1
|
Henneman B, Brouwer TB, Erkelens AM, Kuijntjes GJ, van Emmerik C, van der Valk RA, Timmer M, Kirolos NCS, van Ingen H, van Noort J, Dame RT. Mechanical and structural properties of archaeal hypernucleosomes. Nucleic Acids Res 2021; 49:4338-4349. [PMID: 33341892 PMCID: PMC8096283 DOI: 10.1093/nar/gkaa1196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 11/13/2020] [Accepted: 11/23/2020] [Indexed: 11/21/2022] Open
Abstract
Many archaea express histones, which organize the genome and play a key role in gene regulation. The structure and function of archaeal histone–DNA complexes remain however largely unclear. Recent studies show formation of hypernucleosomes consisting of DNA wrapped around an ‘endless’ histone-protein core. However, if and how such a hypernucleosome structure assembles on a long DNA substrate and which interactions provide for its stability, remains unclear. Here, we describe micromanipulation studies of complexes of the histones HMfA and HMfB with DNA. Our experiments show hypernucleosome assembly which results from cooperative binding of histones to DNA, facilitated by weak stacking interactions between neighboring histone dimers. Furthermore, rotational force spectroscopy demonstrates that the HMfB–DNA complex has a left-handed chirality, but that torque can drive it in a right-handed conformation. The structure of the hypernucleosome thus depends on stacking interactions, torque, and force. In vivo, such modulation of the archaeal hypernucleosome structure may play an important role in transcription regulation in response to environmental changes.
Collapse
Affiliation(s)
- Bram Henneman
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Thomas B Brouwer
- Biological and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333CA Leiden, The Netherlands
| | - Amanda M Erkelens
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Gert-Jan Kuijntjes
- Biological and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333CA Leiden, The Netherlands
| | - Clara van Emmerik
- Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
| | - Ramon A van der Valk
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Monika Timmer
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Nancy C S Kirolos
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Hugo van Ingen
- Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
| | - John van Noort
- Biological and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333CA Leiden, The Netherlands
| | - Remus T Dame
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands.,Centre for Microbial Cell Biology, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| |
Collapse
|
2
|
Meyer S, Jost D, Theodorakopoulos N, Peyrard M, Lavery R, Everaers R. Temperature dependence of the DNA double helix at the nanoscale: structure, elasticity, and fluctuations. Biophys J 2014; 105:1904-14. [PMID: 24138866 DOI: 10.1016/j.bpj.2013.09.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/01/2013] [Accepted: 09/09/2013] [Indexed: 10/26/2022] Open
Abstract
Biological organisms exist over a broad temperature range of -15°C to +120°C, where many molecular processes involving DNA depend on the nanoscale properties of the double helix. Here, we present results of extensive molecular dynamics simulations of DNA oligomers at different temperatures. We show that internal basepair conformations are strongly temperature-dependent, particularly in the stretch and opening degrees of freedom whose harmonic fluctuations can be considered the initial steps of the DNA melting pathway. The basepair step elasticity contains a weaker, but detectable, entropic contribution in the roll, tilt, and rise degrees of freedom. To extend the validity of our results to the temperature interval beyond the standard melting transition relevant to extremophiles, we estimate the effects of superhelical stress on the stability of the basepair steps, as computed from the Benham model. We predict that although the average twist decreases with temperature in vitro, the stabilizing external torque in vivo results in an increase of ∼1°/bp (or a superhelical density of Δσ ≃ +0.03) in the interval 0-100°C. In the final step, we show that the experimentally observed apparent bending persistence length of torsionally unconstrained DNA can be calculated from a hybrid model that accounts for the softening of the double helix and the presence of transient denaturation bubbles. Although the latter dominate the behavior close to the melting transition, the inclusion of helix softening is important around standard physiological temperatures.
