self-consistent reaction field theory. Additionally, the oxidation process for the double H-bonded glycinamide-formic acid complex has also been investigated. Contrary to that neutral form possessing a pair of two parallel intermolecular H bonds, only a single H bond with a comparable strength has been found in its ionized form. The vertical and adiabatic ionization potentials for the neutral complex have been determined to be about 9.40 and 8.69 eV, respectively, where ionization is mainly localized on the glycinamide fragment. Like that ionized glycinamide-formamide complex, the proton transfer in the ionized complex is characterized by a single-well potential, implying that the proton initially attached to amide N4 in the glycinamide fragment cannot be transferred to carbonyl O13 in the formic acid fragment at the geometry of the optimized complex.
Collapse
Affiliation(s)
- Ping Li
- Institute of Theoretical Chemistry, Shandong University, Jinan 250100, People's Republic of China
| | | |
Collapse
|
9
|
Moser CC, Page CC, Cogdell RJ, Barber J, Wraight CA, Dutton PL. Length, time, and energy scales of photosystems. ADVANCES IN PROTEIN CHEMISTRY 2003; 63:71-109. [PMID: 12629967 DOI: 10.1016/s0065-3233(03)63004-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The design of photosynthetic systems reflects the length scales of the fundamental physical processes. Energy transfer is rapid at the few angstrom scale and continues to be rapid even at the 50-A scale of the membrane thickness. Electron tunneling is nearly as rapid at the shortest distances, but becomes physiologically too slow well before 20 A. Diffusion, which starts out at a relatively slow nanosecond time scale, has the most modest slowing with distance and is physiologically competent at all biologically relevant distances. Proton transfer always operates on the shortest angstrom scale. The structural consequences of these distance dependencies are that energy transfer networks can extend over large, multisubunit and multicomplex distances and take leaps of 20 A before entering the domain of charge separating centers. Electron transfer systems are effectively limited to individual distances of 15 A or less and span the 50 A dimensions of the bioenergetic membrane by use of redox chains. Diffusion processes are generally used to cover the intercomplex electron transfer distances of 50 A and greater and tend to compensate for the lack of directionality by restricting the diffusional space to the membrane or the membrane surface, and by multiplying the diffusing species through the use of pools. Proton transfer reactions act over distances larger than a few angstroms through the use of clusters or relays, which sometimes rely on water molecules and which may only be dynamically assembled. Proteins appear to place a premium on robustness of design, which is relatively easily achieved in the long-distance physical processes of energy transfer and electron tunneling. By placing cofactors close enough, the physical process is relatively rapid compared to decay processes. Thus suboptimal conditions such as cofactor orientation, energy level, or redox potential level can be tolerated and generally do not have to be finely tuned. The most fragile regions of design tend to come in areas of complex formation and catalysis involving proton management, where relatively small changes in distance or mutations can lead to a dramatic decrease in turnover, which may already be limiting the overall speed of energy conversion in these proteins. Light-activated systems also face a challenge to robust function from the ever-present dangers of high redox potential chemistry. This can turn the protein matrix and wandering oxygen molecules into unintentional redox partners, which in the case of PSII requires the frequent, costly replacement of protein subunits.
Collapse
Affiliation(s)
- Christopher C Moser
- Johnson Research Foundation, Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
10
|
McRae RP, Schenter GK, Garrett BC, Svetlicic Z, Truhlar DG. Variational transition state theory evaluation of the rate constant for proton transfer in a polar solvent. J Chem Phys 2001. [DOI: 10.1063/1.1409953] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
11
|
Douhal A, Amat-Guerri F, Lillo M, Acuña A. Proton transfer spectroscopy of 2-(2'-hydroxyphenyl)imidazole and 2-(2'-hydroxyphenyl)benzimidazole dyes. J Photochem Photobiol A Chem 1994. [DOI: 10.1016/1010-6030(93)03724-u] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Arnaut LG, Formosinho SJ. Excited-state proton transfer reactions I. Fundamentals and intermolecular reactions. J Photochem Photobiol A Chem 1993. [DOI: 10.1016/1010-6030(93)80157-5] [Citation(s) in RCA: 406] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Formosinho SJ, Arnaut LG. Excited-state proton transfer reactions II. Intramolecular reactions. J Photochem Photobiol A Chem 1993. [DOI: 10.1016/1010-6030(93)80158-6] [Citation(s) in RCA: 494] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Abstract
Kinetic and equilibrium isotope effects in peptide group hydrogen exchange reactions were evaluated. Unlike many other reactions, kinetic isotope effects in amide hydrogen exchange are small because exchange pathways are not limited by bond-breaking steps. Rate constants for the acid-catalyzed exchange of peptide group NH, ND, and NT in H2O are essentially identical, but a solvent isotope effect doubles the rate in D2O. Rate constants for base-catalyzed exchange in H2O decrease slowly in the order NH > ND > NT. The alkaline rate constant in D2O is very close to that in H2O when account is taken of the glass electrode pH artifact and the difference in solvent ionization constant. Small equilibrium isotope effects lead to an excess equilibrium accumulation of the heavier isotopes by the peptide group. Results obtained are expressed in terms of rate constants for the random coil polypeptide, poly-DL-alanine, to provide reference rates for protein hydrogen exchange studies as described in Bai et al. [preceding paper in this issued].
Collapse
Affiliation(s)
- G P Connelly
- Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia 19104-6059
| | | | | | | |
Collapse
|
15
|
Ozeki H, Takahashi M, Okuyama K, Kimura K. The role of electronic and geometric factors in ‘‘proton tunneling:’’ A comparative study of tropolone and 9‐hydroxyphenalenone by threshold photoelectron spectroscopy. J Chem Phys 1993. [DOI: 10.1063/1.465783] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
16
|
Borgis D, Hynes JT. Dynamical theory of proton tunneling transfer rates in solution: general formulation. Chem Phys 1993. [DOI: 10.1016/0301-0104(93)85117-q] [Citation(s) in RCA: 142] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Dega-Szafran Z, Grundwald-Wyspiańska M, Szafran M. Evidence for a single minimum potential for hydrogen bonds of pyridine N-oxide complexes with dichloroacetic acid in dichloromethane. ACTA ACUST UNITED AC 1991. [DOI: 10.1016/0584-8539(91)80184-k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|