1
|
Daudén MI, Pérez-Ruiz M, Carrascosa JL, Cuervo A. Nucleic Acid Packaging in Viruses. Subcell Biochem 2024; 105:469-502. [PMID: 39738955 DOI: 10.1007/978-3-031-65187-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Viruses shield their genetic information by enclosing the viral nucleic acid inside a protein shell (capsid), in a process known as genome packaging. Viruses follow essentially two main strategies to package their genome: Either they co-assemble their genetic material together with the capsid protein or an empty shell (procapsid) is first assembled and then the genome is pumped inside the capsid by a molecular motor that uses the energy released by ATP hydrolysis. During packaging the viral nucleic acid is highly condensed through a meticulous arrangement in concentric layers inside the capsid. In this chapter we will first give an overview of the different strategies used for genome packaging to discuss later some specific virus models where the structures of the main proteins involved are presented and the biophysics underlying the packaging mechanism are discussed.
Collapse
Affiliation(s)
- María I Daudén
- Structural Biology Programme, Spanish National Cancer Research Centre, (CNIO), Madrid, Spain
| | - Mar Pérez-Ruiz
- Faculty of Health and Medical Sciences, Structural Biology of Molecular Machines Group, Protein Structure and Function Program, Novo Nordisk Foundation Centre for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - José L Carrascosa
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Ana Cuervo
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
| |
Collapse
|
2
|
Abstract
Viruses protect their genetic information by enclosing the viral nucleic acid inside a protein shell (capsid), in a process known as genome packaging. Viruses follow essentially two main strategies to package their genome: Either they co-assemble their genetic material together with the capsid protein, or they assemble first an empty shell (procapsid) and then pump the genome inside the capsid with a molecular motor that uses the energy released by ATP hydrolysis. During packaging the viral nucleic acid is condensed to very high concentration by its careful arrangement in concentric layers inside the capsid. In this chapter we will first give an overview of the different strategies used for genome packaging to discuss later some specific virus models where the structures of the main proteins involved, and the biophysics underlying the packaging mechanism, have been well documented.
Collapse
Affiliation(s)
- Ana Cuervo
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CSIC), c/Darwin 3, Campus de Cantoblanco, 28049, Madrid, Spain
| | | | | |
Collapse
|
3
|
Rossmann MG, Rao VB. Principles of virus structural organization. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 726:17-47. [PMID: 22297509 PMCID: PMC3767311 DOI: 10.1007/978-1-4614-0980-9_3] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Viruses, the molecular nanomachines infecting hosts ranging from prokaryotes to eukaryotes, come in different sizes, shapes, and symmetries. Questions such as what principles govern their structural organization, what factors guide their assembly, how these viruses integrate multifarious functions into one unique structure have enamored researchers for years. In the last five decades, following Caspar and Klug's elegant conceptualization of how viruses are constructed, high-resolution structural studies using X-ray crystallography and more recently cryo-EM techniques have provided a wealth of information on structures of a variety of viruses. These studies have significantly -furthered our understanding of the principles that underlie structural organization in viruses. Such an understanding has practical impact in providing a rational basis for the design and development of antiviral strategies. In this chapter, we review principles underlying capsid formation in a variety of viruses, emphasizing the recent developments along with some historical perspective.
Collapse
Affiliation(s)
- Michael G. Rossmann
- grid.169077.e0000000419372197Dept. Biological Sciences, Purdue University, W. State St. 915, West Lafayette, 47907-2054 Indiana USA
| | - Venigalla B. Rao
- grid.39936.360000000121746686Dept. Biology, Catholic University of America, Washington, 20064 District of Columbia USA
| |
Collapse
|
4
|
Abstract
The genomes of most virus species have overlapping genes--two or more proteins coded for by the same nucleotide sequence. Several explanations have been proposed for the evolution of this phenomenon, and we test these by comparing the amount of gene overlap in all known virus species. We conclude that gene overlap is unlikely to have evolved as a way of compressing the genome in response to the harmful effect of mutation because RNA viruses, despite having generally higher mutation rates, have less gene overlap on average than DNA viruses of comparable genome length. However, we do find a negative relationship between overlap proportion and genome length among viruses with icosahedral capsids, but not among those with other capsid types that we consider easier to enlarge in size. Our interpretation is that a physical constraint on genome length by the capsid has led to gene overlap evolving as a mechanism for producing more proteins from the same genome length. We consider that these patterns cannot be explained by other factors, namely the possible roles of overlap in transcription regulation, generating more divergent proteins and the relationship between gene length and genome length.