Collapse
Affiliation(s)
- Sam Meyer
- Université de Lyon, Laboratoire de Physique, Ecole Normale Supérieure de Lyon, Lyon, France; Centre Blaise Pascal, Ecole Normale Supérieure de Lyon, Lyon, France
| | | | | | | | | | | |
Collapse
|
3
|
Jung S, Lee JC, Jung YK, Kim MK, Son HY, Jo CR. Instrumental Methods for Differentiation of Frozen-thawed from Fresh Broiler Breast Fillets. Korean J Food Sci Anim Resour 2011. [DOI: 10.5851/kosfa.2011.31.1.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
4
|
Yamaji K, Kanai T, Nomura SIM, Akiyoshi K, Negishi M, Chen Y, Atomi H, Yoshikawa K, Imanaka T. Protein synthesis in giant liposomes using the in vitro translation system of Thermococcus kodakaraensis. IEEE Trans Nanobioscience 2009; 8:325-31. [PMID: 19884103 DOI: 10.1109/tnb.2009.2035278] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
An in vitro translation system, based on cell components of the hyperthermophilic archaeon, Thermococcus kodakaraensis, has previously been developed. The system has been optimized and applied for protein production at high temperatures (60-65 degrees C). In this paper, we have examined the possibilities to utilize this system at a lower temperature range using green fluorescence protein (GFP) as the reporter protein. By optimizing the composition of the reaction mixture, and adding chaperonins from the mesophilic Escherichia coli, the yield of protein production at 40 degrees C was increased by fivefold. For liposome encapsulation of the optimized system, water-in-oil cell-sized emulsions were prepared by adding the translation system/GFP mRNA mixture to mineral oil supplemented with 1,2-dioleoyl-sn -glycero-3-phosphatidylcholine (DOPC). Giant liposomes were formed when these emulsions passed across a water/oil interface occupied with DOPC. The liposomes were incubated at 40 degrees C for 90 min, and fluorescence was examined by laser confocal microscopy. A significant increase in average fluorescence intensity was observed in liposomes with GFP mRNA, but not in those without mRNA. Our results indicate that the T. kodakaraensis in vitro translation system is applicable for protein production within giant liposomes, and these artificial cell models should provide the methodology to reconstitute various cell functions from a constitutional biology approach.
Collapse
Affiliation(s)
- Kazuaki Yamaji
- Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Analytical methods for authentication of fresh vs. thawed meat – A review. Meat Sci 2008; 80:151-8. [DOI: 10.1016/j.meatsci.2007.12.024] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 12/22/2007] [Accepted: 12/24/2007] [Indexed: 11/22/2022]
|
6
|
Mukherjee A, Sokunbi AO, Grove A. DNA protection by histone-like protein HU from the hyperthermophilic eubacterium Thermotoga maritima. Nucleic Acids Res 2008; 36:3956-68. [PMID: 18515342 PMCID: PMC2475624 DOI: 10.1093/nar/gkn348] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In mesophilic prokaryotes, the DNA-binding protein HU participates in nucleoid organization as well as in regulation of DNA-dependent processes. Little is known about nucleoid organization in thermophilic eubacteria. We show here that HU from the hyperthermophilic eubacterium Thermotoga maritima HU bends DNA and constrains negative DNA supercoils in the presence of topoisomerase I. However, while binding to a single site occludes approximately 35 bp, association of T. maritima HU with DNA of sufficient length to accommodate multiple protomers results in an apparent shorter occluded site size. Such complexes consist of ordered arrays of protomers, as revealed by the periodicity of DNase I cleavage. Association of TmHU with plasmid DNA yields a complex that is remarkably resistant to DNase I-mediated degradation. TmHU is the only member of this protein family capable of occluding a 35 bp nonspecific site in duplex DNA; we propose that this property allows TmHU to form exceedingly stable associations in which DNA flanking the kinks is sandwiched between adjacent proteins. We suggest that T. maritima HU serves an architectural function when associating with a single 35 bp site, but generates a very stable and compact aggregate at higher protein concentrations that organizes and protects the genomic DNA.
Collapse
Affiliation(s)
- Anirban Mukherjee
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | | |
Collapse
|
7
|
Endoh T, Kanai T, Imanaka T. A highly productive system for cell-free protein synthesis using a lysate of the hyperthermophilic archaeon, Thermococcus kodakaraensis. Appl Microbiol Biotechnol 2007; 74:1153-61. [PMID: 17165083 DOI: 10.1007/s00253-006-0753-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 11/03/2006] [Accepted: 11/07/2006] [Indexed: 11/29/2022]
Abstract
We report in this study an improved system for cell-free protein synthesis at high temperatures using the lysate of Thermococcus kodakaraensis. Previous work indicated that cell-free protein synthesis of ChiADelta4, a derivative of T. kodakaraensis chitinase, was observed within a temperature range of 40-80 degrees C, and the maximum yield of the ChiADelta4 synthesized was approximately 1.3 microg/ml. To increase productivity of the system, the following approaches were taken. First, the process of lysate preparation was examined, and we found that omitting the preincubation (runoff) step was especially effective to increase the translational activity of lysate. Second, the concentrations of each reaction mixture were optimized. Among them, the requirement of a high concentration of potassium acetate (250 mM) was characteristic to the T. kodakaraensis system. Third, a mutant strain of T. kodakaraensis was constructed in which a heat shock transcriptional regulator gene, phr, was disrupted. By using the lysate made from the mutant, we observed an increase in the optimum reaction temperature by 5 degrees C. Through these modifications to the system, the yield of ChiADelta4 was dramatically increased to 115.4 microg/ml in a batch reaction at 65 degrees C, which was about 90 times higher than that in the previous study. Moreover, in the optimized system, a high speed of protein synthesis was achieved: over 100 microg/ml of ChiADelta4 was produced in the first 15 min of reaction. These results indicate that the system for cell-free protein synthesis based on T. kodakaraensis lysate has a high production potential comparable to the Escherichia coli system.
Collapse
Affiliation(s)
- Takashi Endoh
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | | | | |
Collapse
|
8
|
Higashibata H, Fujiwara S, Ezaki S, Takagi M, Fukui K, Imanaka T. Effect of polyamines on histone-induced DNA compaction of hyperthermophilic archaea. J Biosci Bioeng 2005; 89:103-6. [PMID: 16232710 DOI: 10.1016/s1389-1723(00)88061-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/1999] [Accepted: 10/25/1999] [Indexed: 11/28/2022]
Abstract
The effect of polyamines on histone-mediated DNA compaction was examined in vitro with archaeal histone HpkA from Pyrococcus kodakaraensis KOD1. An agarose gel mobility-shift experiment indicated that histone-bound DNA (compacted DNA) was further compacted by addition of a polyamine (putrescine, spermidine, or spermine) or its acetylated form (N-acetylputrescine, N1-acetylspermidine, N8-acetylspermidine, or N1-acetylspermine) when the mixture was incubated at above 75 degrees C. Spermine was most effective in compaction enhancement among all the polyamines tested. A high concentration of potassium ion (1.0 M) did not stabilize the compacted form of DNA even though double-stranded DNA was stably maintained against thermal denaturation at elevated temperatures under this condition. It appears likely that multivalent polyamines have a nucleosome maintenance function in hyperthermophilic archaea in high-temperature environments.
Collapse
Affiliation(s)
- H Higashibata
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
9
|
Silverman BD. Asymmetry in the burial of hydrophobic residues along the histone chains of eukarya, archaea and a transcription factor. BMC STRUCTURAL BIOLOGY 2005; 5:20. [PMID: 16242031 PMCID: PMC1283977 DOI: 10.1186/1472-6807-5-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Accepted: 10/21/2005] [Indexed: 11/30/2022]
Abstract
Background The histone fold is a common structural motif of proteins involved in the chromatin packaging of DNA and in transcription regulation. This single chain fold is stabilized by either homo- or hetero-dimer formation in archaea and eukarya. X-ray structures at atomic resolution have shown the eukaryotic nucleosome core particle to consist of a central tetramer of two bound H3-H4 dimers flanked by two H2A-H2B dimers. The c-terminal region of the H3 histone fold involved in coupling the two eukaryotic dimers of the tetramer, through a four-fold helical bundle, had previously been shown to be a region of reduced burial of hydrophobic residues within the dimers, and thereby provide a rationale for the observed reduced stability of the H3-H4 dimer compared with that of the H2A-H2B dimer. Furthermore, comparison between eukaryal and archaeal histones had suggested that this asymmetry in the distribution of hydrophobic residues along the H3 histone chains could be due to selective evolution that enhanced the coupling between the eukaryotic dimers of the tetramer. Results and discussion The present work describes calculations utilizing the X-ray structures at atomic resolution of a hyperthermophile from Methanopyrus kandleri (HMk) and a eukaryotic transcription factor from Drosophila melanogaster (DRm), that are structurally homologous to the eukaryotic (H3-H4)2 tetramer. The results for several other related structures are also described. Reduced burial of hydrophobic residues, at the homologous H3 c-terminal regions of these structures, is found to parallel the burial at the c-terminal regions of the H3 histones and is, thereby, expected to affect dimer stability and the processes involving histone structural rearrangement. Significantly different sequence homology between the two histones of the HMk doublet with other archaeal sequences is observed, and how this might have occurred during selection to enhance tetramer stability is described.