Collapse
Affiliation(s)
- Nicola Chirico
- Department of Structural and Functional Biology, University of Insubria, Via JH Dunant 3, 21100 Varese, Italy
| | - Alberto Vianelli
- Department of Structural and Functional Biology, University of Insubria, Via JH Dunant 3, 21100 Varese, Italy
| | - Robert Belshaw
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| |
Collapse
|
5
|
Carmona P, Molina M. Interactions of Protein and Nucleic Acid Components of Hepatitis C Virus As Revealed by Fourier Transform Infrared Spectroscopy. Biochemistry 2010; 49:4724-31. [DOI: 10.1021/bi100535k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Pedro Carmona
- Instituto de Estructura de la Materia (CSIC), Serrano 121, 28006 Madrid, Spain
| | - Marina Molina
- Departamento de Química Orgánica, Escuela Universitaria de Optica, Arcos de Jalón, s/n, 28037 Madrid, Spain
| |
Collapse
|
6
|
Locker CR, Fuller SD, Harvey SC. DNA organization and thermodynamics during viral packing. Biophys J 2007; 93:2861-9. [PMID: 17573426 PMCID: PMC1989703 DOI: 10.1529/biophysj.106.094771] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Accepted: 05/17/2007] [Indexed: 11/18/2022] Open
Abstract
An elastic DNA molecular mechanics model is used to compare DNA structures and packing thermodynamics in two bacteriophage systems, T7 and phi29. A discrete packing protocol allows for multiple molecular dynamics simulations of the entire packing event. In T7, the DNA is coaxially spooled around the cylindrical core protein, whereas the phi29 system, which lacks a core protein, organizes the DNA concentrically, but not coaxially. Two-dimensional projections of the packed structures from T7 simulations are consistent with cryo-electron micrographs of T7 phage DNA. The functional form of the force required to package the phi29 DNA is similar to forces determined experimentally, although the total free energy change is only 40% of the experimental value. Since electrostatics are not included in the simulations, this suggests that electrostatic repulsions are responsible for approximately 60% of the free energy required for packaging. The entropic penalty from DNA confinement has not been computed in previous studies, but it is often assumed to make a negligible contribution to the total work done in packing the DNA. Conformational entropy can be measured in our approach, and it accounts for 70-80% of the total work done in packing the elastic model DNA in both phages. For phi29, this corresponds to an entropic penalty of approximately 35% of the total work observed experimentally.
Collapse
Affiliation(s)
- C Rebecca Locker
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332-0230, USA
| | | | | |
Collapse
|
7
|
Pesavento JB, Crawford SE, Estes MK, Prasad BVV. Rotavirus proteins: structure and assembly. Curr Top Microbiol Immunol 2006; 309:189-219. [PMID: 16913048 DOI: 10.1007/3-540-30773-7_7] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Rotavirus is a major pathogen of infantile gastroenteritis. It is a large and complex virus with a multilayered capsid organization that integrates the determinants of host specificity, cell entry, and the enzymatic functions necessary for endogenous transcription of the genome that consists of 11 dsRNA segments. These segments encode six structural and six nonstructural proteins. In the last few years, there has been substantial progress in our understanding of both the structural and functional aspects of a variety of molecular processes involved in the replication of this virus. Studies leading to this progress using of a variety of structural and biochemical techniques including the recent application of RNA interference technology have uncovered several unique and intriguing features related to viral morphogenesis. This review focuses on our current understanding of the structural basis of the molecular processes that govern the replication of rotavirus.
Collapse
Affiliation(s)
- J B Pesavento
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
8
|
Johnson KN, Tang L, Johnson JE, Ball LA. Heterologous RNA encapsidated in Pariacoto virus-like particles forms a dodecahedral cage similar to genomic RNA in wild-type virions. J Virol 2004; 78:11371-8. [PMID: 15452258 PMCID: PMC521806 DOI: 10.1128/jvi.78.20.11371-11378.2004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome of some icosahedral RNA viruses plays an essential role in capsid assembly and structure. In T=3 particles of the nodavirus Pariacoto virus (PaV), a remarkable 35% of the single-stranded RNA genome is icosahedrally ordered. This ordered RNA can be visualized at high resolution by X-ray crystallography as a dodecahedral cage consisting of 30 24-nucleotide A-form RNA duplex segments that each underlie a twofold icosahedral axis of the virus particle and interact extensively with the basic N-terminal region of 60 subunits of the capsid protein. To examine whether the PaV genome is a specific determinant of the RNA structure, we produced virus-like particles (VLPs) by expressing the wild-type capsid protein open reading frame from a recombinant baculovirus. VLPs produced by this system encapsidated similar total amounts of RNA as authentic virus particles, but only about 6% of this RNA was PaV specific, the rest being of cellular or baculovirus origin. Examination of the VLPs by electron cryomicroscopy and image reconstruction at 15.4-A resolution showed that the encapsidated RNA formed a dodecahedral cage similar to that of wild-type particles. These results demonstrate that the specific nucleotide sequence of the PaV genome is not required to form the dodecahedral cage of ordered RNA.
Collapse
Affiliation(s)
- Karyn N Johnson
- Department of Microbiology, University of Alabama at Birmingham, BBRB 373/17, 845 19th St. South, Birmingham, AL 35294-2170, USA
| | | | | | | |
Collapse
|
9
|
Nason EL, Rothagel R, Mukherjee SK, Kar AK, Forzan M, Prasad BVV, Roy P. Interactions between the inner and outer capsids of bluetongue virus. J Virol 2004; 78:8059-67. [PMID: 15254177 PMCID: PMC446137 DOI: 10.1128/jvi.78.15.8059-8067.2004] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bluetongue virus is a large and structurally complex virus composed of three concentric capsid layers that surround 10 segments of a double-stranded RNA genome. X-ray crystallographic analysis of the particles without the outer capsid layer has provided atomic structural details of VP3 and VP7, which form the inner two layers. However, limited structural information is available on the other five proteins in the virion-two of which are important for receptor recognition, hemagglutination, and membrane interaction-are in the outer layer, and the others, important for endogenous transcriptase activity are internal. Here we report the electron cryomicroscopy (cryo-EM) reconstruction of the mature particle, which shows that the outer layer has a unique non-T = 13 icosahedral organization consisting of two distinct triskelion and globular motifs interacting extensively with the underlying T = 13 layer. Comparative cryo-EM analysis of the recombinant corelike particles has shown that VP1 (viral polymerase) and VP4 (capping enzyme) together form a flower-shaped structure attached to the underside of VP3, directly beneath the fivefold axis. The structural data have been substantiated by biochemical studies demonstrating the interactions between the individual outer and inner capsid proteins.
Collapse
Affiliation(s)
- Emma L Nason
- Verna and Marrs McLean Department of Biochemistry and Molecular Biochemistry, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|