Collapse
Affiliation(s)
- B David Silverman
- IBM Thomas J. Watson Research Center, PO Box 218, Yorktown Heights, NY 10598, USA.
| |
Collapse
|
10
|
Silverman BD. The hydrophobicity of the H3 histone fold differs from the hydrophobicity of the other three folds. J Mol Evol 2005; 60:354-64. [PMID: 15871046 DOI: 10.1007/s00239-004-0193-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2004] [Accepted: 09/09/2004] [Indexed: 10/25/2022]
Abstract
The eukaryotic histone dimers, H3-H4 and H2A-H2B, are formed in the cytosol prior to being transported into the nucleus and assembled into the nucleosome. Residue side-chain distances from the interior of the histone dimers are obtained with an ellipsoidal spatial metric and structural information provided by X-ray analyses at atomic resolution of the nucleosome core particles. While the spatial hydrophobic moment profiles of the dimers are comparable with profiles obtained previously that characterize the hydrophobic core of single-chain, single-domain globular soluble proteins, correlation coefficients between the side-chain hydrophobicities and distances from the interior of the H3-H4 dimer and H2A-H2B dimer differ significantly. This difference is traced to the H3 histone fold, which segregates fewer hydrophobic residues within the protein interior than the three other folds. Examination of the correlation coefficient between residue hydrophobicity and side-chain distance from the dimer interior over local regions of the fold sequence shows that the region of reduced correlation is associated mainly with the residues at the carboxyl end of the H3 histone fold, the helical region of the fold involved in the H3-H3' binding of the (H3-H4)(2) tetramer of the nucleosome. Hydrophobic interactions apparently contribute to the binding of this fourfold helical bundle and this evolutionary requirement may trade off against the requirement for H3-H4 dimer stability. The present results provide a different view than previously proposed, albeit of similar origin, to account for the reduced stability of the H3-H4 dimer compared with the H2A-H2B dimer.
Collapse
Affiliation(s)
- B David Silverman
- IBM Thomas J. Watson Research Center, Yorktown Heights, NY, 10598, USA.
| |
Collapse
|
11
|
Daniel RM, van Eckert R, Holden JF, Truter J, Crowan DA. The stability of biomolecules and the implications for life at high temperatures. THE SUBSEAFLOOR BIOSPHERE AT MID-OCEAN RIDGES 2004. [DOI: 10.1029/144gm03] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
12
|
Higashibata H, Siddiqui MA, Takagi M, Imanaka T, Fujiwara S. Surface histidine residue of archaeal histone affects DNA compaction and thermostability. FEMS Microbiol Lett 2003; 224:17-22. [PMID: 12855162 DOI: 10.1016/s0378-1097(03)00358-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Archaeal histone, which possesses only the core domain part of eukaryal histone, induced DNA compaction by binding to DNA. Based on structural modeling, tetramer formation by dimer-dimer interaction is considered to require two intermolecular ion pairs formed between histidine and aspartate. To examine the role of the ion pairs on DNA compaction, mutant histones were constructed and analyzed using HpkB from Thermococcus kodakaraensis KOD1 as a model protein. The mutant histones, HpkB-H50A, HpkB-H50V, and HpkB-H50G were constructed by replacing conserved surface His50 with Ala, Val, and Gly, respectively. Circular dichroism analysis indicated no significant difference between wild-type and mutants in their structures. Gel mobility shift assays showed that all mutants possessed DNA binding ability, like wild-type HpkB, however all mutants compacted DNA less efficiently than the wild-type. Moreover, all mutants could not maintain the nucleosome-like structure (compacted form of DNA) above 80 degrees C. These results suggest that surface ion pairs between His and Asp play an important role in maintenance of nucleosome structure and DNA stabilization at high temperature.
Collapse
Affiliation(s)
- Hiroki Higashibata
- Institute of Applied Biochemistry, The University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | | | | | | | | |
Collapse
|
13
|
Pavlov NA, Cherny DI, Jovin TM, Slesarev AI. Nucleosome-like complex of the histone from the hyperthermophile Methanopyrus kandleri (MkaH) with linear DNA. J Biomol Struct Dyn 2002; 20:207-14. [PMID: 12354072 DOI: 10.1080/07391102.2002.10506836] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The MkaH protein from the archaeon Methanopyrus kandleri, an unusual assembly of two histone-fold domains in a single polypeptide chain, demonstrates high structural similarity to eukaryal histones. We studied the DNA binding and self-association properties of MkaH by means of the electrophoretic mobility shift assay (EMSA), electron microscopy (EM), chemical cross-linking, and analytical gel filtration. EMSA showed an increased mobility of linear DNA complexed with MkaH protein with a maximum at a protein-DNA weight ratio (R(w)) of approximately 3; the mobility decreased at higher protein concentration. EM of the complexes formed at Rw <or= 3 revealed formation of isometric loops encompassing 71 +/- 7 bp of DNA duplex. At high values of Rw (>or=9) thickened compact nucleoprotein structures were observed; no individual loops were seen within the complexes. Gel filtration chromatography and chemical fixation indicated that in the absence of DNA the dominant form of the MkaH in solution, unlike other archaeal histones, is a stable dimer (pseudo-tetramer of the histone-fold domain) apparently resembling the eukaryal (H3-H4)(2) tetramer. Similarly, dimers are the dominant form of the protein interacting with DNA. The properties of MkaH supporting the assignment of its intermediate position between other archaeal and eukaryal histones are discussed.
Collapse
Affiliation(s)
- Nikolai A Pavlov
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077, Göttingen, Germany
| | | | | | | |
Collapse
|
14
|
Marc F, Sandman K, Lurz R, Reeve JN. Archaeal histone tetramerization determines DNA affinity and the direction of DNA supercoiling. J Biol Chem 2002; 277:30879-86. [PMID: 12058041 DOI: 10.1074/jbc.m203674200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
DNA binding and the topology of DNA have been determined in complexes formed by >20 archaeal histone variants and archaeal histone dimer fusions with residue replacements at sites responsible for histone fold dimer:dimer interactions. Almost all of these variants have decreased affinity for DNA. They have also lost the flexibility of the wild type archaeal histones to wrap DNA into a negative or positive supercoil depending on the salt environment; they wrap DNA into positive supercoils under all salt conditions. The histone folds of the archaeal histones, HMfA and HMfB, from Methanothermus fervidus are almost identical, but (HMfA)(2) and (HMfB)(2) homodimers assemble into tetramers with sequence-dependent differences in DNA affinity. By construction and mutagenesis of HMfA+HMfB and HMfB+HMfA histone dimer fusions, the structure formed at the histone dimer:dimer interface within an archaeal histone tetramer has been shown to determine this difference in DNA affinity. Therefore, by regulating the assembly of different archaeal histone dimers into tetramers that have different sequence affinities, the assembly of archaeal histone-DNA complexes could be localized and used to regulate gene expression.
Collapse
Affiliation(s)
- Frederic Marc
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
15
|
Sandman K, Reeve JN. Chromosome packaging by archaeal histones. ADVANCES IN APPLIED MICROBIOLOGY 2002; 50:75-99. [PMID: 11677690 DOI: 10.1016/s0065-2164(01)50004-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- K Sandman
- Department of Microbiology, Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
16
|
Hashimoto H, Nishioka M, Fujiwara S, Takagi M, Imanaka T, Inoue T, Kai Y. Crystal structure of DNA polymerase from hyperthermophilic archaeon Pyrococcus kodakaraensis KOD1. J Mol Biol 2001; 306:469-77. [PMID: 11178906 DOI: 10.1006/jmbi.2000.4403] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The crystal structure of family B DNA polymerase from the hyperthermophilic archaeon Pyrococcus kodakaraensis KOD1 (KOD DNA polymerase) was determined. KOD DNA polymerase exhibits the highest known extension rate, processivity and fidelity. We carried out the structural analysis of KOD DNA polymerase in order to clarify the mechanisms of those enzymatic features. Structural comparison of DNA polymerases from hyperthermophilic archaea highlighted the conformational difference in Thumb domains. The Thumb domain of KOD DNA polymerase shows an "opened" conformation. The fingers subdomain possessed many basic residues at the side of the polymerase active site. The residues are considered to be accessible to the incoming dNTP by electrostatic interaction. A beta-hairpin motif (residues 242-249) extends from the Exonuclease (Exo) domain as seen in the editing complex of the RB69 DNA polymerase from bacteriophage RB69. Many arginine residues are located at the forked-point (the junction of the template-binding and editing clefts) of KOD DNA polymerase, suggesting that the basic environment is suitable for partitioning of the primer and template DNA duplex and for stabilizing the partially melted DNA structure in the high-temperature environments. The stabilization of the melted DNA structure at the forked-point may be correlated with the high PCR performance of KOD DNA polymerase, which is due to low error rate, high elongation rate and processivity.
Collapse
Affiliation(s)
- H Hashimoto
- Department of Materials Chemistry, Graduate School of Engineering, Osaka University, Suita, Japan
| | | | | | | | | | | | | |
Collapse
|
17
|
Zierenberg RA, Adams MW, Arp AJ. Life in extreme environments: hydrothermal vents. Proc Natl Acad Sci U S A 2000; 97:12961-2. [PMID: 11058150 PMCID: PMC34077 DOI: 10.1073/pnas.210395997] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- R A Zierenberg
- Department of Geology, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
18
|
Abstract
Archaeal histones have significant sequence and structural similarity to their eukaryal counterparts. However, whereas DNA is wrapped in negatively constrained supercoils in eukaryal nucleosomes, it has been reported that DNA is positively supercoiled by archaeal nucleosomes. This was inferred from experiments performed at low temperature and low salt concentrations, conditions markedly different from those expected for many archaea in vivo. Here, we report that the archaeal histones HMf and HTz wrap DNA in negatively constrained supercoils in buffers containing potassium glutamate (K-Glu) above 300 mM, either at 37 degrees C or at 70 degrees C. This suggests that high salt concentrations allow an alternate archaeal nucleosome topology: a left-handed tetramer rather than the right-handed tetramer seen in low salt conditions. In contrast, the archaeal histone MkaH produces DNA negative supercoiling at all salt concentrations, suggesting that this duality of structure is not possible for this atypical protein, which is formed by the association of two histone folds in a single polypeptide. These results extend the already remarkable similarity between archaeal and eukaryal nucleosomes, as it has been recently shown that DNA can be wrapped into either positive or negative supercoils around the H3/H4 tetramer. Negative supercoiling could correspond to the predominant physiological mode of DNA supercoiling in archaeal nucleosomes.
Collapse
Affiliation(s)
- D Musgrave
- Department of Biological Sciences, The University of Waikato, New Zealand.
| | | | | |
Collapse
|
19
|
Abstract
Archaeal histones, homologs of the eucaryal nucleosome core histones, have been identified in the Euryarchaeota. They assemble as tetramers with dsDNA to form archaeal nucleosomes that resemble the central structure of the eucaryal nucleosome formed by the histone (H3-H4)2 tetramer. Eucaryal and archaeal nucleosomes assemble preferentially on DNA molecules that best accommodate the severe bends found within these structures, and here we discuss the relationships between archaeal and eucaryal nucleosomes, repeating DNA sequences, and nucleosome positioning.
Collapse
Affiliation(s)
- K A Bailey
- Department of Microbiology, The Ohio State University, Columbus 43210, USA
| | | |
Collapse
|
20
|
Lou H, Huang L, Mai VQ. Effect of DNA binding protein Ssh12 from hyperthermophilic archaeonSulfolobus shibatae on DNA supercoiling. SCIENCE IN CHINA. SERIES C, LIFE SCIENCES 1999; 42:401-408. [PMID: 18763131 DOI: 10.1007/bf02882060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/1999] [Indexed: 05/26/2023]
Abstract
An 11.5-ku DNA binding protein, designated as Ssh12, was purified from the hyperthermophilic archaeonSulfolobus shibatae by column chromatography in SP Sepharose, DNA cellulose and phosphocellulose. Ssh12 accounts for about 4 % of the total cellular protein. The protein is capable of binding to both negatively supercoiled and relaxed DNAs. Nick closure analysis revealed that Ssh12 constrains negative supercoils upon binding to DNA. While the ability of the protein to constrain supercoils is weak at 22 degrees C, it is enhanced substantially at temperatures higher than 37 degrees C. Both the cellular content and supercoil-constraining ability of Ssh12 suggest that the protein may play an important role in the organization and stabilization of the chromosome ofS. shibatae.
Collapse
Affiliation(s)
- H Lou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100080, Beijing, China
| | | | | |
Collapse
|
21
|
Higashibata H, Fujiwara S, Takagi M, Imanaka T. Analysis of DNA compaction profile and intracellular contents of archaeal histones from Pyrococcus kodakaraensis KOD1. Biochem Biophys Res Commun 1999; 258:416-24. [PMID: 10329402 DOI: 10.1006/bbrc.1999.0533] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two histone genes, hpkA and hpkB, from hyperthermophilic archaeon Pyrococcus kodakaraensis KOD1 strain were cloned, sequenced, and expressed in Escherichia coli cells. Both hpkA and hpkB genes encoded a protein of 67 amino acids, however they possessed the different molecular weight (HpkA, 7,378:HpkB, 7,167). Deduced amino acid sequences of HpkA and HpkB were homologous to other archaeal histones and eucaryal core histones (H2A, H4). Gel mobility shift assays by purified proteins demonstrated that HpkB possessed higher affinity to DNA and more extensive ability to compact DNA than HpkA. HpkB prevented double stranded DNA from thermal denaturation in less amount than HpkA in vitro. In order to investigate intracellular contents of HpkA and HpkB in KOD1 cells, immunoblot analysis was performed by using anti-HpkA antisera obtained from immunized BALB/c mice, showing that HpkA was less abundantly expressed than HpkB in KOD1 cells. These results suggest that HpkB plays a major role to protect double stranded DNA from thermal denaturation in vivo.
Collapse
Affiliation(s)
- H Higashibata
- Graduate School of Engineering, Osaka University, 2-1, Suita, 565-0871, Japan
| | | | | | | |
Collapse
|
22
|
Decker K, Gerhardt F, Boos W. The role of the trehalose system in regulating the maltose regulon of Escherichia coli. Mol Microbiol 1999; 32:777-88. [PMID: 10361281 DOI: 10.1046/j.1365-2958.1999.01395.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The maltose regulon consists of 10 genes encoding an ABC transporter for maltose and maltodextrins as well as enzymes necessary for their degradation. MalK, the energy-transducing subunit of the transport system, acts phenotypically as a repressor of MalT, the transcriptional activator of the mal genes. Using MacConkey maltose indicator plates we isolated an insertion mutation that strongly reduced the repressing effect of overproduced MalK. The insertion had occurred in treR encoding the repressor of the trehalose system. The loss of TreR function led to derepression of treB encoding an enzymeIITre of the PTS for trehalose and of treC encoding TreC, the cytoplasmic trehalose-6-phosphate hydrolase. Further analysis revealed that maltose can enter the cell by facilitated diffusion through enzymeIITre, thus causing induction of the maltose system. In addition, derepression of TreC by itself caused induction of the maltose system, and a mutant lacking TreC was reduced in the uninduced level of mal gene expression indicating synthesis of endogenous inducer by TreC. Extracts containing TreC transformed [14C]-maltose into another 14C-labelled compound (preliminarily identified as maltose 1-phosphate) that is likely to be an alternative inducer of the maltose system.
Collapse
Affiliation(s)
- K Decker
- Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | | | | |
Collapse
|
23
|
Cam EL, Culard F, Larquet E, Delain E, Cognet JA. DNA bending induced by the archaebacterial histone-like protein MC1. J Mol Biol 1999; 285:1011-21. [PMID: 9887264 DOI: 10.1006/jmbi.1998.2321] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The conformational changes induced by the binding of the histone-like protein MC1 to DNA duplexes have been analyzed by dark-field electron microscopy and polyacrylamide gel electrophoresis. Visualisation of the DNA molecules by electron microscopy reveals that the binding of MC1 induces sharp kinks. Linear DNA duplexes (176 bp) which contained a preferential site located at the center were used for quantitative analysis. Measurements of the angle at the center of all duplexes, at a fixed DNA concentration, as a function of the MC1 concentration, were very well fitted by a simple model of an isotropic flexible junction and an equilibrium between the two conformations of DNA with bound or unbound MC1. This model amounts to double-folded Gaussian distributions and yields an equilibrium deflection angle of theta0=116 degrees for the DNA with bound MC1. It allowed measurements of the fraction of DNA with bound MC1 to be taken as a function of MC1 concentrations and yields an equilibrium dissociation constant of Kd=100 nM. It shows that the flexibility of DNA is reduced by the binding of MC1 and the formation of a kink. The equilibrium dissociation constant value was corroborated by gel electrophoresis. Control of the model by the computation of the reduced chi2 shows that the measurements are consistent and that electron microscopy can be used to quantify precisely the DNA deformations induced by the binding of a protein to a preferential site.
Collapse
Affiliation(s)
- E L Cam
- Laboratoire de Microscopie Moléculaire et Cellulaire, LM2C, UMR 1772 CNRS, Institut Gustave-Roussy, 39 rue Camille Desmoulins, Villejuif Cedex, 94805, France.
| | | | | | | | | |
Collapse
|
24
|
Mai VQ, Chen X, Hong R, Huang L. Small abundant DNA binding proteins from the thermoacidophilic archaeon Sulfolobus shibatae constrain negative DNA supercoils. J Bacteriol 1998; 180:2560-3. [PMID: 9573212 PMCID: PMC107202 DOI: 10.1128/jb.180.9.2560-2563.1998] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Major DNA binding proteins, designated Ssh7, were purified from the thermoacidophilic archaeon Sulfolobus shibatae. The Ssh7 proteins have an apparent molecular mass of 6.5 kDa and are similar to the 7-kDa DNA binding proteins from Sulfolobus acidocaldarius and Sulfolobus solfataricus in N-terminal amino acid sequence. The proteins constitute about 4.8% of the cellular protein. Upon binding to DNA, the Ssh7 proteins constrain negative supercoils. At the tested Ssh7/DNA mass ratios (0 to 1.65), one negative supercoil was taken up by approximately 20 Ssh7 molecules. Our results, together with the observation that the viral DNA isolated from S. shibatae is relaxed, suggest that regions of free DNA in the S. shibatae genome, if present, are highly positively supercoiled.
Collapse
Affiliation(s)
- V Q Mai
- Department of Biology, Pomona College, Claremont, California 91711, USA
| | | | | | | |
Collapse
|
25
|
Hamiche A, Richard-Foy H. The switch in the helical handedness of the histone (H3-H4)2 tetramer within a nucleoprotein particle requires a reorientation of the H3-H3 interface. J Biol Chem 1998; 273:9261-9. [PMID: 9535919 DOI: 10.1074/jbc.273.15.9261] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It has recently been proposed that the histone (H3-H4)2 tetramer undergoes structural changes, which allow the particle to accommodate both negatively and positively constrained DNA. To investigate this process, we modified histone H3 at the H3-H3 interface, within the histone (H2A-H2B-H3-H4)2 octamer or the histone (H3-H4)2 tetramer, by forming adducts on the single cysteine of duck histone H3. We used three sulfhydryl reagents, iodoacetamide, N-ethylmaleimide, and 5,5'-dithiobis(2-nitrobenzoic acid). Torsionally constrained DNA was assembled on the modified histones. The H3 adducts, which have no effect on the structure of the nucleosome, dramatically affected the structural transitions that the (H3-H4)2 tetrameric nucleoprotein particle can undergo. Iodoacetamide and N-ethylmaleimide treatment prevented the assembly of positively constrained DNA on the tetrameric particle, whereas 5, 5'-dithiobis(2-nitrobenzoic acid) treatment strongly favored it. Determination of DNA topoisomer equilibrium after relaxation of the tetrameric nucleoprotein particles with topoisomerase I demonstrated that the structural transition occurs without histone dissociation. Incorporation of H2A-H2B dimers into the tetrameric particle containing modified or unmodified cysteines allowed nucleosomes to reform and blocked the structural transition of the particle. We demonstrate the importance of the histone H3-H3 contact region in the conformational changes of the histone tetramer nucleoprotein particle and the role of H2A-H2B in preventing a structural transition of the nucleosome.
Collapse
Affiliation(s)
- A Hamiche
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, 118 route de Narbonne, 31062 Toulouse Cedex, France
| | | |
Collapse
|
26
|
Abstract
The high resolution structure of the nucleosome core particle of chromatin reveals the form of DNA that is predominant in living cells and offers a wealth of information on DNA binding and bending by the histone octamer. Recent studies imply that chromatin is highly dynamic. This propensity for unfolding and refolding stems from the structural design of the nucleosome core. The histone-fold motif, central to nucleosome structure, is also found in other proteins involved in transcriptional regulation.
Collapse
Affiliation(s)
- K Luger
- ETH-Zürich, Institut für Molekularbiologie und Biophysik, Switzerland
| | | |
Collapse
|
27
|
Decker K, Plumbridge J, Boos W. Negative transcriptional regulation of a positive regulator: the expression of malT, encoding the transcriptional activator of the maltose regulon of Escherichia coli, is negatively controlled by Mlc. Mol Microbiol 1998; 27:381-90. [PMID: 9484893 DOI: 10.1046/j.1365-2958.1998.00694.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The maltose regulon consists of 10 genes encoding a multicomponent and binding protein-dependent ABC transporter for maltose and maltodextrins as well as enzymes necessary for the degradation of these sugars. MalT, the transcriptional activator of the system, is necessary for the transcription of all mal genes. MalK, the energy-transducing subunit of the transport system, acts phenotypically as repressor, particularly when overproduced. We isolated an insertion mutation that strongly reduced the repressing effect of overproduced MalK. The affected gene was sequenced and identified as mlc, a known gene encoding a protein of unknown function with homology to the Escherichia coli NagC protein. The loss of Mlc function led to a threefold increase in malT expression, and the presence of mlc on a multicopy plasmid reduced malT expression. By DNasel protection assay, we found that Mlc protected a DNA region comprising positions +1 to +23 of the malT transcriptional start point. Using a mlc-lacZ fusion in a mlc and mlc+ background, we found that Mlc represses its own expression. As Mlc also regulates another operon (manXYZ, see pages 369-379 of this issue), it may very well constitute a new global regulator of carbohydrate utilization.
Collapse
Affiliation(s)
- K Decker
- Department of Biology, University of Konstanz, Germany
| | | | | |
Collapse
|
28
|
Affiliation(s)
- J Zlatanova
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331-7305, USA.
| |
Collapse
|
29
|
Affiliation(s)
- J N Reeve
- Department of Microbiology, Ohio State University, Columbus 43210, USA
| | | | | |
Collapse
|